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We argue that the relative thermal conductance between interfaces with different morphologies is
controlled by crystal structure through Mmin/Mc > 1, the ratio between the minimum mode count
on either side Mmin, and the conserving modes Mc that preserve phonon momentum transverse
to the interface. Junctions with an added homogenous layer, “uniform”, and “abrupt” junctions
are limited to Mc while junctions with interfacial disorder, “mixed”, exploit the expansion of mode
spectrum to Mmin. In our studies with cubic crystals, the largest enhancement of conductance from
“abrupt” to “mixed” interfaces seems to be correlated with the emergence of voids in the conserving
modes, where Mc = 0. Such voids typically arise when the interlayer coupling is weakly dispersive,
making the bands shift rigidly with momentum. Interfacial mixing also increases alloy scattering,
which reduces conductance in opposition with the mode spectrum expansion. Thus the conductance
across a “mixed” junction does not always increase relative to that at a “uniform” interface.

I. INTRODUCTION

For over half a century, the thermal energy flow across
solid-solid interfaces has been studied with only partial
understanding of the underlying processes [1–3]. A mi-
croscopic understanding of these interfacial thermal pro-
cesses requires deconstructing thermal interfacial con-
ductance, which brings many challenges, including con-
sideration of a broad spectrum of interacting dispersive
phonons, varying mean free paths, and additional phonon
interactions with defects, impurities and other interfa-
cial imperfections [4]. Moreover, as the spacing between
two interfaces reduces to distances on the order of the
phonon coherence length, wave interference and coher-
ent transport contribute to the thermal resistance in a
non-additive fashion [5–8].
Early models of interfacial thermal conductance fo-

cused on the effect of acoustic matching [9], nonlinear
dispersion [10], and bonding [10] on perfectly abrupt in-
terfaces (Fig. 1a). Interfacial imperfections were later in-
cluded in the diffuse mismatch model (DMM) as sources
of diffuse scattering [11]. Although this model is widely
used, it does not account for atomistic interfacial details
[12], which have been shown to affect interface conduc-
tance measurements [4].
One interfacial imperfection is random atomic mixing

(Fig. 1b), which can be a frequent byproduct of nanos-
tructure fabrication. The addition of random atoms at
an abrupt interface generates two effects in the harmonic
regime: 1) it decreases phonon transmission of the trans-
port channels that conserve transverse momentum be-
cause it adds alloy backscattering [13–16]; and, 2) it
opens up new channels that do not conserve transverse
momentum because it breaks the translational symme-
try at the interfacial plane [17]. Some papers focused
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FIG. 1. a) Abrupt interface. b) Interface with random atomic
mixing (mixed interface). c) Interface with an added homo-
geneous layer at the junction (uniform interface).

on the effect of mixing on transmission and showed the
importance of the frequency dependence [13], the corre-
lation length of the random distribution [14, 15] and the
acoustic-optic coupling [16].

Interestingly, the papers that focused on the open-
ing of new channels (Effect 2) noted that the thermal
conductance of the mixed interface was larger than that
of the abrupt interface for a simple cubic crystal inter-
face [17, 18] and for a Si/heavy-Si interface [19]. More-
over, Kechrakos [18] noticed that the conductance of the
mixed interface was even larger than the conductance
of an interface with an added homogeneous atomic layer
(Fig. 1c), which we call a uniform interface. Those results
suggest that adding disorder at interfaces increases con-
ductance, contrary to bulk materials where adding disor-
der has the opposite effect. However, the role of crystal
structure on the conductance of the abrupt, mixed and
uniform interfaces remains unclear.

In this paper, we demonstrate that the relative con-
ductance between interfaces with different morphologies
(Fig. 1) depends on crystal structure. For the systems
considered in this study, adding a unit cell monolayer of
mixing to an abrupt interface always enhances the inter-
facial conductance, but the extent varies over an order
of magnitude according to the crystal structure (Fig. 2).
Furthermore, the conductance across a mixed interface
does not always increase relative to that at a uniform
interface. In fact, while the conductance increases for
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simple cubic (SC) and diamond cubic (DC) crystal struc-
tures, it decreases for face centered cubic (FCC) crystals.
This suggests that the commonly invoked virtual crystal
approximation, which models the mixed interface as a
uniform interface, alternatively overestimates or under-
estimates the effect of interfacial mixing on thermal con-
ductance. For DC crystalline interfacial regions, we show
that the enhancement of conductance by mixing depends
on phonon polarization. For instance, mixing increases
transmission between TA-TAmodes but not between LA-
LA modes.
We explain our results within the Landauer theory,

where thermal conductance is directly related to the
product of the number of conducting channels or modes
(M) times their average transmission (T ). We find that
1) the crystal structure determines the relative magni-
tude of the minimum of the contacts’ modes Mmin vs.
the conserving modes Mc that conserve the component
of phonon momentum transverse to the interface. On
the other hand, 2) the interface morphology determines
if phonons move through Mmin for mixed interfaces, or
Mc otherwise. Based on these two concepts, we show
that the conductance across a mixed interface increases
relative to that at a uniform interface when Mmin > Mc,
with larger degree of enhancement as the inequality in-
creases. The larger enhancements, seen in SC and in
TA branches of DC, are associated with the emergence
of voids in the conserving modes (Mc = 0). Such voids
in turn arise when the subbands shift but do not distort
with increasing momenta.
We start by deriving an inequality (Eq. 5) between the

