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We systematically investigate the ground-state and the spectral properties of antiferromagnets
on a kagomé lattice with several common types of the planar anisotropy: XXZ, single-ion, and
out-of-plane Dzyaloshinskii-Moriya. Our main focus is on the role of nonlinear, anharmonic terms,
which are responsible for the quantum order-by-disorder effect and for the corresponding selection
of the ground-state spin structure in many of these models. The XXZ and the single-ion anisotropy
models exhibit a quantum phase transition between the q=0 and the

√
3×
√

3 states as a function
of the anisotropy parameter, offering a rare example of the quantum order-by-disorder fluctuations
favoring a ground state which is different from the one selected by thermal fluctuations. The
nonlinear terms are also shown to be crucial for a very strong near-resonant decay phenomenon
leading to the quasiparticle breakdown in the kagomé-lattice antiferromagnets whose spectra are
featuring flat or weakly dispersive modes. The effect is shown to persist even in the limit of large
spin values and should be common to other frustrated magnets with flat branches of excitations.
Model calculations of the spectrum of the S = 5/2 Fe-jarosite with Dzyaloshinskii-Moriya anisotropy
provide a convincing and detailed characterization of the proposed scenario.

PACS numbers: 75.10.Jm, 75.30.Ds, 75.50.Ee, 78.70.Nx

I. INTRODUCTION

Kagomé-lattice antifferomagnets are iconic in the field
of frustrated magnets, comprising a number of model
systems whose classical ground states are massively de-
generate, giving rise to an extreme sensitivity to sub-
tle symmetry breaking effects,1,2 to fractional magneti-
zation plateaus,3,4 to a strongly amplified role of sec-
ondary interactions,5 and to an emergent hierarchy of
energy scales in their dynamics.6 A crucial role of the
non-linear, anharmonic terms in the so-called order-by-
disorder ground-state selection by thermal7 or quantum
fluctuations8 in the kagomé-lattice antifferomagnets has
been recognized for some time. Recently, an accurate,
systematic treatment of the quantum order-by-disorder
effect in the anisotropic versions of the model has re-
ceived a significant development.9,10 However, much less
is known about the role of such terms in the excitation
spectra of frustrated magnets and only recently a rather
dramatic picture has begun to emerge.11

Usually, the nonlinear terms in antiferromagnets are
necessary to describe interactions of magnons and, while
their role is, generally, more significant when frustration
is present,12,13 they still lead to effects that are relatively
minor in the large-S limit, i.e., constitute a 1/S con-
tribution compared with the classical energy scale JS.
However, in a wide class of highly-frustrated systems,
including the kagomé-lattice antiferromagnets, the non-
linear anharmonic terms are responsible for the phenom-
ena that are much more dramatic.

First effect concerns systems in which contenders for
the ground state form a highly degenerate, extensive
manifold of states, and neither the classical energetics
nor the harmonic fluctuations are able to select a unique
ground state from that manifold.1,5,8 In that case, the

selection role is passed onto the nonlinear terms pro-
viding a variant of the quantum order by disorder ef-
fect. Such is the case of the three models considered in
this work, Heisenberg, XXZ,9 and single-ion anisotropy
models, while in the case of the Dzyaloshinskii-Moriya
(DM) anisotropy, a unique state is selected already on
the classical level.14

The second effect is less-studied, but is equally strik-
ing. We demonstrate, that the nonlinear terms lead to
spectacularly strong quantum effects in the dynamical
response of the flat-band frustrated magnets, even in
the ones that are assumed nearly classical.11 The resul-
tant spectral features invoke parallels with the quasipar-
ticle breakdown signatures in quantum spin- and Bose-
liquids,15,16 which exhibit termination points and broad
continua where single-particle excitations are no longer
well-defined. In the present case, the origin of such fea-
tures is in the near-resonant decay into pairs of the flat
modes, facilitated by the nonlinear couplings. The effect
is strongly amplified by the density of states of the flat
modes and can be shown to persist even in the large-S
limit, defying the usual 1/S suppression trend and chal-
lenging a conventional wisdom that such drastic phenom-
ena can only occur in an inherently quantum system.

In the present study, we expand the analysis of our pre-
vious works9,11 and offer an exposé of the 1/S formalism
for several common anisotropic extensions of the nearest-
neighbor Heisenberg model on the kagomé lattice that are
also relevant to real materials. The presented approach
to the nonlinear spin-wave theory can be applicable to
the other, more complicated forms of the kagomé-lattice
Hamiltonians as well as to a broader class of frustrated
spin systems on the non-Bravais lattices. We also provide
a useful extension of our approach to the perturbative
treatment of small perturbations to the main Hamilto-
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nian, such as the next-nearest superexchanges J2.
For the ground-state consideration, we demonstrate a

quantum phase transition between the q = 0 and the√
3×
√

3 states as a function of anisotropy parameter in
two models: XXZ model, studied previously,9 and the
single-ion anisotropy model. While the effect is similar in
both models, the energy scale associated with it is shown
to be different, in agreement with the understanding
that the degeneracy-lifting interaction is associated with
a high-order topologically-nontrivial spin-flip processes,
which are different in the two models. Nevertheless, both
model cases present a rare example of the ground-state
selection that is different from the choice of the thermal
fluctuations, which favor the

√
3 ×
√

3 structure for any
value of the anisotropy parameter.2,5,7,9,10,17–19

For the spectral properties of the kagomé-lattice an-
tiferromagnets, we offer a detailed consideration of the
decay-induced effects in the DM anisotropy model with
J2, the model that closely describes the S = 5/2 Fe-
jarosite.20,21 We also present a general analysis of the
near-resonant decays in the flat-band frustrated antifer-
romagnets, which suggests that the dramatic modifica-
tions in the spectrum due to this phenomenon must per-
sist in the large-S limit. While the core of our presen-
tation is aimed at a common and realistic extension of
the nearest-neighbor Heisenberg kagomé-lattice antifer-
romagnet, we argue that the spectacularly strong quan-
tum effect of the quasiparticle breakdown in an almost
classical system should be applicable to a variety of other
flat-band frustrated spin systems.22–25 We also remark on
a useful q-dependence of the dynamical structure factor,
which is characteristic to the non-Bravais lattices and al-
lows to select spectral contributions of specific branches
in the portions of the q-space.

The paper is organized as follows. In Sec. II we present
a consideration of the harmonic theory for several com-
mon anisotropic models on the kagomé lattice, explicate
details of the diagonalization procedure, and show results
of a representative calculation within the harmonic ap-
proximation. In Sec. III, anharmonic terms of the models
are derived and the results of the ground-state selection
calculations are presented. The spectral properties of the
kagomé-lattice antiferromagnets are also given a detailed
exposition. Technical aspects of the derivation of the
quartic terms are given in Appendix A.

II. LINEAR SPIN-WAVE THEORY

To set the stage, we provide the linear spin-wave con-
sideration of the isotropic nearest-neighbor antiferromag-
netic Heisenberg model on the kagomé lattice following
the approach of Ref. 5. We continue with various ex-
tensions of the model, which are either relevant to real
materials or allow to explore the role of quantum effects
in a wider parameter space. These extensions include
the anisotropic XXZ model, models with the single-ion
and the out-of-plane Dzyaloshinskii-Moria anisotropies,
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FIG. 1: (Color online) (a) q=0 and (b)
√

3×
√

3 spin config-
urations. In (a), primitive vectors of the kagomé lattice and
numbering of sites within the unit cell are shown.

and additional further-neighbor exchange terms. Subse-
quently, the important steps of the diagonalization proce-
dure that will be essential for the non-linear terms consid-
ered in Sec. III are exposed. In the end of this Section,
results of the calculations of the on-site magnetization
within the linear spin-wave theory for the XXZ model
are presented as an example.

A. Nearest-neighbor Heisenberg model

Within the spin-wave treatment, nearest-neighbor
Heisenberg antiferromagnet on the kagomé lattice with
the Hamiltonian

Ĥ = J
∑
〈ij〉

Si · Sj , (1)

is assumed to be in an ordered state with spins forming
a coplanar 120◦ structure. Summation is over bonds and
i, j are the sites of the lattice. Aligning the z-axis on
each site along the direction of the ordered moment and
directing the y-axes out of the ordering plane transforms
the Hamiltonian (1) to a local spin basis

Ĥ = J
∑
〈ij〉

(
Syi S

y
j + cos θij

(
Sxi S

x
j + Szi S

z
j

)
+ sin θij

(
Szi S

x
j − Sxi Szj

))
= J

∑
〈ij〉

Si ⊗ Sj , (2)

where θij = θi − θj is an angle between two neighbor-
ing spins and we have introduced “matrix” product ⊗ of
spins with the matrix

⊗ =

 cos θij 0 − sin θij
0 1 0

sin θij 0 cos θij

 (3)

as a shorthand notation.
We choose the unit cell of the kagomé lattice as an

up-triangle, see Fig. 1, and the primitive vectors of the
corresponding triangular Bravais lattice as

δ1 = (1, 0) , δ2 =

(
1

2
,

√
3

2

)
, δ3 = δ2 − δ1 , (4)
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all in units of 2a where a is the interatomic distance.
The atomic coordinates within the unit cell are ρ1 = 0,
ρ2 = 1

2δ3, and ρ3 = − 1
2δ1.

