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Time dependent density functional theory and Ehrenfest dynamics are used to calculate the
electronic excitations produced by a moving Ni ion in a Ni crystal in the case of energetic, MeV
range (electronic stopping power regime), as well as thermal energies, meV range (electron-phonon
interaction regime). Results at high energy compare well to experimental databases of stopping
power, and at low energy the electron-phonon interaction strength determined in this way is very
similar to the linear response calculation and experimental measurements. This approach to e-ph
interaction as an electronic stopping process provides the basis for a unified framework to perform
classical molecular dynamics of ion-solid interaction with ab initio type non-adiabatic terms in a
wide range of energies.
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I. INTRODUCTION

The Born-Oppenheimer approximation (BOA) [1], is
the keystone to describe ionic motion in condensed mat-
ter. This approximation, in which ions move classically
under the forces derived from the electronic ground
state energy, proved to be useful to describe nuclear
stopping power for low energy ions in solids, Sn. How-
ever, for ion energies approaching the Fermi velocity of
electrons in the target, electronic loses, or non-adiabatic
effects, become increasingly relevant. The rate of energy
transfer to electrons can be cast in the form of an elec-
tronic stopping power Se that, together with Sn, are the
two mechanisms of energy dissipation for energetic ions
colliding with a target material. As part of the BOA,
Sn and Se are customarily assumed to be independent
of each other; however, in the presence of non-adiabatic
energy exchanges, actual materials’ response is beyond
the BOA.

For projectile velocities below the target Fermi ve-
locity, Sn and Se are both relevant, creating a complex
non-equilibrium situation that can be studied with a
diversity of theoretical approaches. To a large extent,
computational studies of radiation damage have ignored
the dynamic response of the electrons to such pertur-
bation; the majority has been done within the BOA,
or with classical potentials, ignoring electron dynamics.
From the early days, authors noticed the necessity to
go beyond this approximation, ranging from collision
cascades [2–11] and rapid shocks[12] to current-induced
forces[13].

In addition to the phenomena related to stopping
power (Sn and Se), the electron-phonon (e-ph) inter-
action is also important, since it is responsible for
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the return to thermal equilibrium between the nuclear
and electronic subsystems. In this work the expres-
sion electron-phonon interaction refers to both, the in-
teraction of electrons with well defined collective ionic
motion excitations characterized by wave and polariza-
tion vectors, and the local picture of ions moving in-
dividually. Hybrid models combine different aspects of
the problem in an ad hoc manner; these include two-
temperature models (TTM) [2, 3], phenomenological
stopping based in the local density [4], collective excita-
tions in a Coulomb explosion [5–8], and thermal spike
approaches [2, 3, 9, 10]. In general, these approaches
consider a classical “electronic thermal” field evolving
via heat transport equations, and coupled to ions via
Langevin dynamics [11].

In the state-of-the-art implementations of classical
molecular dynamics (MD) with two temperatures, such
as Duffy’s [11, 14–16], a viscous damping term (βv) and
a random force (ξ) are added to the Newton equations of
motion of each ion: F = −βv+ ξ(t), where β is a piece-
wise function known in two limits: (i) β = βSe+βe-ph for
v0 < v < vF, and (ii) β = βe-ph for v < v0 [17], where v0
is a threshold velocity related to a cutoff kinetic energy
chosen arbitrarily in the range of∼ 10−100 eV. The pa-
rameters βSe and βe-ph have different values, since they
are considered as being originated in different physical
processes. For example, the authors of Ref. [18] assume,
we quote, “that the e–ph coupling process is not initi-
ated until 0.3 ps after the initiation of the collision pro-
cess, as the lattice temperature is ill-defined before this.
Until this time of the simulation only the electron stop-
ping mechanism is active, while there is a time-frame
when both the electronic stopping and e–ph interaction
mechanisms are active”.