conductance of the mixed and uniform interfaces from
the Landauer theory (Sec. II). Then, we describe how the
modes (Sec. III) and transmission (Sec. IV) shape that
inequality according to phonon polarization. In Sec. IV,
we derive analytical expressions for the transmissions of
the scalar SC and FCC systems. For the uniform inter-
face we find a maximum conductance when the junction
mass is the arithmetic mean of the contact masses. For
the mixed interface, we find that the transmission be-
tween phonons that do not conserve transverse wavevec-
tor, k⊥, depends on the difference of the contact masses
and on the alloy scattering factor, α(1 − α) with α the
fraction of heavy atoms at the interface.

II. LANDAUER DESCRIPTION

Thermal conductance Gq is defined as the ratio be-
tween heat flux q and temperature drop ∆T. Within the
Landauer theory this quantity can be expressed as [20]

Gq =
q

∆T
=

Iq

A∆T
=

1

A

∞∫

0

dω

2π
~ω

∂N

∂T
MT, (1)

where Iq is the heat current, A is the cross-sectional area,
~ω is the energy carried by a phonon, N is the Bose-
Einstein distribution, M is the number of propagating

modes, which we refer as “modes” throughout this paper,
and T is the average transmission per mode. For a given
contact and frequency ω, the propagating modes are the
eigenvectors (xn ∝ ei(kxn−ωt)) of the equation of motion
for the contact with eigenvalue ω2, with real wavevec-
tor k and with group velocity in the transport direction.
The product MT equals the sum of the phonon transmis-
sions between modes on the left and right contacts. This
quantity can be calculated from non-equilibrium Green’s
functions (NEGF) as MT = Trace{ΓlGΓrG

†}, with G
the retarded Green’s function and Γ the broadening ma-
trix for the left (l) and right (r) contacts [21–23].
For the uniform interface (Fig. 1c), the symmetry in

the transverse direction requires that phonons crossing
it conserve their transverse wavevector k⊥. Thus, the
nonzero contributions to MT are transmissions Tk⊥,k⊥

between contact modes with the same k⊥. Referring to
the number of these transmissions as Mc, the conserving
modes, and their average as Tc, we can express MT for
the uniform interface as

MTuni =
∑

k⊥

Tk⊥,k⊥
= McTc < Mc. (2)

Mc is given by the overlap between the projections of the
frequency isosurfaces of the contacts onto the k⊥ plane
(Fig 3b). Note its role as an upper bound ofMTuni. Also
note that the abrupt interface (Fig. 1a) is a limiting case
of the uniform interface.
When we replace the homogeneous interfacial layer of

the uniform interface by random contact atoms (Fig. 1b),
the atomic disorder breaks the transverse symmetry and
allows phonon transmission Tk⊥,k′

⊥
between modes that

do not conserve k⊥ [17]. That disorder also decreases the
transmission (δTc↓) between modes that conserve k⊥. We
can express MT for the mixed interface as

MTmix =
∑

k⊥

Tk⊥,k⊥
+

∑

k⊥ 6=k′
⊥

Tk⊥,k′
⊥

(3)

= Mc(Tc − δTc↓)
︸ ︷︷ ︸

conserving

+ MncδTnc↑
︸ ︷︷ ︸

non-conserving

< Mmin, (4)

where MncδTnc↑ represents the increase in conductance
due to the newly available channels. We define Mnc

as the minimum of the contacts’ modes, Mmin =
min(Ml,Mr), because MTmix is bounded by Mmin. This
result follows from the conservation of energy current.
MT ≤ Ml because the transmission from each mode on
the left contact is less or equal than one. Reversing the
argument, we also conclude that MT ≤ Mr.
Comparing Eq. 2 and 4, the conductance of the mixed

interface is larger than that of the uniform interface,
Gmix > Guni, if

∫ ∞

0

dω

2π
~ω

∂N

∂T
MminδTnc↑ >

∫ ∞

0

dω

2π
~ω

∂N

∂T
McδTc↓.

(5)
In other words, Gmix > Guni if the gain in conduc-
tance by opening new channels that do not conserve k⊥
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(MncδTnc↑) surpasses the loss in conductance by phonons
conserving k⊥ (McδTc↓) over a window set by the cut-off
frequency and the temperature.

III. MINIMUM VS. CONSERVING MODES

We calculate the harmonic conductance of abrupt, uni-
form and mixed interfaces embedded into four different
crystal structures: 1) SC and 2) FCC crystals, where the
atomic movements are simplified to a single direction and
thus the interatomic force constants (IFCs) are scalars;
3) FCC crystal with IFCs calculated from the Lennard-
Jones (LJ) potential; and 4) DC crystal with IFCs calcu-
lated from density functional theory (DFT). The inter-
facial region for each system consists of a monolayer of
primitive unit cells (Fig. 1). The same IFCs and lattice
constants are used throughout each system to simplify
the analysis. When mass variation is much larger than
IFCs variation, the effect of mass disorder dominates the
scattering of cross-species interactions [24]. However, as
the inequality decreases, the effect of IFC variation will
also play an important role [25]. The ratio between
the atomic masses of the contacts is 3 for the SC and
FCC systems and 2.6 for the DC system, corresponding
to the mass ratio of Si and Ge. The conductance is cal-
culated using NEGF, and the details of the simulations
and assumptions are given in Appendix A.