Then, changing summation over bonds to summation
over unit cells and the atomic index, i → {α, `}, with
α = 1–3 enumerating atoms within the unit cell, the
Hamiltonian (2) becomes

Ĥ = J
∑
`

S1,` ⊗ (S2,` + S2,`−3) (5)

+S1,` ⊗ (S3,` + S3,`+1) + S2,` ⊗ (S3,` + S3,`+2) ,

where the product Sα,` ⊗ Sα′,`′ is according to (2), and
` ± n ≡ R` ± δn with the coordinate of the unit cell
R` = m1δ1 +m2δ2.

B. Harmonic spin-wave approximation

It should be noted that although a coplanar state with
spins on each triangle in a 120◦ structure minimizes the
classical energy of (1), such a state is not unique and
the manifold of them is extensive.26 However, it is also
clear from the Hamiltonian in the local basis (2) that the
linear spin-wave theory is the same for any state from
this degenerate manifold,1 because cos θij = −1/2 for
any pair of spins in such state and SxSz terms do not
contribute to the harmonic order of the 1/S expansion.

Thus, we introduce Holstein-Primakoff representation
for spin operators

Szα,` = S − a†α,`aα,` , S−α,` = a†α,`

√
2S − a†α,`aα,` (6)

into (5) and, keeping only quadratic terms, obtain a har-
monic Hamiltonian for three species of bosons

Ĥ2 = 2JS
∑
`

{[
a†1,`a1,` + a†2,`a2,` + a†3,`a3,`

]
+

1

8

[
a†1,`
(
a2,` + a2,`−3

)
+ a†1,`

(
a3,` + a3,`+1

)
+ a†2,`

(
a3,` + a3,`+2

)
+ h.c.

]
(7)

− 3

8

[
a1,`
(
a2,` + a2,`−3

)
+ a1,`

(
a3,` + a3,`+1

)
+ a2,`

(
a3,` + a3,`+2

)
+ h.c.

]}
.

Performing the Fourier transformation according to

aα,` =
1√
N

∑
k

aα,k e
ikrα,` , (8)

where rα,` = R`+ρα and N is the number of unit cells,
we obtain the linear spin-wave theory Hamiltonian

Ĥ2 = 2JS
∑
k,αβ

{[
δαβ +

1

4
Λαβk

]
a†α,kaβ,k

− 3

8
Λαβk

(
a†α,ka

†
β,−k + h.c.

)}
, (9)

with the matrix

Λ̂k =

 0 c3 c1
c3 0 c2
c1 c2 0

 , (10)

and shorthand notations cn = cos(qn) with qn=k · δn/2.
One can rewrite this Hamiltonian as

Ĥ2 =
∑
k>0

X̂†kĤkX̂k − 3JS , (11)

with the vector operator

X̂†k =
(
a†1,k, a

†
2,k, a

†
3,k, a1,−k, a2,−k, a3,−k

)
(12)

and the 6×6 matrix Ĥk

Ĥk = 2JS

(
Âk −B̂k

−B̂k Âk

)
, (13)

where

Âk = Î +
1

4
Λ̂k, B̂k =

3

4
Λ̂k , (14)

and Î is the identity matrix.
For a moment, we will confine ourselves to the eigen-

value problem of Ĥ2. Because of an obvious commuta-
tivity of the matrices Âk and B̂k, the eigenvalues of Ĥk

are straightforwardly related to their eigenvalues, and,
in turn, are determined by the eigenvalues λν,k of the

matrix Λ̂k, so that the spin-wave excitation energies are

εν,k = 2JS
√
A2
ν,k −B2

ν,k = 2JSων,k , (15)

with the frequencies ων,k =
√

(1− λν,k/2)(1 + λν,k) and

Aν,k = 1 +
1

4
λν,k, Bν,k =

3

4
λν,k . (16)

Thus, the problem of the diagonalization of Ĥ2 in (9) is

reduced to the eigenvalue problem of Λ̂k in (10). From

the characteristic equation for Λ̂k one finds

|Λ̂k − λ| = (λ+ 1)
(
λ2 − λ− 2γk

)
= 0 , (17)

where γk ≡ c1c2c3 is introduced and factorization is per-
formed with the help of a useful identity

c21 + c22 + c23 = 1 + 2c1c2c3 ,

which holds once the cosine arguments satisfy q2 = q1 +
q3. Thus, the λν,k eigenvalues are

λ1 = −1 , λ2(3),k =
1

2

(
1±

√
1 + 8γk

)
. (18)

Of the resultant spin-wave excitations one is completely
dispersionless and has zero energy, referred to as the “flat
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mode,” and two are “normal,” i.e. dispersive modes,
which are degenerate in the Heisenberg limit

ε1,k = 0, ε2(3),k = 2JS
√

1− γk . (19)

The nature of the flat mode has been discussed
previously.1,5,8 Generally, such modes owe their ori-
gin to both the topological structure of the underlying
lattices that facilitate spin frustration and the insuffi-
cient constraint on the manifold of spin configurations.
Physically, they correspond to the localized, alternat-
ing out-of-plane fluctuations of spins around elementary
hexagons,1,5 which do not experience a restoring force in
the harmonic order in the Heisenberg limit, hence their
energy is zero. In the following, various anisotropies lift
the energy of such a flat mode, but preserve its flatness.

C. XXZ model

Next, we consider an extension of the Heisenberg
model on the kagomé lattice to the XXZ model with
anisotropy of the easy-plane type, 0 ≤ ∆ ≤ 1. The origi-
nal motivation for this extension, see Ref. 9, was that the
degeneracy among the 120◦ coplanar states in this model
remains the same as in the Heisenberg model. This has
allowed us to extend the parameter space and to study
the effect of quantum fluctuations in the ground-state se-
lection without lifting degeneracy of the classical ground-
state manifold, see Sec. III for more detail.9

In the case of the XXZ model, the plane for the copla-
nar 120◦ structure is chosen by the anisotropy. In the lo-
cal spin basis of (2) with y-axis out of the ordering plane,
the XXZ addition to the Heisenberg model reads as

δĤ = J(∆− 1)
∑
〈ij〉

Syi S
y
j . (20)

A now straightforward spin-wave algebra of (20) leaves
the structure of the harmonic Hamiltonian in (9) intact,
yielding corrections to the Hamiltonian matrix in (13)

δÂk = δB̂k =
(∆− 1)

2
Λ̂k . (21)

The spin-wave energies for the XXZ model in (15) are

now with ων,k =
√

(1− λν,k/2)(1 + ∆λν,k) and give

ε1,k = 2JS
√

3(1−∆)/2 , (22)

for the flat mode, which is now at a finite energy, and

ε2(3),k = 2JS

√
1−∆γk − (1−∆)

(
1±

√
1 + 8γk

)
/4 .

for the dispersive modes.

D. Single-ion anisotropy

Instead of theXXZ correction (20), an alternative way
of generating easy-plane anisotropy is to add a positive

single-ion term

δĤ = D
∑
i

(
Syi
)2
, (23)

where y is the out-of-plane axis in the local spin basis of
(2) as before. This term, in a complete similarity to the
XXZ case, gives zero contribution to the classical en-
ergy, does not affect cubic anharmonicity, and does not
contribute to the degeneracy lifting of the 120◦ mani-
fold through the quartic terms.9 Its contribution to the
harmonic Hamiltonian (13) is also simple

δÂk = δB̂k =
d

2
Î , (24)

where d=D/J and Î is the identity matrix. Thus, once

again, the eigenvalue problem of Ĥ2 reduces to the eigen-
value problem of Λ̂k, resulting in the spin-wave frequen-
cies ων,k =

√
(1− λν,k/2) (1 + d+ λν,k), and the spin-

wave energy of the flat mode

ε1,k = 2JS
√

3d/2 , (25)

while energies of the dispersive modes are

ε2(3),k = 2JS

√
1 + d− γk − d

(
1±

√
1 + 8γk

)
/4 , (26)

which should be compared to the XXZ results above.
There is a high degree of similarity of the single-ion

anisotropy model (23) and its results to the XXZ case,
the most important being no degeneracy lifting among
the 120◦ manifold of classical states at the harmonic level
of approximation. However, there is also an important
difference. If analyzed in real space in the local basis (2),
the structure of the spin-flip terms is different in the two
models. In particular, the single-ion term (23) creates
spin flips that are purely local while the spin-flip hop-
ping and other amplitudes responsible for degeneracy-
lifting remain independent of anisotropy D. Therefore,
from the point of view of the real-space perturbation the-
ory, described in Ref. 9, the minimal order in which an
effective degeneracy-lifting interaction is generated is dif-
ferent in the two models.27 We will address this difference
in Section III in more detail.

E. Dzyaloshinskii-Moria interaction

Important correction to the Heisenberg spin model (1)
that commonly occurs in real magnetic materials with
the kagomé structure is the anisotropic Dzyaloshinskii-
Moriya (DM) interaction.