As examples of this way of approaching the problem,
we mention the works of Sand et al. on damage of W [19]
using τSe = m/βSe = 1 ps for the electronic stopping
(with m the mass of the ions) and no e-ph term; of



2

Zarkadoula et al. in Fe [18] who used a value of τSe = 1
ps for stopping power, and τSe-ph = 1.54 ps for the e-
ph regime; and of Zhurkin et al. in a study of cluster
impacts on metals [20], who used τe-ph = 1 ps for Ni
and τe-ph = 1.7 ps for Al. Caro et al. and Proennecke
et al. considered 3.4 ps < τe-ph < 10 ps and 0.27 ps <
τSe < 2.5 ps for Cu [4, 21]. It can be concluded that in
the literature there is a diversity of values but always
τSe > τe-ph by a factor between ∼ 1.5 and ∼ 10.

The aim of this work is to show that the electronic
stopping power has a complex dependence on both, the
ion velocity and the local electronic density, which are
both related to the local electronic density of states,
LDOS. For a projectile to lose energy to target electrons
two conditions are required, first is that target electrons
have to be where the projectile is; second, there have
to filled states where electrons can be taken from and
empty states they can fill in; both conditions are re-
lated to the structure of the LDOS. The projectile ve-
locity provides an energy scale around the Fermi energy,
similar to thermal energy kBT , which determines what
electrons participate in the non-adiabatic process. It is
known that for the uniform electron gas the stopping
power is linear in velocity for projectile velocities less
that the Fermi velocity, Se = βv, and that β has a com-
plex density dependence [22, 23], but for more realistic
density of states tha situation changes, as has recently
been shown for the case of protons and He in Au [24].

Besides the velocity dependence, the reason that
makes βSe and βe-ph different is the local electronic den-
sity (ρ) of the target, which an energetic particle can ex-
plore in different energy domains: a particle undergoing
electronic stopping is an energetic particle that visits
many regions in a solid, with different electronic den-
sity, while a particle moving in a phonon-like mode, i. e.
with meV of energy, visits regions close to their equilib-
rium lattice positions, where the electronic density of
the host matrix has a minimum. By making explicit
the β dependence on ρ we describe here the e-ph inter-
action as an special case of electronic stopping process
at very low energies. By comparing the strength of the
so determined e-ph coupling to fully quantum mechan-
ical treatments, we assess the validity of the Langevin
equation to represent this non-adiabatic phenomenon.
The main approximation we make is the assumption of
classical motion for the ions at thermal energies, which
is presumably valid for kinetic energies above the Debye
temperature.

It is important to mention that this local density de-
pendence of the damping term representing the elec-
tronic stopping power was proposed by us years ago
[4], but the high degree of empiricism in the functional
form proposed for this dependence prevented it from be-
ing adopted as a standard approximation. Here we give
the initial steps towards a functional form with ab initio
type accuracy.

Additionally, within the framework of time depen-
dent tight binding theory, Race et al. [17] reported re-

sults providing evidence that, for tight-binding molecu-
lar dynamics simulations, the strength of the coupling
depends on the electronic density at the crystalline lo-
cation of the moving ion, giving support to this work
in that the stopping mechanisms appearing in time-
dependent electronic structure calculations could ac-
count for both Se and e-ph interaction.

II. METHOD: NON-ADIABATIC
CALCULATION

Using time dependent density functional theory (TD-
DFT) [25] to follow the energy transfer from (classi-
cal) ions to (quantum) electrons we analyze the abil-
ity of the proposed technique to calculate both the
electronic stopping of an energetic projectile traveling
along a channeling direction, and the the e-ph interac-
tion parameter for the case of a single representative
vibrational mode, the Einstein oscillator. Both types of
simulations were performed on a supercell with 108 Ni
atoms (Γ-only sampling) on a fcc lattice with a lattice
parameter of 3.52 Å. Norm-conserving pseudopoten-
tials and an energy cutoff of 150 Ry for a plane wave
basis were used. The calculations included semi-core
states, were nonmagnetic, and used the adiabatic LDA
exchange-correlation (XC) potential. For details on the
implementation of TD-DFT in Qbox, see [26].