FIG. 2. Plot of the average MT normalized by the results for
an abrupt interface versus the average mass at the junction
layer for the cases described at the beginning of the section.
Adding mixing at an abrupt interface enhances the interfacial
conductance in all systems simulated in this work, but the
extent depends on crystal structure. Compared to uniform
interfaces, however, mixing does not always yield an increase
in conductance.

Figure 2 plots the frequency average of MT , which

one can interpret as conductance without the “low” tem-
perature dependence (Eq. 1), vs. the average mass at
the interfacial layer 〈mj〉 for the different crystal struc-
tures. For these systems, adding a unit cell monolayer of
mixing to the abrupt interface always enhances the in-
terfacial conductance, but the extent depends on crystal
structure. For the scalar SC crystal (Fig. 2a), the max-
imum relative change of 〈MT 〉 between the mixed and
abrupt interfaces is about ((2.5− 1)/1× 100%) = 150%.
However, for the FCC and DC crystals (Fig. 2b, c and d),
the relative change of 〈MT 〉 is only about 13%. Further-
more, the conductance across a mixed interface does not
always increase relative to that at a uniform interface. In
fact, it increases for SC and DC crystals but decreases
for FCC crystals.
The increment of conductance from the abrupt inter-

face to the mixed interface (Fig. 2) relies on the atomic
extent of the mixing region. For this special case, Eq. 5
tells us that the gain in conductance by phonons that
do not conserve k⊥ surpasses the loss in conductance
by phonons conserving k⊥ (MncδTnc↑ > McδTc↓). As
the extent of the mixing region increases, phonon back
scattering increases and transmission decreases. Thus,
δTnc↑ decreases while δTc↓ increases, making the inequal-
ity more difficult to be satisfied. At some point, the in-
equality stops being true and Gmix becomes less than
Gabr, which is the usual experimental outcome [4].

FIG. 3. a) For SC, the conductance for the mixed interface is
larger than the uniform interface because the loss in transmis-
sion, T , due to the extra scattering brought by the random
atoms (area with vertical lines) is dominated by the gain in
modes, M , coming from transmissions between phonon that
do not conserve k⊥ (area with horizontal lines). b) While the
MTuni spectrum is limited by transmissions between phonon
conserving k⊥ (overlap region), the extra MTmix spectrum
comes from transmissions between phonons that do not con-
serve k⊥.

For the SC crystal, the large conductance increase of
the mixed interface results from the wider MT spectrum
(Fig. 3a). This extra spectrum comes only from trans-
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missions between modes that do not conserve k⊥. In fact,
over that frequency interval, the available contact modes
do not overlap (Fig. 3b), banning transmissions between
modes conserving k⊥. Thus, Mc = 0 and MTuni = 0.
Mixing removes the requirement of conserving k⊥, open-
ing Mmin conduction channels and making MTmix > 0.

Figure 3a shows MT for the mixed, uniform and
abrupt interfaces. MTmix is split into the contributions
from modes conserving k⊥ and those that do not. This
gives us a pictorial representation of Eq. 5: Gmix > Guni

because the MT area gained due to transmissions be-
tween modes not conserving k⊥ is larger than the MT
area lost due to disorder among the modes that conserve
k⊥.

FIG. 4. a) For FCC, the conductance for the uniform interface
is larger than the mixed interface because the loss in T due to
the extra scattering brought by the random atoms (area with
vertical lines) dominates the gain in M coming from trans-
missions between phonon that do not conserve perpendicular
momentum (area with horizontal lines). b) Mc ≈ Mmin over
most of the spectrum. Thus, mixing provides little advantage
by allowing transmission between modes not conserving k⊥.

A similar pictorial representation for the scalar FCC
interfaces is shown in Fig. 4a. In this case, Guni > Gmix

because the MT area gained due to transmissions be-
tween modes not conserving k⊥ is less than the MT
area lost due to disorder among the modes that conserve
k⊥. Note that MTuni and MTmix cover the same fre-
quency range, and the overlap of the contacts’ modes Mc

equals their minimum Mmin over most of the spectrum
(Fig. 4b). Thus, the accessible modes on the mixed inter-
face Mmin do not bring any advantage over the existing
modes Mc on the uniform interface (Eq. 5). The dom-
inant conductance is then decided by the transmission,
which in this case favors the loss in the conserving modes
over the gain in the non-conserving ones.