The out-of-plane DM term, see Fig. 2, is the main per-
turbation to the Heisenberg Hamiltonian of the S = 5/2
kagomé-lattice antiferromagnet Fe-jarosite,20,21 S = 1/2
materials herbertsmithite28 and vesignieite,29 and other
systems.30 This anisotropy differs from the ones con-
sidered above in a number of aspects, but allows for a
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FIG. 2: (Color online) Directions of the out-of-plane DM vec-
tors. Arrows on the bonds show the ordering of the Si and
Sj operators in the vector-product in (27).

very similar analytical treatment, mainly because of its
nearest-neighbor nature.

The antisymmetric Dzyaloshinskii-Moriya interaction
is generally written as

δĤDM =
∑
〈ij〉

Dij · (Si × Sj) . (27)

In order to determine the DM vectors Dij one has to
specify the order of sites in the vector product, which
may be represented by the bond direction from the first
to the second spin in each pair. A convenient choice
consists of ordering spins uniformly along the chains, see
Fig. 2. Then, the symmetry analysis yields a unique pat-
tern of the DM vectors orthogonal to the kagomé plane
as shown in Fig. 2.14,31,32 Note, that the in-plane compo-
nents of the DM vectors are strictly forbidden once the
the kagomé plane coincides with a mirror crystal plane.31

Apparent alternation of the DM vectors between up
triangles with Dij =(0, 0,−Dz) and down triangles with
Dij =(0, 0, Dz) is partly fictitious, because it is a conse-
quence of the chosen bond gauge, in which the two types
of triangles are circumvented oppositely, Fig. 2. The DM
interactions on the two triangles favor the same sense of
spin rotation or chirality. Hence, for a given sign of Dz,
the DM term (27) selects one of the two q = 0 struc-
tures with positive (Dz > 0) or negative (Dz < 0) chi-

ralities, yielding energy gain Ecl =−
√

3|Dz|S2 per site.

On the other hand, for the
√

3 ×
√

3 state contributions
from up and down triangles come with opposite sign and
cancel out. In the following, we assume Dz>0 and, con-
sequently, perform the spin-wave expansion around the
q= 0 state with positive chiralities, see Fig. 2. It is also
straightforward to see that the DM term does not in-
duce additional canting and preserves the 120◦ magnetic
structure in the x–y plane.

Consider the DM term (27) on the (1, 2) bond in Fig. 2
written in the rotating local spin basis (2)

Ĥ(1,2) = Dz sin θ12 (Sz2S
z
1 + Sx2S

x
1 )

+Dz cos θ12 (Sz2S
x
1 − Sx2Sz1 ) , (28)

0

0.5

1

1.5

ε
k

 /
 2

J
S

k

J-Dz

X YΓ

Dz /J = 0.06

Γ

Γ X

Y

1

2

3

FIG. 3: (Color online) Energies of the three magnon modes
for the J–Dz spin model with the out-of-plane DM interaction
Dz/J = 0.06 along a representative path in the Brillouin zone.

where θij = θi−θj , and the first term contributes to the
classical, harmonic, and quartic orders of the 1/S expan-
sion, while the second contributes in the cubic order.

Since the DM term concerns only the nearest-neighbor
pairs of spins and because in the q = 0 state all DM
bonds contribute identically, the overall structure of the
harmonic part of the Hamiltonian remains the same as in
(9). Then, some algebra yields the harmonic Hamiltonian

Ĥ2 in the form (13) with the DM contributions

δÂk = dM

(
Î− 1

4
Λ̂k

)
, δB̂k =

dM
4

Λ̂k , (29)

where dM =
√

3Dz/J and Λ̂k is unchanged from (10),
again reducing the eigenvalue problem of the harmonic
spin-wave theory to the one of Λ̂k, already solved in
(17) and (18). Then, the spin-wave frequencies for the
problem with the out-of-plane DM interaction (27) are

ων,k =
√

(1 + dM ) (1− λν,k/2) (1 + dM + λν,k). With
λν,k from (18), the flat mode energy is

ε1,k = 2JS
√

3dM (1 + dM ) /2 , (30)

and the energies of the dispersive modes are

ε2(3),k = 2JS
√

1 + dM (31)

×
√

1 + dM − γk − dM
(
1±

√
1 + 8γk

)
/4 ,

which are similar to the XXZ (22) and the single-ion
(25), (26) results and are in agreement with Ref. 21. The
energies of the magnon modes εν,k are illustrated in Fig. 3
for the DM term Dz/J=0.06, a value relevant to the Fe-
jarosite.20,21

Opposite to the previous extensions, the DM term con-
tributes to the cubic anharmonicities, see (28). Using the
second term in (28) for one bond and extending it to the
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entire lattice we find for the q=0 state

Ĥ3 =
dM
3
J

√
S

2

∑
i,j

sin θij
(
a†ia
†
jaj + h.c.

)
, (32)

whose structure is identical to the cubic term from the J-
part of the Hamiltonian (47) considered in Sec. III. Thus,
the out-of-plane DM interaction in the q=0 state simply
renormalizes cubic vertices by a factor (1 + dM/3).

F. Small-J2 expansion

In the Heisenberg kagomé-lattice antiferromagnet, ad-
ditional next-nearest-neighbor coupling J2 lifts the de-
generacy of the 120◦ manifold of classical states and se-
lects between the q = 0 and

√
3 ×
√

3 ground states.5,8

It also introduces a dispersion into the “flat mode” en-
ergy and thus was invoked to reproduce experimentally
observed k-dependence of such mode in Fe-jarosite.21 We
note, however, that quantum fluctuations beyond the
harmonic order also generate effective J2 interactions,8,9

and thus could be the source of the same k-dependence.
As we show in Sec. III, the dispersion of the flat mode is
particularly important for the quasi-resonant spin-wave
decays. Below, we consider the effect of small J2 pertur-
batively. Other types of small interactions can be taken
into account in a similar fashion.

We first point out that the network of the second-
neighbor bonds forms three independent kagomé lattices.
Second, these bonds connect only spins from different
sublattices of the original lattice, see Fig. 1. There-
fore, contribution of the J2 term to the harmonic spin-
wave Hamiltonian has the same structure as the nearest-
neighbor Hamiltonian (9)

δĤ′2 = 2J2S
∑
k,αβ

{[
δαβ +

1

4
Λ′αβk

]
a†α,kaβ,k

− 3

8
Λ′αβk

(
a†α,ka

†
β,−k + h.c.

)}
, (33)

where instead of Λ̂k the matrix is

Λ̂′k =

 0 c′3 c′1
c′3 0 c′2
c′1 c′2 0

 , (34)

and we use the shorthand notations c′1 = cos(q3 + q2),
c′2 =cos(q3−q1), c′3 =cos(q1+q2) with qn=k · δn/2.

Therefore, the diagonalization of the harmonic part of
the J − J2 Hamiltonian requires diagonalization of the

matrix Λ̃k =Λ̂k + j2Λ̂
′
k, where j2 =J2/J . Generally, this

can be done numerically, the approach taken in Ref. 21
in the analysis of the Fe-jarosite spectrum, with the an-
alytical results given only for the high-symmetry points.
However, having in mind the problem of spin-wave exci-
tation in large-S kagomé-lattice antiferromagnet, for the

0
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ε
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,k
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S
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X YΓ

J2 /J = 0.03

Dz /J = 0.06

Γ

Γ X

Y

FIG. 4: (Color online) Evolution of the “flat mode” upon
switching on additional interactions with parameters shown
in the legend. Solid lines: energies of the “flat mode” for the
J −J2 Heisenberg (lower curve) and out-of-plane DM models
(upper curve), using approximate expressions in Eqs. (37) and
(39). Dashed lines are the energies for the same models at
J2 = 0. Dotted lines (virtually indistinguishable from solid
lines) are exact results, without using the expansion in J2.

physical range of interest J2�J one can make analytical
progress using an expansion in j2.

Because the most important qualitative effect of J2
is the dispersion of the flat band, we will ignore small
corrections to the “normal” modes. Expanding charac-

teristic equation for the matrix Λ̃k in j2 we obtain

(λ+ 1)
(
λ2 − λ− 2γk

)
= 2j2 (λf1(k) + f2(k)) , (35)

where f1(k) = c′1c1 + c′2c2 + c′3c3 ,

f2(k) = c′1c2c3 + c′2c1c3 + c′3c1c2 .

Then, the “flat mode” λ1 =−1 eigenvalue is modified as

λ̃1,k = λ1 + j2λ
(1)
1,k , λ

(1)
1,k =

(
f2(k)− f1(k)

1− γk

)
. (36)

Corrections to λ2 and λ3 can be obtained similarly.
Having this perturbative correction to λ1 in (36) allows

us to obtain the flat mode energies in various models. We
list some of the answers below.
(i) J − J2 Heisenberg model:

ε1,k = 2JS

√
3j2(1 + λ

(1)
1,k)/2 +O(j

3/2
2 ) . (37)

(ii) J − J2 XXZ model. Here we assume that the
anisotropy ∆ is the same in both exchanges:

ε1,k = 2JS

√
3/2 + j2(1− λ(1)1,k/2) (38)

×
√

1−∆ + j2(1 + λ
(1)
1,k) +O(j22) .
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(iii) J − J2 out-of-plane DM model.