Previous work by Pruneda et al. and by others on
non-adiabatic dynamics in insulators [27], and of Cor-
rea et al. on H in Al, [28, 29], proved that TD-DFT
gives accurate results for Se at high (i. e. E � 1 eV)
energies. By accurate we mean in good agreement with
the Srim database, considered to be the standard refer-
ence for this property [30, 31]. For one particular case
studied in this work, namely a Ni projectile into a Ni
target at an energy of 1.5 MeV, Srim reports a stop-
ping of 148.2 eV/Å while our calculations for the center
of a 〈100〉 channel gives 42.5 eV/Å. This discrepancy
can easily be removed by taking into consideration that
experimental values represent averages of actual tra-
jectories and, as discussed in [29, 32], either running
off-center channel simulations or random direction tra-
jectories, bring the results into excellent agreement with
Srim.

In this work, we evaluate the electronic stopping for
an atom in two different environments: (i) an energetic
projectile in channeling conditions, and (ii) an atom
vibrating with thermal energies around its equilibrium
position. We determine a scalar β for both cases, and
relate it to the local density seen by the moving atom,
which we assume is the main characteristic that distin-
guishes between the two environments. To this end we
first evaluated the time evolution of the total electronic
energy of a system composed of a Ni projectile trav-
eling along the center of a 〈100〉 channel in the Ni fcc
crystal. Details of these calculations will be published
elsewhere; here we show in Fig. 1 the general aspect of
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FIG. 1: Total energy vs. position of the Ni projectile
across the 〈100〉 channel in a fcc Ni at different

velocities (from 1.5 to 150 MeV). We obtained the
electronic stopping power from the slope of these

curves, after an initial transient.

these curves.
For the case of an atom vibrating with thermal en-

ergies around its equilibrium position, we aim at cal-
culating the stopping power at much lower velocities,
corresponding to energies in the meV region. We then
face the time-scale limitations imposed by the compu-
tational cost of TD-DFT. We adopt then the following
strategy: to determine if the sample size (number of
electrons in the supercell calculations) is large enough
in the sense that the small gaps appearing between the
electronic eigenvalues are not affecting the results of
the calculation, we propagate the projectile in a uni-
form electron gas, jellium, with the same parameters
used to represent Ni in the DFT calculations, meaning,
same XC functional, cutoff, box size, etc. The ground
state of a jellium with electron density in the range we
want to study (0 to 1.5 e/Å3) is constructed with a
single additional Ni atom. In the time-dependent sim-
ulation the Ni ion is then moved at constant velocity.
The energy-vs-time curves show a behavior similar to
that of the crystalline target, including the transient
and excitation of charge oscillations that it originates,
but without the periodic oscillations due to the crys-
talline structure [29].

Comparing the losses corresponding to Ni traveling
into crystalline Ni at the center of 〈100〉 channel with
those of Ni traveling in jellium we conclude that, on
average, Ni travels in the fcc Ni channel producing the
same dissipation as if in a homogeneous medium of elec-
tronic density ρ = 0.75 e/Å3. For a velocity of 1 atomic
unit (1.5 MeV for Ni) the dissipation in the channel is
45 eV/Å, and β (in Se = βv) is 2.06 × 10−3eVps/Å2.
This friction can be expressed in time units, as τ = m/β
which measures the characteristic relaxation time for
excess energy in the ionic system decaying into the elec-
tronic system; the relaxation time is 3.5 ps.