From Fig. 3 and 4, we note that the relative mag-
nitude between Mmin and Mc plays an important role
determining the larger MT between the mixed and uni-

form interfaces (Eq. 5). This is not surprising because
of their roles as MT upper bounds for the mixed and
uniform cases respectively. We can distinguish three
cases: when 1) Mc ≈ Mmin, the modes conserving k⊥
reach the physical limit of modes that can carry heat
in one of the contacts. Equation 5 tells us that the
transmission alone decides the dominant MT , which can
be either the uniform or mixed MT . For the scalar
SC and FCC structures, whenever Mc ≈ Mmin we see
that MTuni > MTmix (Fig. 3 and 4). Therefore the
loss in transmission on the conserving modes surpasses
the gain in transmission on the non-conserving modes
(δTc↓ > δTnc↑ in Eq. 5). When 2) Mmin > Mc, the
dominant MT results from a balance between the added
modes that do not conserve k⊥ and the loss in trans-
mission on the modes that conserve k⊥ (Eq. 5). For in-
stance, in the SC structure, MTmix becomes larger than
MTuni as the ratio Mmin/Mc increases (Fig. 3). When
3) Mmin > Mc = 0, MTmix > MTuni = 0 and MTmix

is only due to transmissions between modes that do not
conserve k⊥ as shown by Fig. 3. These three criteria may
help in the search for interfacial materials where a par-
ticular outcome is expected from atomic mixing over the
harmonic regime.
For the diamond crystal, the polarization of the inci-

dent and transmitted phonons plays an important role
in deciding the outcome of the dominant conductance.
We give a brief description of the calculation process in
Appendix B. Figure 5a shows that Gmix > Guni mostly
because of TA phonons in the light contact transition-
ing to TA and LA phonons in the heavy material. The
transmissions between phonons that do not change polar-
ization behave similarly to the scalar crystals. For TA-
TA and LA-LA transmissions, MTmix > MTuni when
Mmin > Mc and MTuni > MTmix when Mmin ≈ Mc

(Fig. 5b). The transmission between other polarizations
will be analyzed in the next section.
The polarized modes for the diamond crystal uncover

an interesting similarity between the modes of the SC and
the TA branches in DC and between the modes of the
scalar FCC and the LA branch in DC (Fig. 6). For the
cases where mixing significantly enhances conductance
(SC and TA-TA branches in DC), we see a common cen-
tral void in the modes for the heavy contact. This void
arises in phonon bands where the k⊥ ≈ 0 subbands only
cover a fraction of the whole band spectrum (Fig. 7). In-
deed, after the cutoff frequency of those subbands, the
k⊥ ≈ 0 modes, or central modes, start to become un-
available. From another point of view, the void originates
when the upward shift of the k⊥ ≈ 0 subbands dominate
their shrinking as |k⊥| increases. We see this happening
for SC and TA-TA but not for FCC and LA-LA (Fig. 7).
For the scalar SC and FCC crystals, the existence of

the void can be associated with the independence of in-
terlayer coupling as k⊥ increases. For a SC crystal with
atomic mass m and interatomic force constant f , the
subbands are given by

ω2m = fon − 2foff cos(kza), (6)
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FIG. 5. a) MT for DC crystal split in polarizations. The
conductance of the mixed interface dominates mostly be-
cause mixing favors transmissions between TA-TA and TA-
LA modes, where the ratio of Mmin/Mc is larger. b) Mmin

and Mc for the different polarization branches.

with the onsite coupling fon = 6f − 2f cos(kxa) −
2f cos(kya) representing the atomic interactions within
a transverse layer of atoms, and the offsite coupling
foff = f representing the interaction between layers. As
the magnitude of k⊥ increases fon increases, shifting up-
wards the subband but foff remains constant keeping
their width stable. On the other hand, for a FCC crystal
the subbands are given by

ω2m = fon − 2foff cos
(

kz
a

2

)

, (7)

with fon = 12f − 4f [cos(kxa/2) cos(kya/2)] and foff =
2f [cos(kxa/2)+ cos(kya/2)]. As the magnitude of k⊥ in-
creases, fon increases shifting the subbands upward, but
at the same time, foff decreases shrinking their band-
width.
Although we neglect anharmonicity in this paper, we

hypothesize that our main conclusions should hold even
when anharmonicity is present. Phonon-phonon inter-
action enables inelastic transmission of phonons at the
interface. However, the transverse symmetry selection
rules for k⊥ continue to hold. Therefore, phonons cross-
ing an abrupt or uniform interface have to conserve k⊥
and are restricted to inelastic jumps within the conserv-
ing modes Mc. On the other hand, phonons crossing a
mixed interface can jump in frequency within the mini-
mum of the contacts’ modes Mmin. Thus, we expect a
similar relation between the crystal structure, which de-
termines the ratio Mmin/Mc, and the relative magnitude
of the conductance for the abrupt, uniform and mixed
interfaces. Further studies are required to evaluate the
validity of this hypothesis. We also expect a conduc-
tance increase for all the systems considered in this work,
since anharmonicity allows transmission of phonons with

FIG. 6. Available modes in the DC contacts for the (a) TA
and (b) LA branches. The modes for SC crystal and the TA
branches, where mixing enhances the most the conductance
of an abrupt interface, present a central void that enhances
the ratio Mmin/Mc.