ε1,k = 2JS

√
3(1 + dM )/2 + j2(1− λ(1)1,k/2) (39)

×
√
dM + j2(1 + λ

(1)
1,k) +O(j22) ,

where dM =
√

3Dz/J as before. This is the model which
was used to describe the spectrum of Fe-jarosite.21 Our
results agree exactly with the expressions for the high-
symmetry points provided in Ref. 21. The advantage of
our approach is that it is fully analytical in the entire
Brillouin zone.

Effects of the second-neighbor exchange J2 and the
DM coupling Dz on the dispersion of the “flat mode”
ε1,k are summarized in Fig. 4 for representative values
J2/J = 0.03 and Dz/J = 0.06 that are motivated by the
experimental data for Fe-jarosite;20,21 the J2 = 0 ener-
gies are also shown. In the same figure the energies ob-

tained via numerical diagonalization of the matrix Λ̃k are
shown. The corresponding results are indistinguishable
from the approximate results of Eqs. (37) and (39) on
the scale of our plot.

G. Two-step diagonalization

For the above three cases, the XXZ, the single-ion,
and the out-of-plane DM models, the harmonic spin-wave
theory includes diagonalization of the same matrix Λ̂k.
Here we elaborate on details of this general procedure
and provide the formalism, which is essential for treating
the non-linear terms in all these models and is identical
for all considered cases.

Following Ref. 5, diagonalization of Λ̂k implies a two-
step diagonalization procedure of Ĥ2 in the form (13).
Its eigenvectors w†ν = (wν,1(k), wν,2(k), wν,3(k)) obey

Λ̂kwν = λν,kwν (40)

and can be found explicitly5,9

wν(k) =
1

rν

 c1c2 + λνc3
λ2ν − c21

c1c3 + λνc2

 , (41)

with rν =
√

(c1c2 + λνc3)2+ (λ2ν − c21)2+ (c1c3+ λνc2)2.
These eigenvectors define a unitary transformation of

the original Holstein-Primakoff bosons to the new ones

aα,k =
∑
ν

wν,α(k) dν,k , dν,k =
∑
α

wν,α(k) aα,k , (42)

such that the harmonic Hamiltonian Ĥ2 in the form of
(9) with Âk’s and B̂k’s from (14) with (21), (24), or (29)
is turned into three independent Hamiltonians

Ĥ2 = 2JS
∑
ν,k

[
Aν,kd

†
ν,kdν,k −

Bν,k
2

(
d†ν,kd

†
ν,−k + h. c.

)]
.

The final step is the conventional Bogolyubov transfor-
mation for each individual species of the d-bosons

dν,k = uνkbν,k + vνkb
†
ν,−k , (43)

with u2νk − v2νk = 1 and

v2νk =
1

2

(Aν,k
ων,k

− 1
)
, 2uνkvνk =

Bν,k
ων,k

, (44)

where the eigenvalues ων,k, Aν,k, and Bν,k were obtained
for each of the models in previous sections. The impor-
tance of this two-step procedure will be apparent in the
discussions of the non-linear terms in Sec. III.

H. Ordered magnetic moment

Here we discuss the dependence of the ordered mag-
netic moment on anisotropy parameter and on the value
of the spin S. While we only consider the XXZ model,9

the results are expected to be similar for the other
anisotropies considered above. It should be noted that
this calculation can only qualitatively estimate the sta-
bility of the Neél order, because it only includes the
“diagonal” quantum fluctuation for a given state, com-
pletely neglecting the “off-diagonal” tunneling processes
between different states within the manifold. On the
other hand, such processes should be exponentially sup-
pressed for larger spins.33

Within the linear spin-wave theory, magnetic moment
on a site that belongs to the sublattice α is reduced by

zero-point fluctuations: 〈S〉α = S − 〈a†α,`aα,`〉. Convert-

ing aα to dµ and then to bµ using unitary (42) and Bo-
golyubov (43) transformations one arrives to

〈S〉α = S − 1

N

∑
µ,k

w2
µ,α(k) v2µk . (45)

Since all three sublattices are equivalent, symmetrization
of (45) gives

〈S〉 = S − 1

3N

∑
µ,k

v2µk , (46)

with v2µk from (44). Calculations of the magnetization

M = 〈S〉/S and the 〈S〉= 0 Neél order boundary in the
S−∆ plane are performed taking the 2D integrals in (46)
numerically using (44) for the XXZ model.

Quantum suppression of the ordered moment vs
anisotropy ∆ is shown in Fig. 5(a) for two values of spin.
Linear spin-wave theory suggests a disordered state near
the Heisenberg limit for all spin values because quantum
correction diverges for ∆ → 1 due to vanishing energy
of the “flat mode.” The critical value 1−∆c≈ 0.047 for
S= 1/2 is compared in Fig. 5(a) with the result for the

DM couplingDz,c=0.1 (rescaling 1−∆c⇔
√

3Dz,c), found
by exact diagonalization (ED).14,34 Since the DM term
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FIG. 5: (Color online) (a) Magnetization M=〈S〉/S vs ∆ for
S=1/2 and S=5/2. Square is the ED result for S=1/2 with
the DM interaction. (b) Intensity plot of the magnitude of
M . Solid line is the 〈S〉=0 Neél order phase boundary in the
S−∆ plane on the log-log scale, dashed line is the asymptotic
approximation for it, see text.

suppresses tunneling processes within the manifold, it is
reasonable to compare ED with spin-wave theory results
to evaluate the accuracy of the Neél order boundary. One
can see a qualitative agreement with ED and a quanti-
tative exaggeration of the extent of the ordered phase,
expected for the spin-wave approach.

Near the Heisenberg limit, one can neglect non-
divergent terms in (46) and find an asymptotic expression
for the Neél order boundary from 〈S〉= 0≈S−A1/6ω1,

where A1 = 3/4, see (16), and ω1 =
√

3(1−∆)/2, see
(22), leading to 1−∆c ≈ 1/96S2, which is shown in
Fig. 5(b) together with the result of the numerical in-
tegration in (46) and demonstrates an exceedingly close
agreement with it.

III. NON-LINEAR SPIN-WAVE THEORY

In Sec. II we have considered three anisotropic models
of the kagomé-lattice antiferromagnets in the harmonic
approximation and outlined the approach to taking into
account other terms, such as further-neighbor exchanges,
perturbatively. In this Section, we derive the nonlinear,
cubic and quartic terms of the spin-wave 1/S expansion
and then exemplify their role in the ground-state selec-
tion and in the spectral properties of the kagomé-lattice
antiferromagnets using representative cases.

Below, we first obtain cubic and quartic terms of the

spin-wave expansion to conclude the formal development
of the theory. Then the cubic vertices for q = 0 and√

3×
√

3 states allow us to proceed with calculating order-
by-disorder fluctuating corrections to their ground-state
energies for the XXZ and single-ion anisotropy models.
Both models demonstrate a quantum phase transition
between the q = 0 and the

√
3 ×
√

3 states as a func-
tion of anisotropy parameter. Hence, both cases present
rare examples of the quantum order-by-disorder favoring
a different state from the one selected by thermal fluctua-
tions, the latter choosing the

√
3×
√

3 structure regardless
of the anisotropy.2,5,7,9,10,17–19

We then proceed with a calculation of the decay-
induced effects in the structure-factor S(q, ω) within the
DM model with J2. While this calculation is aimed at
giving a detailed account of the spectral properties of a
specific kagomé-lattice antiferromagnet described by this
model, S = 5/2 Fe-jarosite, the outlined scenario should
be applicable to a wide variety of the other flat-band frus-
trated spin systems.22–25 We also note that the structure
factor q-dependence allows to “filter out” spectral con-
tributions of specific modes in the portions of the q-space
while highlighting the others; a useful phenomenon char-
acteristic to the non-Bravais lattices.

A. Cubic terms

In the XXZ, single-ion anisotropy, and Heisenberg
models, (2) with or without the anisotropies in (20) and
(23), the terms that lead to the cubic anharmonic cou-
pling of the spin waves are identical and originate from
the Sxi S

z
j part of (2). These terms are also the only

ones that are able to distinguish between different 120◦

spin configurations in these models by virtue of contain-
ing sin θij=±

√
3/2 for the clockwise or counterclockwise

spin rotation. In the bosonic representation they yield

Ĥ3 = J

√
S

2

∑
i,j

sin θij
(
a†ia
†
jaj + h.c.

)
, (47)

where θij = θi− θj is the angle between two neighboring
spins as before. Clearly, the spin-wave interaction result-
ing from this term has different amplitude for different
spin patterns. For the DM model, the DM term (27) also
contributes to the cubic anharmonicity, but its structure
for the q = 0 state is identical to (47), see (32), so it
gives a simple change of the overall factor in the vertex
J→J+Dz/

√
3.