We use then jellium to explore the low velocity regime
because it lacks of crystalline structure, which implies
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FIG. 2: Electronic stopping Se corresponding to Ni in
jellium at metallic electron densities (ρ = 1.5 e/Å3) for
different velocities covering 8 orders of magnitude in

kinetic energy, from 1.5 MeV (in the electronic
stopping power regime) to 15 meV (corresponding to

typical thermal phonon energies). The slope 1
indicates a stopping linearly proportional to velocity

the need of much shorter trajectories to extract the
slope representing the losses, and we can therefore de-
termine the stopping for velocities over several orders
of magnitude. Figure 2 shows Se for a Ni projectile in
jellium at a density ρ = 1.5 e/Å3 over four orders of
magnitude of velocity, or equivalently eight orders of
magnitude in energy, from 1.5 MeV (in the electronic
stopping power regime) down to 15 meV (in the thermal
phonon energy regime). The known linear dependence
on the velocity is clearly confirmed (in the range of den-
sities of interest), implying Se = β(ρ)v. While the result
shown in Fig. 2, namely that Se is proportional to veloc-
ity for v < vF in a uniform electron gas, is known, this
figure validates the computational approach regarding
sample size and emphasizes the fact that the concept of
electronic stopping is valid even at thermal energies. It
justifies the use of high velocities results to study low
velocity dissipation, provided a proper treatment of the
DOS at EF for real materials is given. Going to even
lower velocities in jellium, should still give a linear rela-
tion, down to some limit where the discrete structure of
the density of states due to the finite sample size would
introduce departures from linearity, similar to those re-
ported for insulators [27].

While jellium gives a stopping proportional to veloc-
ity, it is only an approximation to real materials and
in particular to Ni, in the sense that it neglects the de-
tailed structure of the electronic density of states (DOS)
close to the Fermi energy (EF), which translates into a
velocity dependence to the coupling. We come back to
this point at the Discussion section.
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FIG. 3: Electronic density in a fcc Ni target along
two directions, the 〈100〉 channeling direction at its
center, and along a 〈100〉 direction going across four
atoms at positions 0, 1, 3 and 4 a0, with a0 the lattice
parameter, and a vacancy at position 2 a0. Note the
factor of almost 10 between electronic density in the

channel and at the vacant site.

III. RESULTS: CONNECTION BETWEEN
ELECTRONIC STOPPING POWER AND

ELECTRON PHONON COUPLING

To analyze next the connection between an energetic
ion traveling along a channel and an Einstein oscillator,
we study the electronic density at different locations in
a Ni crystal. Figure 3 shows ρ(x) along two trajectories,
one along the center of a 〈100〉 channel, where ρ(x)

varies between 0.23 and 0.3 e/Å3, the other also along
the 〈100〉 direction but across the perfect lattice sites,
i.e. across the nuclei of Ni atoms. We have included
in this trajectory a vacancy in the position a0 = 2,
to evaluate the density of Ni at a vacant site because
we will picture an Einstein oscillator as a “projectile”
moving around a vacant site. The figure also displays
as vertical shadowed areas the size of the atom cores
as given by the cutoff radius of the pseudopotential for
2p-electrons.

Two conclusions emerge from Fig. 3. One is that the
density at the center of the channel (∼ 0.23−0.30 e/Å3),
is similar but smaller than the equivalent jellium density
giving the same stopping, ρ = 0.75 e/Å3 as discussed
earlier. It implies that for a non homogeneous system,
such as a crystal lattice, not only the density at the lo-
cation of the nucleus of the projectile is relevant, but
also the density around that position. That is, the finite
size of the projectile atom with its bound electrons sam-
ples regions of the target around its trajectory in a way
that on average crystalline Ni stops a Ni ion traveling
along the center of the channel as homogeneous jellium
at ∼ 0.75 e/Å3 density does. The second conclusion
is that at a vacant site, the electronic density is ∼ 10
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FIG. 4: Energy vs. position for an atom moving from
left to right at constant velocity of v = 0.1 a.u. across

its equilibrium position in the lattice at x = 0
according to both the Born-Oppenheimer
approximation (dashed-green curve), and

non-adiabatic TD-DFT (solid-red curve). For
visualization purposes, energy values have been made
to coincide at x = −1.1 Å. The losses are given by the

derivative of the curve representing the energy
difference between the two approximations

(dotted-blue curve).

times smaller than at the center of a channel. This fact,
together with the orders of magnitude difference in ion
velocities at thermal energies is precisely what will give
rise to a different stopping for energetic projectiles than
for atoms vibrating thermally around their lattice sites.