FIG. 7. When the shift in the subbands dominate their dis-
tortion, the k⊥ = 0 subband only covers a fraction of the
whole band spectrum. This generates a void in the conserv-
ing modes, which is seen when mixing significantly enhances
the conductance of an abrupt interface. The solid lines rep-
resent subbands for different k⊥ and the shaded region is the
projected dispersion on kza.

frequencies beyond the elastic limit. Thus as temper-
ature and thereby anharmonicity increases, interfacial
thermal conductance increases [26, 27]. For some systems
with large Debye temperatures anharmonicity can be ne-
glected. For instance, Si/Ge interfaces present a thermal
conductance relatively independent of temperature below
500 K, which indicates that phonon-phonon interactions
are not dominant over that temperature range [27].
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IV. GAIN VS. LOSS IN TRANSMISSION

An essential part of the conductance inequality (Eq. 5)
is the transmission, which can be characterized from our
knowledge of M and MT . For example at low frequen-
cies, Mc ≈ Mmin and MTabr ≈ MTuni ≈ MTmix, so
the transmissions are similar and they only depend on
the acoustic mismatch between contacts. Unfortunately
most of the spectrum is outside this low frequency regime.
For the crystals with scalar IFCs over the mid-

frequency range, MTuni > MTmix > MTabr as long
as Mc ≈ Mmin (Fig. 3a and 4a). Therefore, the trans-
mission loss due to disorder for modes that conserve k⊥
dominates the transmission gain from modes that do not
conserve k⊥. As frequency increases, thermal energy is
carried by shorter wavelength phonons and disorder back
scattering accentuates. At some point, it becomes strong
enough to reduce MTmix even below MTabr (Fig. 4a).
For the DC crystal, the different polarizations available

influence the transmission function. For instance, mixing
facilitates transmissions between TA-LA modes (Fig. 5).
This follows from MTmix > MTuni in regions where
Mmin ≈ Mc, which implies Tmix > Tuni. Note that this
is the opposite of what we saw for the scalar crystals.
Another interesting example shows shifting of transmis-
sion between polarizations. Around ω ≈ 5.2 × 1013 rad
s−1, MTmix for LA-LO decreases while MTmix for LA-
TO increases. At this frequency the ratio Mmin/Mc for
LA-TO is larger than for LA-LO soMTmix shifts towards
the more favorable condition while conserving energy. In
this paper we just scratch the surface of the importance of
understanding polarization for interfacial transport, and
further studies are required in the topic.
To gain further insights into the transmission, we focus

on the crystals with scalar IFCs. For uniform interfaces,
Fig. 2 shows a conductance maximum when the junction
mass is the arithmetic mean (AM) of the contact masses.
This follows from a generalization of the same result in
1D interfaces with a single atomic junction [28, 29]. By
Fourier transforming the transverse coordinates, our 3D
problem decouples into a sum of 1D chains with IFCs that
depend on the transverse wavevector. For each k⊥ we
assume an incident, reflected and transmitted wave and
find their amplitudes by solving the equation of motion
for the interfacial atom. The transmission Tk⊥

follows
from the ratio of transmitted over incident current. In
this way, MT for the uniform interface is

MTuni =
∑

k⊥

Tk⊥
, (8)

with

Tk⊥
=

4Γl
k⊥

Γh
k⊥

ω4∆m2 +
(
Γl
k⊥

+ Γh
k⊥

)2 . (9)

Γk⊥
is the broadening matrix in NEGF formalism, which

reduces to a scalar function when dealing with a single
degree of freedom per atom [22]. This quantity is related

to the escape rate of a phonon into the contacts and is
given by Γk⊥

= 2ωρvk⊥
, with ρ the mass density and vk⊥

the frequency dependent group velocity of the mode or
subband defined by k⊥. The superscript in Γk⊥

refers to
the light (l) and heavy (h) contacts. ∆m = mj − (ml +
mh)/2 measures the deviation of the junction mass mj

from the AM of the contact masses. Thus, whenmj is the
AM, each Tk⊥

, MTuni and Gq
uni are maxima. Note that

Gq
uni > Gq

abr as long as ml < mj < mh, since the abrupt
interface is recovered when mj = mh. Also note that at
low frequency, ω4∆m2 << Γl,Γh, the transmissions only
depend on the acoustic mismatch between contacts.
A similar generalization from its 1D counterpart [28,

29] leads us to conclude that in an abrupt interface where
interfacial bonding is the only variable, conductance is
maximized when the force constant is the harmonic mean
of the contact force constants. In the same fashion, we
can generalize other 1D results to 3D interfaces [30].
The conductance maximum derived from Eq. 9 is not

valid for tensorial IFCs (Fig. 2). In that case, the ampli-
tudes of the incident and transmitted waves are related
through a matrix equation (Eq. C16). ∆m 6= 0 affects
both the denominator and the numerator of the transmis-
sion, and therefore there is no clear trend when decreas-
ing ∆m. For instance, ∆m 6= 0 might abate the transmis-
sion for some polarizations but enhance the transmission
between others.
For mixed interfaces, we can approximate MTmix

starting from Eq. C18 (Appendix C 2), the relation be-
tween incident and transmitted wave amplitudes at the
interface. The heart of the approximation lies on find-
ing the inverse of the matrix (∆̃ + Z̃B − Z̃C)