Using (47), we now detail the derivation of the cubic
vertices for the main contenders for the ground state, the
q = 0 and the

√
3 ×
√

3 states. We begin with the q = 0
pattern, for which Ĥ3 in (47) can be rewritten as

Ĥ3 = −J
√

3S

2N

∑
αβ,k,q

εαβγ cos(qβα)a†α,qa
†
β,kaβ,p + h. c.,

(48)
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where εαβγ is the Levi-Civita antisymmetric tensor, p =
k + q, qβα = q · ρβα, and ρβα = ρβ − ρα.

The unitary transformation (42) in (48) yields

Ĥ3 = −J
√

3S

2N

∑
k,q

∑
νµη

F νµηqkp d
†
ν,qd

†
µ,kdη,p + h.c., (49)

where p = k + q and the amplitude is

F νµηqkp =
∑
αβ

εαβγ cos(qβα)wν,α(q)wµ,β(k)wη,β(p). (50)

Finally, the Bogolyubov transformation (43) gives

Ĥ3 =
1

3!

1√
N

∑
k,q

∑
νµη

V νµηqkp b
†
ν,qb

†
µ,kb

†
η,−p + h.c., (51)

+
1

2!

1√
N

∑
k,q

∑
νµη

Φνµηqk;p b
†
ν,qb

†
µ,kbη,p + h.c., (52)

with the vertices for the “source” and the “decay” terms

V νµηqkp = −J
√

3S

2
Ṽ νµηqkp , Φνµηqk;p = −J

√
3S

2
Φ̃νµηqk;p , (53)

where the symmetrized dimensionless vertices are

Ṽ νµηqkp = F νµηqkp(uνq + vνq)(uµkvηp + vµkuηp)

+ Fµηνkpq(uµk + vµk)(uνpvηq + vνpuηq) (54)

+ F ηνµpqk(uηp + vηp)(uνqvµk + vνquµk) ,

and

Φ̃νµηqk;p = F νµηqkp(uνq + vνq)(uµkuηp + vµkvηp)

+ Fµηνkpq(uµk + vµk)(uνpuηq + vνpvηq) (55)

+ F ηνµpqk(uηp + vηp)(uνqvµk + vνquµk) ,

where we have used the symmetry property F νµηqkp =F νηµqpk .

Repeating the same calculation for the
√

3×
√

3 state
we obtain identical expressions for the cubic spin-wave
Hamiltonian and corresponding vertices, but with differ-
ent amplitudes F νµηqkp expressed as

F νµηqkp = i
∑
αβ

εαβγ sin(qβα)wν,α(q)wµ,β(k)wη,β(p). (56)

Explicit expressions for the unitary transformation eigen-
vectors wν,α(q) of the matrix Λ̂k and of the parame-
ters of the Bogolyubov transformation are instrumental
in deriving analytic expressions of the cubic anharmonic
terms. We also note that for all models considered here,
the functional form of the cubic vertices (54) and (55) is
identical, with all the differences hidden in the expres-
sions of the Bogolyubov parameters uµk and vµk from
(44).

The role of the cubic terms in the ground-state selec-
tion and in the spectrum of the kagomé-lattice antiferro-
magnets is discussed below in Sec. III C and Sec. III D.

B. Quartic terms

In the Holstein-Primakoff bosonic representation of
spin models, quartic terms originate from the Sxi S

x
j ,

Syi S
y
j , and Szi S

z
j parts of the Hamiltonian. In the models

considered here, quartic terms do not help to differen-
tiate between different states of the 120◦ manifold, but
lead to the overall ground-state energy shift and to the
Hartree-Fock corrections to the spin-wave energies. Be-
cause of the coplanar 120◦ spin configuration, the formal
expressions for these contribution show a close similarity
to the ones for the triangular-lattice Heisenberg model,
see Ref. 13. Therefore, we simply list the quartic parts of
the Hamiltonians of the XXZ model and the DM term
together with the expressions for the ground-state energy
shift in the former model and for the spin-wave energy
correction for the latter model. Technical details are of-
fered in Appendix A.

The quartic terms in the XXZ model, (2) and (20),
are

Ĥ4 =
J

2

∑
〈ij〉

(
2∆ + 1

8

(
(ni + nj)aiaj + h.c.

)
(57)

− 2∆− 1

8

(
a†j(ni + nj)ai + h.c.

)
− ninj

)
,

where ni = a†iai and we omitted the α indices of the
bosonic variables for brevity.

The quartic contribution from the DM term (27) is

Ĥ4,DM =
Dz

√
3

2

∑
〈ij〉

(
1

8

(
(ni + nj)aiaj + h.c.

)
(58)

+
1

8

(
a†j(ni + nj)ai + h.c.

)
− ninj

)
.

By means of the Hartree-Fock decoupling35 outlined in
Appendix A, one can obtain contribution of the quartic
terms to the 1/S series expansion of the ground-state
energy of any non-collinear spin model

E = Ecl + δE(2) + δE(3) + δE(4), (59)

where the first term is the classical energy of orderO(S2),

the second is the harmonic correction from Ĥ2, O(S),
and the last two are from the nonlinear cubic and quartic
terms, both O(1). While we discuss the cubic part of this
expression later, the classical and harmonic energy terms
(per spin) of the series in (59) for the XXZ model are

Ecl + δE(2) = −JS2 − JS
(

1− 1

3N

∑
µ,k

ωµ,k

)
, (60)

with the frequencies from (22). The quartic member of
the series (59) for the same model is

δE4 = −J
[
n2 +m2 + ∆̄2 (61)

−(2∆ + 1)
(
n∆̄ +

mδ

2

)
+ (2∆− 1)

(
nm+

∆̄δ

2

)]
,
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where the Hartree-Fock averages are introduced in a stan-
dard manner

n = 〈a†iai〉, m = 〈a†iaj〉, ∆̄ = 〈aiaj〉, δ = 〈a2i 〉, (62)

and are given in Appendix A.
In the same order of expansion, quartic terms lead

to the Hartree-Fock corrections to the linear spin-wave
Hamiltonian

δĤ2 = 2J
∑
ν,k

δAν,kd
†
ν,kdν,k −

δBν,k
2

(
d†ν,kd

†
ν,−k + h. c.

)
,

which yields the Hartree-Fock part of the 1/S contribu-
tion to the spin-wave energy

ε
(4)
ν,k = 2J

Aν,kδAν,k −Bν,kδBν,k
ων,k

. (63)

Here we give expressions for δAν,k and δBν,k for the
Heisenberg model (2) with the DM anisotropy (27) as
an example

δAν,k = C̃1 +
C̃2λν,k

2
, δBν,k = −2C̃4 −

C̃3λν,k
2

, (64)

where C̃i = Ci − dMDi and the constants are the linear
combinations of the binary Hartree-Fock averages in (62)
and can be found in Appendix A. We note that since
the “flat-mode” eigenvalue λ1,k = −1, the quartic 1/S

correction to its energy, ε
(4)
1,k in (63), is also necessarily

momentum-independent in all models considered here.
Therefore, it is a contribution of the cubic terms which
is going to introduce a fluctuation-induced dispersion in
the flat mode in the same order of the 1/S expansion.

C. Ground state selection

Here, we discuss the role of cubic terms (51) in the
ground-state selection in the XXZ and the single-ion
anisotropy models. As was mentioned above, in the case
of these models, (2) with (20) and (23), classical and
harmonic terms are not able to lift the degeneracy in the
manifold of coplanar 120◦ structures. It is also easy to
see from (2) that the quartic terms are also unable to
differentiate between 120◦ states, leaving the cubic term
as a sole source of the quantum order-by-disorder effect
to this order in 1/S. The same is also true for the single-
ion term in (23).

The second-order energy correction from the cubic
terms (51) resulting in δE(3) in (59) is represented by
the diagram in the lower inset of Fig. 6 and is given by

δE(3) = − 1

18N2

∑
νµη

∑
q,k

|V νµηq,k,−k−q|2
εν,q + εµ,k + εη,−k−q

, (65)

where the energy is per spin and N is the number of
unit cells. Summation over magnon branches µ, ν, η gives
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FIG. 6: (Color online) Difference of the ground-state energies
of the q=0 and

√
3×
√

3 states per spin. Upper inset: energy
correction δE(3) for the q = 0 (squares) and

√
3 ×
√

3 state
(diamonds). Dashed vertical lines mark the transition. Upper
data points/lines in the figure and inset are for the single-ion
anisotropy model, (2) with (23), and the lower are for the

XXZ model, (2) with (20). Lower inset: diagram for δE(3)

term (65) in the energy expansion (59).

twenty seven individual contributions of which ten are
distinct. With the formal expression for the source ver-
tices in (54), the energy correction in (65) is identical for
the XXZ and the single-ion cases, with the differences
in the expressions for the spin-wave energies εα,k in (22)
and (25) and (26), and in the uαk and vαk parameters
(44) in vertices (54) for the corresponding models.