To establish the connections between Se and e-ph in-
teraction, we analyze now the energy dissipation of a
Ni ion moving in a Ni crystal in a trajectory along
a 〈100〉 direction passing on top of a perfect lattice
site that is vacant, at two different constant veloci-
ties, namely v = 0.1 and 0.05 a.u., corresponding to
15 and 3.75 keV respectively. Phonon energies would
require this study to be done at two orders of magni-
tude lower velocities, something that is computational
very demanding. To recover the dissipation under the
real oscillatory dynamics, we will use the results for β
obtained at v = 0.05 a.u. and plug it into the actual
equation of motion of the damped harmonic oscillator
at an amplitude corresponding to room temperature.

Figure 4 shows the potential energy for the BOA to-
gether with the energy according to TD-DFT for the
atom moving from x = −1.1 Å to x = 1.1 Å, measured
from the perfect crystal position where the vacancy sits,
for the case v = 0.1 a.u. The ion in TD-DFT was set
into motion at a distance from the vacancy larger than
|−1.1| Å, in order to reach that position well after the
transient has disappeared. For visualization purposes,
both curves have been vertically shifted to have equal
value at x = −1.1 Å . Finally Fig. 4 also shows the
difference between the two curves, i.e. the dissipated



5

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.032  0.034  0.036  0.038  0.04  0.042  0.044  0.046  0.048  0.05

` 
[e

V 
ps

/Å
2 ]

Electronic density [e/Å3]

FIG. 5: Instantaneous stopping power coefficient β
versus local electronic density at the location of the
projectile for a Ni atom moving along 〈100〉 direction
in Ni across a vacant site at 0.1 (green-dashed curve)

and 0.05 (red-solid curve) a.u. of velocity.

energy, whose slope is the stopping power or, in this
interpretation, the e-ph interaction. As it is apparent,
the slope of the curve, i.e. βv, is not constant but posi-
tion dependent, reflecting the fact that β is a function
of the density. The curves for v = 0.05 a.u. are slightly
different, giving a larger β.

From the curvature of the BO curve in Fig. 4 we de-
termine the equation of motion of the Einstein oscillator
by extracting the Hooke’s constant κ of the parabolic
potential, getting κ = 13.076 eV/Å2. This constant
determines an oscillation frequency of 7.379 THz, or a
period T0 = 0.136 ps. This value is to be compared
with the maximum phonon frequency in Ni, which is
∼ 9 THz [33], reminding us that the Einstein oscillator
is generally in the upper side of the phonon spectrum.
From the slope of the energy difference between the adi-
abatic and non-adiabatic calculation reported in Fig. 4
we extract the instantaneous β as a function of position
x; from the curves in Fig. 3 we obtain the density as
a function of position. We can then represent β as a
function of density; these functions at the two veloc-
ities considered are shown in Fig. 5. For the small
variations of density considered here corresponding to
displacements compatible with room temperature exci-
tations, the function β(ρ) is linear in density.

This result, namely, that β is different at different
velocities clearly shows that the damping is not simply
proportional to the velocity at low velocities as is the
case for jellium, Fig.2. This velocity dependence is sim-
ilar to the case reported in [24] for Au. Interesting to
note is the fact that the velocity dependence for Ni is
just the opposite to that of Au; while in Au the cou-
pling decreases for low velocity, in Ni it increases. The
reasons for that are to be found in the structure of the
DOS close to the Fermi level: while in Au increasing
the width around EF increases the number of electrons
involved, in Ni it is the opposite because the Fermi level

sits on a high and narrow peak. For details see Figs 4(d)
and 5(d) in [43].