−1, which
is a diagonal matrix with tiny off-diagonal elements.
These small elements come from Fourier transforming
the random mass distribution at the interface. We as-
sume that all these elements are constant, since a ran-
dom mass distribution contains components in the entire
frequency spectrum. Then we estimate their value re-
lating the known real power spectrum with the k space
spectrum through Parseval’s theorem. Finally, we find
the desired inverse using a first order Taylor expansion
((A+B)−1 ≈ A−1 −A−1BA−1). With this information,
the sum of the transmissions becomes

MTmix =
∑

k⊥

Tk⊥,k⊥
+

∑

k⊥ 6=k′
⊥

Tk⊥,k′
⊥
, (10)

Tk⊥,k⊥
=

4Γl
k⊥

Γh
k⊥

ω4 〈∆m〉2 +
(
Γl
k⊥

+ Γh
k⊥

)2 (11)

and

Tk⊥,k′
⊥
=

ω4(1 − α)α(ml −mr)
2

NΓl
k⊥

Γh
k⊥

Tk⊥,k⊥
Tk′

⊥
,k′

⊥
. (12)

〈∆m〉 is the average over the junction masses, N is the
number of atoms in the cross section and α is the fraction
of heavy atoms at the interface. Equation 12 suggests
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that the transmission between modes that do not con-
serve k⊥, Tk⊥,k′

⊥
, is proportional to the square of the

difference between the atomic masses of the contacts,
(ml−mr)

2, to the alloy scattering factor, (1−α)α, and to
some function of the acoustic properties of the contacts.
The equation does not capture the decrease in transmis-
sion among the modes that conserve k⊥ due to disorder.
It also over predicts the contribution from transmissions
that do not conserve k⊥ and does not capture their asym-
metric bias as a function of junction mass (Fig. 2). In
spite of that, it provides a sense for the expected con-
ductance enhancement by mixing and insight on how to
build the transmission between different modes, which
is an important step forward towards qualitative under-
standing of interfacial conductance.

V. CONCLUSION

In this manuscript we quantify the role of crystal struc-
ture and interface morphology on the interface thermal
conductance. We show that the crystal structure (SC:
simple cubic, FCC: face centered cubic, or DC: diamond
cubic) determines the relative magnitude of theminimum

of the contacts’ modes Mmin vs. the conserving modes
Mc that conserve the component of phonon wavevector
transverse to the interface k⊥. On the other hand, the
interfacial morphology (abrupt, uniform: with an added
homogeneous layer, or mixed: with atomic disorder) de-
termines if phonons can move through Mc or Mmin.
We find that adding a unit cell monolayer of mixing

to an abrupt interface enhances the interfacial conduc-
tance, but the degree depends on the ratio Mmin/Mc. In
particular for a scalar FCC crystal, where Mmin ≈ Mc,
the conductance of a mixed interface increases relative
to that of an abrupt interface by 13%. This modest en-
hancement comes from a balance between the new ac-
cessible modes and the extra scattering created by dis-
order. For a SC crystal, the relative conductance incre-
ment from the abrupt interface to the mixed interface is
∼ 150%. This large enhancement comes from a region
where there are available modes but they do not overlap
(Mmin > Mc = 0) because of a central void of modes
in the Brillouin zone. The void appears when the up-
ward shift in the subbands dominate their shrinking as
k⊥ increases, which happens due to the independence of
interlayer coupling from k⊥.
For a DC crystal, we find that the effect of mixing de-

pends on the polarization. In particular, mixing increases
transmissions between TA branches but not between LA
branches. The modes for the TA branches present a
central void similar to what we saw in the SC crystal.
This suggests that materials with modes containing cen-
tral voids are prone to high conductance enhancement
by mixing. We also find that the conductance across a
mixed interface does not always increase relative to that
at a uniform interface. In fact, it increases for SC and DC
but decreases for FCC, and is once again correlated with

the ratioMmin/Mc. This suggests that the commonly in-
voked virtual crystal approximation alternatively overes-
timates or underestimates the effect of interfacial mixing
on thermal conductance.
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Appendix A: Simulation details

Each interface consists of two contacts joined by a
layer of primitive unit cells (Fig. 1). We find the in-
terfacial thermal conductance using NEGF and assume
that the crystal structure, lattice constant a and IFCs are
invariant throughout each system. This commonly used
simplification [26, 31–33] provides an easy way to study
thermal conductance through vibrationally mismatched
interfaces. Moreover, the simplification is well suited for
Si/Ge interfaces because the IFCs of these materials are
very similar [19] and therefore the difference in atomic
mass is a dominant scattering mechanism [24]. The ratio
between the atomic masses of the contacts is 3 (ml = 40
amu and mh = 120 amu) for all the systems but the
diamond crystal, where we use the masses of Si and Ge.
The IFCs for the scalar SC and FCC interfaces are