Using an explicit form for the cubic vertices for the
q = 0 and

√
3 ×
√

3 spin states, we performed a high-
accuracy numerical integration in Eq. (65) and studied
the quantum order-by-disorder effect. Results of these
calculations are presented in Fig. 6. The quantum se-
lection of the q = 0 state over the

√
3 ×
√

3 counterpart
for the large planar anisotropy (1−∆c)[Dc/J ]&0.3 was
highlighted in our previous work on the XXZ model.9

This qualitative conclusion is in contrast with the usual
behavior, in which quantum fluctuations lead to the same
ground state that is selected by the thermal fluctuations.
Indeed, for the classical kagomé-lattice antiferromagnets
in both Heisenberg and XY limits, thermal fluctuations
select the

√
3 ×
√

3 magnetic structure as the leading
instability2,5,7,17–19 contrary to the behavior of the quan-
tum model.

Here we complement the above result by the analy-
sis of the single-ion anisotropy model (23). While the

overall trend in δE
(3)
q=0 − δE

(3)

q=
√
3×
√
3

and, in particular,

the transition point between the states in both models
in Fig. 6 are very similar, there is a quantitative differ-
ence. As we have noted previously, the local real-space
structure of the degeneracy-lifting terms is different in
the XXZ and single-ion models, implying a higher-order
real-space path needed for generating the ground-state
selection in the latter model.27 Fig. 6 provides a strong
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FIG. 7: (Color online) Energy per site of the q = 0 state in
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energy for the spin-liquid state.36 (a) S = 1/2, (b) S = 1.

support to this point, as the energy difference is smaller
for the single-ion model by a factor 2− 8 for the range of
0.3< (1 − ∆)[D/J ]< 1, in a qualitative agreement with
the parameter of the real-space expansion being ∼ 1/z
(z = 4, coordination number).9

We conclude the discussion of the ground state with
Fig. 7, which shows the energy of the q=0 state in (59) vs
∆ for the XXZ model for two representative spin values
S=1/2 and S=1. Classical and harmonic contributions
to the ground-state energy are also indicated by dotted
and dashed lines. Note that the energy difference shown
in Fig. 6 would be nearly invisible on the scale of the plot
in Fig. 7. We also note that although δE(3) and δE(4)

from (61) and (65) represent the entire contribution of
the O(1) order in the 1/S expansion of the ground-state
energy (59), their divergences at ∆ → 1 do not cancel
completely, thus signifying a breakdown of the standard
1/S expansion at the Heisenberg limit because of the
vanishing energy of the flat mode.8

D. Spectrum and decays

We now turn to the spectral properties of the kagomé-
lattice antiferromagnets. The goal of our consideration
is twofold. First, we would like to highlight an unusual
spectral property that has to be present in a wide va-
riety of frustrated spin systems with excitations featur-
ing flat branches.11 Second, we give a detailed account
of such spectral properties in a specific model that de-
scribes Fe-jarosite.20,21 Because of that we concentrate
on the out-of-plane DM-anisotropy model, (2) with (27),
of the S=5/2 nearest-neighbor kagomé-lattice antiferro-
magnet, which closely describes Fe-jarosite in the range
of small Dz. One can expect the results of this considera-
tion to be similar to the ones for the XXZ and single-ion

anisotropy models given the similarity of their harmonic
spectra and anharmonic terms, even though the ground-
state selection is more subtle in the later models.

1. Formalism and a qualitative discussion

Regardless of the model, using standard diagrammatic
rules with the cubic terms in (51) and (52) produces the
spin-wave self-energy in the form

Σµ,k(ω) =
1

2N

∑
q,νη

(
|Φνηµq,k−q;k|2

ω − εν,q − εη,k−q + iδ
(66)

−
|V νηµq,−k−q,k|2

ω + εν,q + εη,k−q − iδ

)
,

where the first and the second terms are the decay and
the source self-energies. Because of the summation over
the magnon branches ν and η in the decay and source
loops, there are nine terms in the sum in (66), only six
of which are distinct. Note that for the DM model one
has to change J→J+Dz/

√
3 in the vertices.

Taken on-shell, ω = εµ,k, the self-energy (66) repre-
sents a strictly 1/S correction to the magnon energy from
the cubic terms, Σµ,k(εµ,k) =O(S0). The other term of
the same order in the 1/S-expansion is from the quar-

tic terms, ε
(4)
ν,k, which was obtained for the DM model in

(63). Then, the magnon Green’s function for the branch
µ can be written as

G−1µ (k, ω) = ω − εµ,k − ε(4)µ,k − Σµ,k(ω) , (67)

which, generally, allows to evaluate the spectral function
Aµ(k, ω) = −(1/π)ImGµ(k, ω) of the corresponding spin-
wave branch µ.

Since we are interested in the large-S limit and in
the resonance-like decay phenomenon in the spectrum,
the following simplification can be used. Given the off-
resonance character of the source term, the frequency-
independence of the quartic terms, and the large-S limit
of the problem, one can neglect the real part of the 1/S
corrections to the spectrum as a first step, and approx-
imate the self-energy in (66) by its on-shell imaginary
part, i.e. Σµ(k, ω)≈ iImΣµ(k, εµ,k)=−iΓµ,k, with

Γµ,k =
π

2N

∑
q,νη

|Φνηµq,k−q;k|2δ (εµ,k − εν,q − εη,k−q) ,(68)

where the summation is over magnon branches of the
decay products. Using the dimensionless vertices in (55)
and frequencies in (30) and (31), one can rewrite (68) as

Γµ,k
J

=
3π

8N

∑
q,νη

|Φ̃νηµq,k−q;k|2δ (ωµ,k − ων,q − ωη,k−q) ,(69)

which is explicitly independent of the spin value S. As is
mentioned above, the summation over magnon branches
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in (69) contains six distinct terms, or potential “decay
channels.” A particular decay channel may or may not be
contributing to the decays, depending on the kinematic
conditions discussed below.

Before we divert our attention to a specific model, the
following qualitative consideration can be made. The
form in (69) suggests that Γµ,k = O(J), which is small
compared to εµ,k = O(JS) in the large-S limit. Thus,
generally, one can expect a regular, perturbative 1/S-
effect of broadening of the higher-energy part of the
dispersive branches due to decays into the lower-energy
states.12 However, a spectacular exception to this rule
must occur if both of the decay products, branches ν
and η, belong to flat modes with ω1 = const. Clearly,
this decay channel produces an essential singularity in
Γµ,k and Σµ(k, ω) at the energy equal to twice the flat
mode energy, the effect that can be seen as a resonance-
like decay. Therefore, a special care must be exercised
in this case as any residual dispersion of the flat mode
becomes crucial in regularizing such a singularity.

In fact, the way of removing this singularity is offered
by the same 1/S fluctuations due to cubic terms, as the
self-energy (66) also yields a dispersion for the flat mode.
This can also be interpreted as a fluctuation-generated
further-neighbor J2 spin-spin interactions,8,9 and such
a dispersion of the flat mode has been observed in Fe-
jarosite.20 Still, this scenario implies that the fluctuation-
induced flat-mode bandwidth, W1 ∝ O(1), is of the order
1/S compared to the bandwidths of the normal disper-
sive modes, W2(3) ∝ O(S).

Introducing this 1/S dispersion for the flat modes
in (69), suggests that the near-resonance decay-induced
broadening of the dispersive mode within the energy
window of the width 2W1 near 2ω1 should now scale
as Γµ,k = O(JS). This is the same energy scale as
the spin-wave dispersion itself without any obvious ad-
ditional smallness. Therefore, our analysis implies a
very strong broadening, likely eliminating spectral weight
nearly completely from the respective energy range even
when spin S is large, providing an example of a spectac-
ular quantum effect in an almost classical system.

Thus, in theory, as S →∞, we predict that an anoma-
lous broadening and a wipe-out of the spectral weight
should remain in the spectra of the flat-band frustrated
systems, albeit in the energy window of order O(J) while
the spectrum width grows as O(JS). In practice, we
argue that such a spectacularly strong quantum effect,
leading to the quasiparticle breakdown with characteris-
tic termination points and ranges of energies dominated
by broad continua, must be present in an almost classical
S=5/2 kagomé-lattice Fe-jarosite.

2. Decay channels in Fe-jarosite

An extensive analysis of the kinematic decay condi-
tions in representative models of the frustrated spin sys-
tems has been provided previously.12,13 Here, the modifi-

cation of the problem is in having three different magnon
branches, which modifies these condition to

ωµ,k = ων,q + ωη,k−q , (70)

so that every decay channel µ→{ν, η} has to be analyzed
separately. That is, for each branch µ up to six channels
can be contributing independently to the decay rate

Γµ,k =
∑
{ν,η}

Γk,µ→{ν,η} . (71)

While the decay conditions are model-specific, Fe-
jarosite offers a commonplace scenario: a predomi-
nantly nearest-neighbor Heisenberg system with sublead-
ing symmetry-breaking anisotropic term, which is re-
sponsible for lifting the flat mode to a finite energy. We,
therefore, analyze the decay channels for this represen-
tative situation for a small Dz = 0.06J , used in fitting
spin-wave spectrum of Fe-jarosite.21 The harmonic dis-
persions for this value of Dz are shown in Fig. 4 and in
the inset of Fig. 8(a), and we use them in our analysis.