The motion of a damped harmonic oscillator of mass
m and damping β is exponentially attenuated with a
characteristic time τA = 2m/β, while the energy decays
with τE = m/β. We find τE = 12.7 ps for β determined
at v = 0.1 a.u. and τE = 4.4 ps for v = 0.5 a.u. We can
expect that if β is calculated for lower velocities, the
characteristic relaxation time will be even smaller.

How does this value compare with the relaxation time
for a 1.5 MeV (v = 1 a.u.) Ni particle traveling at the
center of a 〈100〉 channel in fcc Ni? To make this com-
parison we will assume that for velocities between 0.1
and 1 a.u. the linear dependence of stopping with ve-
locity is valid; which is not the case velocities below
0.1 a.u., as we just discussed. Under this assumption,
the relaxation time in a channel, namely 3.5 ps, is 4.5
times shorter that the relaxation time around a va-
cancy. In terms of β for a particle traveling in a chan-
nel, β(ρ = 0.25 e/Å3

) = 2.06 × 10−3 eVps/Å2, while
for an atom traveling around its equilibrium position,
β(ρ = 0.03 e/Å3

) = 4.57 × 10−4 eVps/Å2. In short,
a variation of the host electronic density by a factor of
∼ 9 produces a variation of the strength of the coupling
by a factor of ∼ 4.5.

This result partially solves the difficulty presented in
the introduction about the use of a piecewise function
for β. However the precise relation between β and
ρ at all densities, which is of relevance for practical
implementations of TTM in classical MD simulations,
requires also a dependence on velocity and/or on the
structure of the DOS around EF, a complex problem
that still needs to be solved and is beyond the purpose
of this publication.

IV. COMPARISON WITH PERTURBATIVE
APPROACH

Finally, how does the e-ph relaxation time from TD-
DFT compare with the value obtained using standard
Bloch-Boltzmann-Peierls expression [34] describing the
rates of change of electron and phonon distribution due
to electron-phonon collision? In such approximation,
the electron energy dissipation caused by the difference
in electron and lattice temperatures is described by the
theory developed by Allen[35],

ce
dTe

dt
= −πh̄kBλ〈ω2〉N(EF)(Te − Tl) = −g(Te − Tl)

(1)
where ce is the electronic specific heat capacity, 〈ω2〉 is
the average value of phonon frequency, N(EF) is the
electronic density of states (DOS) per spin at Fermi en-
ergy, λ is the coupling constant, and Te, Tl are electron
and lattice temperatures respectively.

The rigid muffin-tin potential approach (RMTA) pro-
posed by Gaspari and Gyorffy [36] significantly simpli-



6

fies the calculation of λ. It was used to calculate the
Hopfield parameter η = λ/(m〈ω2〉), where m is atomic
mass. Thus, the zero temperature expression for the
e-ph coupling is defined as

g = πh̄kBηN(EF)/m. (2)

The electronic scattering phase shifts and electronic
density of states, N(EF), needed to calculate η, are ob-
tained from the atomic sphere approximation (ASA) of
KKR [37] calculation. Within RMTA the spherically
averaged part of Hopfield is equal (in Rydberg units) to

η = 2N(EF)
∑
`

(`+ 1)M2
`,`+1

f`
2`+ 1

f`+1

2`+ 3
, (3)

where f` is a relative partial DOS,

f` =
N`(EF)

N(EF)
, (4)

and M`,`+1 the electron-phonon matrix element

M`,`+1 =

∫ S

0

R`
dV

dr
R`+1r

2dr, (5)

where the gradient of the one-electron potential V (r)
and the radial solution of the Schrödinger equation, R`

and R`+1 were used. M`,`+1 can be written [36] in
terms of of the phase shifts, δ` or in terms of logarith-
mic derivatives of D` = rR′`/R` evaluated at boundary
of atomic sphere [40–42]