built considering only nearest neighbor interactions de-
scribed by a force constant of 45 N / m. Assuming
a = 5 Å, the thermal conductance for the abrupt in-
terface is given by Gabr = 7.5 MW m−2 K−1 for SC and
Gabr = 44.3 MW m−2 K−1 for FCC at a temperature of
300 K. Note that the value for FCC is ∼ 6 times larger
than for SC because the FCC crystal has twice the num-
ber of atoms per cross sectional area and its MT is ∼ 3
times larger (Fig. 3a and 4a).
For the FCC LJ interfaces, the IFCs are extracted

from the Lennard-Jones potential using ǫ = 0.0503 eV,
σ = 3.37 Å and a cut-off distance of 2.5σ. This potential
generates interactions up to fifth-nearest atomic neigh-
bors and corresponds to an equilibrium lattice constant
of a = 5.22 Å. The potential is chosen to be identical
to that used by English et al. [33] to have a point of
reference for benchmarking. In fact, we checked the con-
sistency of our IFCs by comparing the phonon disper-
sions and densities of states against the reference. The
conductance for the abrupt interface is Gabr = 57.8 MW
m−2 K−1 at a temperature of 147 K. Our non-equilibrium
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molecular dynamics (NEMD) simulations predict a larger
Gabr = 97.41 MW m−2 K−1 at a temperature of 30
K due to anharmonic transmission of phonons beyond
the cut off frequency of the heavy material. Note that
very low temperature NEMD results, which are classical
and mostly harmonic, should tend to high temperature
NEGF results, where the Bose-Einstein distribution ap-
proaches the classical limit.

For the DC crystal we use the IFCs from silicon ex-
tracted using Quantum Espresso, which is a software
package for performing calculations using density func-
tional perturbation theory, that has successfully pre-
dicted and matched experimental Kapitza conductance
and thermal conductivity without any fitting parameters
[34]. In this calculation, we used local density approxima-
tion (LDA) of Perdew and Zunger [35] with direct fitting.
The cutoff energy for the planewave kinetic energy is 30
Ryd, while the k sampling is 4 × 4× 4 with Monkhorst-
Pack method. We also considered 4×4×4 q points when
calculating the dynamical matrix. The lattice constant
for silicon is found to be 5.398 Å. Our parameters were
chosen after carefully satisfying convergence tests, and
the dispersion of silicon matches the experimental data
quite well. For simplicity in the calculations, we only
consider interactions up to the second nearest neighbor.
Our simulations predict Gabr = 242.5 MW m−2 K−1 at
300 K. To check our code, we simulate the same interface
with IFCs extracted from Stillinger-Weber potential and
obtain Gabr = 276.6 MW m−2 K−1 at 300 K, which is
comparable to the Gabr = 280 MW m−2 K−1 reported
by Tian et. al. [19] for the same interface, potential and
temperature. Those values are within 15% of the ones
obtained using lattice dynamics and NEMD calculations
Gabr ≈ 310 MW m−2 K−1 at 300 K [16, 27].

All our MT calculations are done in transverse
wavevector space (k⊥-space) to simplify the 3D problem
into a sum of 1D independent problems. For the abrupt
and uniform interfaces each 1D chain consists of primi-
tive unit cells. For the mixed interfaces we increase the
size of the unit cell and randomly choose the atoms at
the junction layer according to the desired average mass.
The unit cell for SC has 36 atoms, for FCC has 32 atoms,
for FCC LJ has 18 atoms and for diamond has 36 atoms.
For the diamond crystal we also simulated 16 and 64
atoms and did not see appreciable changes in the results.
Based on this, the results for FCC LJ might change less
than 5% if we increase the number of atoms. The MT for
scalar SC and FCC agree with the MT obtained using
Eq. C18. For each mixed interface, we report the average
over more than 12 independent calculations and in Fig. 2
we also report the standard deviation.

To split the contribution of MTmix from the modes
that conserve and do not conserve k⊥ (dashed line in
Fig. 3a and 4a), we find the transmission directly from
Eq. C18 in a system with 40× 40 atoms in the cross sec-
tion and periodic boundary conditions. Our results show
the average over 12 independent simulations of random
distributions of atoms at the junction.

To calculate propagating modes for a contact we sim-
ulate an “interface” where the leads and junction are the
same material. In this case T = 1 because there is no
interface and MT = M . The dispersions in the scalar
SC and FCC crystals are simple enough that we found
the propagating modes analytically by projecting the fre-
quency iso-surface onto the kx, ky plane.