We use the same numeration of the branches as be-
fore: 1=flat mode, 2=gapless mode (Goldstone branch),
and 3=gapped dispersing mode. While the flat mode
does have one active decay channel into two Goldstone
modes, 1 → {2, 2}, for a small range of momenta near
the center of the Brillouin zone, k< kc where kc is the
intersect point of the branches, see Fig. 8(a), its effect
is truly minor and the main interest is in the decays of
the dispersive modes. From the picture of harmonic en-
ergies, it is easy to see that the energy conservation in
(70) can be satisfied for three (four) decay channels out
of the six for the mode 2(3), one being the “resonance-
like,” 2(3)→{1, 1}, mentioned above, and two (three) are
“regular.” The latter are 2(3)→{1, 2} and 2(3)→{1, 3},
with an additional channel for the mode 3→{2, 2}.

Using (69), we calculate contributions of the individual
decay channels, Γk,µ→{ν,η}, shown in Figs. 8(a) and (b),
for modes 2 and 3 and for a representative k-cut of the
Brillouin zone. One can see that for 2(3) → {1, 1} it
gives a δ-peak at 2ω1, that 2(3)→{1, 2} channel has a
threshold at ω1 and 2(3)→ {1, 3} at 2ω1. In Fig. 8(a),
the resonance decay rate is scaled down by 10−2 and
would otherwise dwarf the rest even for the small artificial
broadening of the δ-function in (69).

A somewhat unexpected finding is a strong suppres-
sion of the 3→ {2, 2} and the 3→ {1, 1} channels. A
closer analysis have identified different origins for them.
For the 3→{2, 2} channel, decay products involve long-
wavelength excitations from the Goldstone branch, which
provides an extra smallness in the decay amplitude com-
pared with the “regular” ones. For the 3→{1, 1} channel
the situation is more subtle. One can demonstrate that
the vertex Φ̃113

q,k−q;k carries an extra Dz compared with

the vertex for the 2→{1, 1} channel, yielding a factor of
about 1/100 in the decay rate. The physical reason for
this suppression can be hypothesized. Quasiclassically,
the mode 2 is the “in-plane” mode, while modes 3 and
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FIG. 8: (Color online) Individual contributions to the decay
rate in (69) from the decay channels Γk,µ→{ν,η} in units of J ,
(a) for mode 2, (b) for mode 3 in for the DM model. Dz =
0.06J , k is along the ΓY direction, and artificial broadening
δ= 0.002 has been used. k-values that correspond to ω1 and
2ω1 are indicated by the arrows. Results for the “resonant”
decay channel 2→{1, 1} are scaled down by the factor 10−2.
Inset: harmonic frequencies ωα,k along the representative cuts
of the BZ for all three modes from Fig. 4.

1 are “out-of-plane.” Then the in-plane mode can cou-
ple naturally to the two out-of-plane modes, while the
out-of-plane mode has hard time splitting into two.

Thus, the suppression of the resonant decays of the
mode 3 seems to be due to a subtle cancellation in the
structure of the corresponding vertex. We note that for
a realistic case of Fe-jarosite, other symmetry-breaking
terms are also present, so one can expect the subtle can-
cellations of more symmetric models to be violated.

3. Spectrum of Fe-jarosite

We now finally approach the realistic description of
the Fe-jarosite spectrum. We note that more details of
this discussion is offered elsewhere.11 As was mentioned
above, the essential singularity in the dispersive modes
is naturally removed by the residual dispersion of the
flat mode. The experimentally observed dispersion of
the flat mode20 has been fit21 by introducing small next-
nearest neighbor exchange J2 = 0.03J , ignoring its pos-

0

5

10

15

20

25

30

ε
k

 
(m

e
V

)

k

on-shell Σ
LSWT
Σ with on-shell Γ
on-shell Γ

X YΓ

J2 /J = 0.03
Dz /J = 0.06
J = 3.34meV

Γ

Γ X

Y

FIG. 9: (Color online) Lower curve with the shading is the on-
shell Γ2,k from (69). Dashed line is the linear spin-wave theory
energy of the gapless dispersive mode, ε2,k, from (31). Shaded
area shows the half-width boundaries of a lorentzian peak,
ε2,k±Γ2,k. Dotted and solid lines are different approximations
for the renormalization of the real part of the self-energy in
(66), see text. Parameters are as shown in the plot.

sible quantum origin. Since we do not perform a fully
self-consistent calculation here, the same approach suf-
fices for the removal of the singularity in the decay rate
(69). We, thus, modify the flat-mode dispersion accord-
ing to (39) and ignore other corrections from the J2 term.

In Sec. III E we elaborate on the possible way of sep-
arating contributions of different modes in the neutron-
scattering structure factor, which allows us to concen-
trate on individual modes. Therefore, our Fig. 9 sum-
marizes the effects of decays on the gapless dispersive
mode only, as they are most pronounced in it. We have
used parameters shown in the figure with the value of
J = 3.34meV from the previous work.21

The lower curve shows the on-shell Γ2,k obtained from
(69) with the flat-mode dispersion from (39), and it in-
cludes all three decay channels discussed above. The
dashed line is the linear spin-wave energy, ε2,k, with the
shaded area around it representing ε2,k ± Γ2,k, i.e., half-
width at the half-maximum boundaries of a lorentzian
peak. We have also taken into account renormalization
of the real part of the self-energy in (66), with the dotted
line showing the 1/S on-shell result and the solid line in-
cluding effect of self-consistency by taking into account
imaginary part from Γ2,k in calculation of ReΣ. One
can see that the resultant effects of the nonlinear terms
on the real part of the spectrum are relatively minor, in
agreement with the discussion after Eq. (67).

We complement Fig. 9 by an intensity map of the
spectral function, A2(k, ω), for the same dispersive mode
along the same representative path in the Brillouin zone
and for the same parameters, see Fig. 10. Dashed and
dotted lines are the spin-wave results from Fig. 9 and are
guides to the eye. The magnon self-energy is approxi-
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FIG. 10: (Color online) Intensity plot of the spectral function
A2(k, ω) of the gapless mode in units of (2SJ)−1 along the
same path and for the same parameters as in Fig. 9, lines are
from the same figure, see text. A small broadening δ/2SJ =
0.002 has been added to Γ2,k in (68). Left panel inset: decay
diagram.

mated by its on-shell imaginary part, as discussed above.
The upper cut-off of the intensity of the spectral func-
tion corresponds to the maximal height of the peaks in
the non-resonant decay region in Fig. 9 and translates
into the broadening Γk ≈ 0.73meV for the Fe-jarosite,
easily resolvable by the modern neutron-scattering ex-
periments.

Given the large spin value, S = 5/2, we estimate that
the ordered moment in Fe-jarosite should be nearly 90%
of its classical value, see Fig. 5. It is then very natural to
assume that the spectral properties should be fully de-
scribable by the harmonic spin-wave picture, the point of
view taken in Ref. 21. Indeed, our Figs. 9 and 10 demon-
strate that the spin-wave excitation is sharp below the
flat-band energy ε1,k and acquires only an infinitesimal
width for the energies above it. However, there is a sharp
threshold at twice the bottom of the flat band minimum,
2εmin

1,k , above which there is a very strong broadening,
reaching about one third of the bandwidth, signifying an
overdamped spectrum.11 Above 2εmin

1,k in Fig. 10 there is
a broad energy band with the features that look like a
rip in the spectrum, consistent with the missing spectral
weight in the experimental data. This threshold singu-
larity is also remarkably similar to the spectral signatures
of the quasiparticle breakdown phenomenon in quantum
Bose liquids and S = 1/2 spin-liquids.15,16

Although at the energies above twice the top of the
flat-band maximum, 2εmax

1,k , the decays are “regular,”
i.e., occurring due to other, non-resonant channels, they
are still providing a measurable broadening to the spec-
trum, so it is instructive to compare the two regions.
The “regular” decays result in the maximal values of Γ
of order 0.2 − 0.3J , an agreement with the similar ef-
fects in triangular-lattice antiferromagnets13 and other
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FIG. 11: (Color online) Intensity map of A2(k, ω) in units of
(2SJ)−1 vs k throughout the Brillouin zone for for the same
set of parameters as in Fig. 9 for ω = 18meV. The upper cut-
off of the intensity scale corresponds to the broadening Γ2,k of
0.73 meV for the Fe-jarosite values of S and J . Dashed black
lines are peak positions from the linear spin-wave theory.

frustrated spin systems.12 The maximal broadening in
the resonant-decay region is Γ ≈ 1.7J for the Fe-jarosite
model, which is larger than the effect of the “regular”
decays by a factor close to 5 (= 2S). This is in a remark-
ably close accord with the qualitative argument on the
scaling of the resonance decay rate with the spin value,
provided after Eq. (69) above.