M`,`+1 = −φ`(EF)φ`+1(EF)

× {[D`(EF)− `][D`+1(EF) + `+ 2]

+ [EF − V (S)]S2}, (6)

where φ`(EF) is the amplitude of the ` partial wave.
Since both η and g are proportional to N(EF), the

resulting value strongly depends on the magnetic order-
ing in the material, namely: η = 2.6 eV/Å2 for nonmag-
netic Ni and η = 2.1 eV/Å2 for the magnetic one. This
difference is mainly caused by much higher N(EF) for
nonmagnetic Ni compared to magnetic one. The cor-
responding coupling values, g, are equal to 14.9 × 1017

and 9.6 × 1017 W/m3K. According to Lin et al. [43],
the highest value of g, 10.5×1017 W/m3K, is measured
in transient thermoreflectance experiments [44]. The
electron temperature in this experiment doesn’t exceed
100 K. The phonon relaxation is obtained using the
expression τph = cl/g, where cl is the lattice specific
heat capacity. The resulting phonon relaxation times
at temperature equal 300 K are 3.1 ps for nonmagnetic
Ni and 4.8 ps for magnetic one, where the tempera-
ture dependence was included following the approach
proposed by Wang et al.[45]. This approach allows to
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include scattering of phonons on electrons away from
Fermi surface. Following Wang et al. [45] and Lin et al.
[43] the temperature dependent electron-phonon cou-
pling was calculated using:

g(Te) = πh̄kB
η

M
N(EF)

×
∫ ∞
−∞

dE

[
N(E)

N(EF)

]2 [
− ∂f
∂E

]
, (7)

where − ∂f
∂E is the derivative of equilibrium Fermi dis-

tribution function. At low electronic temperatures, Te,
this function reduces to a delta function, and the ex-
pression for g to Equation (2). Figure 6 shows the
calculated g(Te) together with available experimental
data obtained in transient thermoreflectance experi-
ments [44], pump-probe transmission experiments [46]
and deduced from two-temperature model for surface
melting [47] (see detailed discussion in publication by
Lin et al. [43]). The calculated dependence is in very
reasonable agreement with experiment.

V. DISCUSSION:

The e-ph interaction represented in terms of a relax-
ation time has then been calculated with two different
approaches, namely, in a semi-classical way, as the low
velocity limit of electronic stopping, producing a value
for an Einstein oscillator of τ = 12.7 ps for β calcu-
lated at v = 0.1 a.u and τ = 4.4 ps for β calculated at
v = 0.05 a.u, and as given by linear response theory,
producing a value of τ = 3.5 ps at 0K. The similarity
of these results is surprising if we consider how differ-
ent the two approaches are. To mention some, the e-ph
interaction seen as an electronic stopping process uses
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Ehrenfest dynamics, which is known to misrepresent
some dissipation channels [50]. Also, our calculation is
for an Einstein mode, a highly localized superposition
of all normal modes, while the quantum mechanical cal-
culations involves a thermal population of phonons. In
addition, the QM calculation is very sensitive to the
electronic DOS at the Fermi level, a usual source of nu-
merical inaccuracy. However, the main assumption is
the velocity proportionality of the stopping, as repre-
sented in Fig. 2 for jellium: the βs used for the calcu-
lation of the attenuation of an Einstein oscillator were
obtained at v = 0.1 and 0.05 a.u., while the velocity of
an atom moving in the phonon regime is in the range
of v ∼ 0.0001 a.u. implying that an even larger value of
β may be found if the velocity is further reduced.