While a more detailed description of the spectral fea-
tures of Fe-jarosite is given elsewhere,11 we would like to
highlight here a different, perhaps more dramatic view on
the drastic transformations in its spectrum in the range
of energies that falls within the resonant-decay band. In
Fig. 11 we show an intensity plot of the constant-energy
cut of the spectral function, A2(k, ω), of the same dis-
persive mode as in Figs. 9 and 10 for the energy 18meV,
which is close to the middle of the resonant-decay region.
The dashed lines show the expectations from the linear
spin-wave theory of where the contours of sharp, well-
defined peaks should have occurred. Instead, one can
observe strong deviation from such expectations, char-
acterized by a broadening, massive redistribution of the
spectral weight into different regions of k-space, together
with the multitude of intriguing features, which are re-
lated to the van Hove singularities in the two-particle
density of states of the flat-band decay products.13 Alto-
gether, Figs. 9, 10, and 11 offer a convincing evidence of
the highly non-trivial and very strong quantum effects in
the the dynamical response of a nearly classical flat-band
kagomé-lattice antiferromagnet, which are facilitated by
the nonlinear couplings.
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(a) (b) (c)
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FIG. 12: (Color online) Kinematic formfactors: F out
νq for the

(a) flat, (b) dispersive gapless, (c) dispersive gapped mode;
F in
νq for the (d) flat, (e) dispersive gapless, (f) dispersive

gapped mode. F in
2q in (e) diverges at some Γ points as ω−1

2,q.

E. Dynamical structure factor

Inelastic neutron scattering cross-section is directly re-
lated to the diagonal components of the dynamical struc-
ture factor, or the spin-spin dynamical correlation func-
tion, given by

Si0i0(q, ω) =

∫ ∞
−∞

dt

2π
eiωt〈Si0q (t)Si0−q〉 , (72)

where i0 refers to the laboratory frame {x0, y0, z0} and

Si0q =
∑
α

Si0α,q, (73)

involves summation over the spins α in the unit cell.
Because of the coplanar spin configuration in the con-

sidered kagomé-lattice antiferromagnets, transformation
from the laboratory reference frame of i0 to the local
spin basis of (2) yields a mix of different diagonal and
off-diagonal terms in the structure factor,37 which conve-
niently separate into the in-plane and out-of-plane parts
of Stot(q, ω). Assuming equal contribution of all three i0
components to the neutron-scattering cross section37 and
using the mapping of spins on bosons (6) allows one to
perform a straightforward 1/S ranking of different con-
tributions to the structure factor, in which the transverse
components are, as usual, dominate the longitudinal and
mixed terms.

The subsequent algebra involves the two-step transfor-
mation (42) and (43) from the Holstein-Primakoff bosons
to the quasiparticles, yielding the leading contributions
to the structure factor as directly related to the spin-wave
spectral functions Aν(q, ω)

S in(out)(q, ω) ≈
∑
ν

F in(out)
νq Aν(q, ω) , (74)
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FIG. 13: (Color online) A 2D map of the inverse lifetime
from (77) in units of J in the q-space. A small artificial
gaussian q-broadening with σ = 0.02π/a was used to mimic
instrumental resolution. The scale is given in the inset and
the maximal value of Γmax

2,q ≈ 1.7J corresponds to about 6meV
for Fe-jarosite.

where we introduced kinematic formfactors

F in
νq =

S

2
(uνq + vνq)2 (1−Rνq) ,

F out
νq =

S

2
(uνq − vνq)2 (1 + 2Rνq) , (75)

with

Rνq =
1

2

∑
α 6=α′

wν,α(q)wν,α′(q) . (76)

An important property of the kinematic formfactors
in (75) is their q-dependence. They are modulated in
the q-space and are typically suppressed in one of the
Brillouin zones while are maximal in the others. This
effect is characteristic to the neutron-scattering in the
non-Bravais lattices and is, in a way, similar to the effect
known as the Bragg peak extinction for the elastic scat-
tering in such lattices. Because of that property, one may
be able to focus on a specific excitation branch without
intermixing contributions from the others by selecting a
particular component of the structure factor in a partic-
ular Brillouin zone.

Our Fig. 12 shows F
in(out)
νq for three branches of ex-

citations in the Fe-jarosite model. It demonstrates that
such a “filtering out” can be quite useful. For exam-
ple, the out-of plane component of the structure factor,
Sout(q, ω), should be dominated in one of the three dis-
tinct Brillouin zones by the spectral function A2(q, ω) of
only one of the dispersive modes. This feature can be
utilized in the neutron-scattering experiments.

Lastly, we highlight another quantitative way of ana-
lyzing S(q, ω). Assuming that one can focus on a par-
ticular excitation branch as mentioned above, one can
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suggest that a faithful representation of the inverse life-
time (linewidth) Γµq from (68) and its distribution in
q-space across the Brillouin zone can be obtained from
the moments of the dynamical structure factor as38

Γ̃q =
√
〈ω2S(q, ω)〉 − 〈ωS(q, ω)〉2, (77)

where 〈ωnS(q, ω)〉=
∫
ωnS(q, ω)dω are the moments of

the structure factor and normalization 〈S(q, ω)〉 = 1 is
assumed. Then, this experimentally unbiased procedure
would allow extracting a 2D q-map of the quasiparti-
cle broadening. We demonstrate the effectiveness of this
approach in Fig. 13, which shows an example of such a
map derived using the procedure in (77) from a gaus-
sian form A2(q, ω), i.e. the gaussian function with a
maximum at ε2,q and the width Γ2,q. As expected, the

extracted map of Γ̃q is nearly identical to the map of
Γ2,q itself. However, for a more natural lorentzian form
of A2(q, ω) one can show that the extracted map corre-

sponds to Γ̃q∝
√
ωmaxΓ2,q, where ωmax is the upper limit

of the integration over ω in the moments in (77). Impor-
tantly, this result is still providing a direct information
on the quasiparticle broadening map, albeit on a differ-
ent scale. Therefore, aside from demonstrating at which
momenta the decays are most intense, the suggested pro-
cedure also provides another way of “fingerprinting” of
the broadening due to resonance-like decay into the flat
modes.

IV. CONCLUSIONS

In summary, we have provided a systematic considera-
tion of the nonlinear 1/S expansion of several anisotropic
models of the kagomé-lattice antiferromagnets. We have
demonstrated the role of the nonlinear terms in the quan-
tum order-by-disorder selection of the ground state and
presented a strong evidence of the rare case of quan-
tum and thermal fluctuations favoring different ground
states in two of these models. We have provided a de-
tailed analysis of the excitation spectrum of the S = 5/2
iron-jarosite to illustrate our proposed general scenario
of drastic transformations in the spectra of the flat-band
frustrated magnets. Our study calls for further neutron-
scattering experiments in these systems.
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Chubukov, Andreas Läuchli, Young Lee, Kittiwit Matan,
George Jackeli, Steven White, and Zhenyue Zhu. This
work was supported by the U.S. Department of Energy,
Office of Science, Basic Energy Sciences under Award #
DE-FG02-04ER46174. A. L. C. would like to thank As-
pen Center for Physics and the Kavli Institute for The-
oretical Physics where different stages of this work were
advanced. The work at Aspen was supported by NSF
Grant No. PHYS-1066293 and the research at KITP was
supported by NSF Grant No. NSF PHY11-25915.

Appendix A: Hartree-Fock corrections

The quartic terms in (57) yield a correction to the
ground-state energy given by the four-boson averages,
which are decoupled into the products of the binary
Hartree-Fock averages (62) using Wick’s theorem

〈a†iaia†jaj〉 = n2 +m2 + ∆̄2 , (A1)

〈a†iaiaiaj〉 = 2n∆̄ +mδ, 〈a†ja†jajai〉 = 2nm+ ∆̄δ,

where the Hartree-Fock averages are obtained similarly
to the calculation of the staggered magnetic moment in

(45). Namely, for the on-site averages n = 〈a†α,`aα,`〉
and δ = 〈aα,`aα,`〉, following the transformations (42)

and (43) from aα to dµ and to bµ and using equivalence
of all three sublattices one arrives to the symmetrized
expressions

n = 〈a†α,`aα,`〉 =
1

3N

∑
µ,k

v2µk ,

δ = 〈aα,`aα,`〉 =
1

3N

∑
µ,k

uµkvµk, (A2)

with uµk and vµk from (44). For the nearest-neighbor
two-site averages, the same transformations lead to

m = 〈a†α,`aβ,`′〉 =
1

N

∑
µ,k

fβα(k)v2µk ,

(A3)

∆̄ = 〈aα,`aβ,`′〉 =
1

N

∑
µ,k

fβα(k)uµkvµk,

where fβα(k) = cos(kβα)wµ,α(k)wµ,β(k), α 6= β,
wµ,α(k) are the components of the eigenvector in the
transformation (42), and kβα = kρβα with ρβα = ρβ−ρα
as before. Although it seems that the two-site averages
may depend on the choice of α and β, one can verify that
all three possible combinations of α 6= β pairs yield the
same answer.

Quartic terms also yield Hartree-Fock contributions
to the linear spin-wave dispersions via (63). The cor-
responding constants for the Heisenberg and DM terms
in (64) are

C1 = −n+
3∆̄

2
− m

2
, C2 = −m+

3δ

4
− n

2
,

C3 = −∆̄ +
3n

2
− δ

4
, C4 =

3m

8
− ∆̄

8
, (A4)

D1 = n− ∆̄

2
− m

2
, D2 = m− δ

4
− n

2
,

D3 = ∆̄− n

2
− δ

4
, D4 = −m

8
− ∆̄

8
.
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