In a recent paper, Zeb et al. showed that, for pro-
tons on Au, where the Fermi level is in the s-band close
to the upper limit of the d-band, the experimentally
reported nonlinear behavior of stopping power versus
velocity (lower slope of the stopping at lower veloci-
ties) is due to a gradual crossover as excitations tail
into the d-electron spectrum [24]. Using a similar argu-
ment for our case of Ni in Ni, we find a justification for
the opposite behavior, namely an increase in the slope
of the stopping as the velocity decreases, as shown in
Fig. 6. Our calculated dependence of the e-ph coupling
on electronic temperature in Ni, as well as the work
by Lin et al. [43] show a strong negative dependence in
the temperature regime relevant for high energy laser
pulses, i.e. electronic temperatures up to 104 K. As
the electronic temperature increases, electrons in a win-
dow of width kBT around EF start to participate in the
coupling and since in Ni the N(EF) is very high and
decreases at both sides of EF, the coupling has a strong
negative temperature dependence.

The e-ph interaction seen as a stopping process can
be analyzed with the same argument, namely the elec-
trons that participate in the stopping are those around
EF with a width that increases with projectile velocity.
Using a semiclassical argument we see that for a given
projectile velocity v electrons in a range EF ± 2h̄kFv
become relevant for the non-adiabatic energy exchange.
Therefore a meaningful comparison between electronic
stopping and e-ph coupling can be made when v ∼
kBT/(2h̄kF ), with T the electronic temperature. So,
for example, an electronic temperature of 5000 K cor-
responds, in this analogy, to a projectile velocity of
0.011 a.u. (counting 10 valence electrons per Nickel ion)
or 0.006 a.u. (2 s-electrons per Nickel). This argument
is a good candidate to explain why the e-ph and stop-
ping power calculations agree when both theories are
compared at the appropriate limits, i.e. when both
approaches effectively probe the same range of DOS
around EF.

At high electronic temperature (or in the presence of
defects affecting the band structure) the exact value of
N(EF) of the perfect crystal becomes less relevant, and
is replaced by an average in the range EF±kBT . In fact,

for disordered alloys, liquid phase or high temperature,
we expect that the semi-classical stopping method to
the two-temperature model could become a practical
and accurate approach.

VI. CONCLUSION

In summary, using TD-DFT we simulated an oscil-
latory ion motion with thermal energies subject to the
damping created by electronic excitations, as well as an
energetic ion traveling in a channel direction in a crys-
tal. We interpreted both damping processes as being
two aspects of the same physical phenomenon, differen-
tiated only by the density of the target that the moving
particle is able to explore at different energy ranges.
This connection between the two processes is not new
in molecular physics: Several years ago a similar as-
sumption was made by Persson and Hellsing [48, 49] to
explain the attenuation of oscillating molecules or ad-
atoms on the surface of a metal. In this paper we give
a full quantitative evaluation of the process for a metal
with ab initio accuracy. Finally, in a recent paper by
Mason [51] an explicit form is given for the damping
coefficient in terms of a damping tensor derived from
a tight binding model, adding more complexity to our
simple scalar damping term. Still Mason’s model con-
siders Sn and Se as distinct phenomena acting at dif-
ferent energy scales. Perhaps a combination of both
approaches may give the most complete description on
non-adiabatic phenomena in solids.

The classical trajectory is not only a technical short-
cut but also makes the connection with state of the art
molecular dynamics simulations. The proposition pre-
sented in this paper of calculating the e-ph interaction
as a particular case of an electronic stopping process
provides a simple solution to the empiricism present to-
day in molecular dynamics simulations of non-adiabatic
processes in energetic ion-solid interactions, by attribut-
ing the differences in value of the damping coefficient β
at different ion energies to the different values of the
host electronic density found by moving particles when
in the high energy regime or in the thermal energies
regimes. A practical implementation of this approach
in a MD simulation would require an on-the-fly determi-
nation of the electronic density, obtained for example by
superposition of spherical atomic densities (as it is cur-
rently feasible in the embedded atom method –EAM–),
and a precise functional form relating β to ρ as obtained
with the presented method.
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