Appendix B: Polarization-Resolved Transmission

To find the transmission resolved by polarizations we
start by 1) choosing a frequency ω for which we identify
all the propagating and evanescent modes of both con-
tacts. This is done by solving a generalized eigenvalue
problem as explained by Wang et. al. (Sec. 2.2.2 of [23]).
Then we 2) assign a polarization to each of the propa-
gating modes. That is, we find the dispersion branch to
which each mode belongs. This is done by moving in
small wavevector increments from k0, a fixed wavevector
where we know the correspondence between eigenvalues
(frequencies), eigenvectors (polarizations) and branches,
to k′, the wavevector of the phonon we want to label. In
each step we calculate the eigenvectors of adjacent k grid
points and project ones into the others. Then according
to the maximum projection between eigenvectors we as-
sign a branch to each of the eigenvalues and eigenvectors
of the next grid point. Once we assigned a label to each
propagating mode we 3) find the response around the in-
terface to an incident mode from the left contact. This is
done using the Green’s function of the system, which is
the impulse response of the system, by exciting the sys-
tem with a superposition of impulses that resemble the
mode. Then we 4) project the part of the response at
the right contact onto the modes of that contact. At this
point we have the amplitude of the impinging and trans-
mitted modes. Finally, we 5) find the current carried by
each mode and the transmission between modes, which
we label according to the labels of the modes involved.
For mixed interfaces we have to unfold the dispersion

branches of the supercell to be able to identify their po-
larization and label them consistently with primitive unit
cell polarizations. We start this process by expressing a
particular eigenvector of the supercell as a linear combi-
nation of eigenvectors of primitive unit cells [36]. Then,
we find the polarizations of each of the primitive unit
cell eigenvectors following the process outlined in step 2.
These primitive unit cell eigenvectors have the same po-
larization. Thus, we assign a unique polarization to the
supercell eigenvector and to the corresponding eigenfre-
quency.

Appendix C: Transmission for Mixed Interface

Our aim is to solve the scattering problem of a wave
impinging on an interface to obtain Eq. 10, 11 and 12. To
this end we 1) assume incident, reflected and transmit-
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FIG. 8. System split into sites in the transport direction.

ted waves and find an equation relating their amplitudes.
Then we 2) approximate that equation to find an analyt-
ical solution. Finally we 3) find the transmission from
the ratio between transmitted and incident currents and
sum them up to get MT .

1. Equation Relating Amplitudes

Consider a system split into sites in the transport di-
rection (Fig. 8) and described by the equation of motion

ω2Msysχ = Fsysχ, (C1)

with Msys the mass matrix of the system

Msys =











. . .

M1

M2

M3

. . .











, (C2)

Fsys the force constant matrix of the system

Fsys =











. . .
Fon1 Foff1

F †
off1 Fon2 Foff3

F †
off3 Fon3

. . .











(C3)

and χ the vector containing the displacements from equi-
librium of each of the atoms of the system. The equation
of motion for the interfacial site is given by

ω2M2χ0 = Fon2χ0 + F †
off1χ−1 + Foff3χ1 (C4)

Because of the periodicity of the contacts, plane waves of
the form χn = Xje

ikjna (Bloch states) satisfy the equa-
tion of motion for any contact site if Xj , the polarization
vector, satisfies

ω2MXj =
[

Fon + F †
offe

−ikja + Foffe
ikja

]

Xj. (C5)

In terms of these plane waves we assume a solution for
the system of the form

χn =
∑

k
+

1

Ak
+

1

Xk
+

1

eik
+

1
na +

∑

k
−

1

Bk
−

1

Xk
−

1

e−ik
−

1
na (C6)

for n ≤ 0, and for n ≥ 0

χn =
∑

k
+

3

Ck
+

3

Yk
+

3

eik
+

3
na, (C7)

where + and − refer to plane waves propagating to the
right or left, X and Y refer to the polarizations on the
left and right contacts. We replace the assumed solution
(Eq. C6 and C7) into the equation of motion at the in-

terface (Eq. C4). For the factor F †
off1χ−1, we split each

F †
off1e

ik
±

1
a into Hermitian and anti-Hermitian parts. We

replace the Hermitian part in favor of ω2M1−Fon1 using
Eq. C5 and reorganize the anti-Hermitian part in matrix
notation to get

F †
off1χ−1 =

ω2M1 − Fon1

2
χ0 − ZAV1+A− ZBV1−B,

(C8)
with V1+ and V1− the matrices whose columns are the
polarizations Xk

+

1

and Xk
−

1

respectively and with

ZA =
Foff1V1+λ1+V

−1
1+ − F †

off1V1+λ
−1
1+V

−1
1+

2
, (C9)

ZB =
Foff1V1−λ1−V

−1
1− − F †

off1V1−λ
−1
1−V

−1
1−

2
, (C10)

λ1± =









eik
±

11
a

eik
±

12
a

eik
±

13
a

. . .









, (C11)

where the second subindex of k±11 run over the possible
k±1 . In a similar way we get that

Foff1χ1 =
ω2M3 − Fon3

2
χ0 + ZCV3+C (C12)

with

ZC =
Foff3V3+λ3+V

−1
3+ − F †

off3V3+λ
−1
3+V

−1
3+

2
. (C13)

Equating Eq. C6 and C7 at n = 0 and putting Eq. C8
and C12 into Eq. C4 we get the following set of equations

χ0 = V1+A+ V1−B = V3+C, (C14)

∆χ0 = −ZAV1+A− ZBV1−B + ZCV3+C, (C15)

with

∆ = ω2

[

M2 −
M1 +M3

2

]

−
[

Fon2 −
Fon1 + Fon3

2

]

From there we can derive the coefficients for the trans-
mitted waves

C = V −1
3+ (∆ + ZB − ZC)

−1
(ZB − ZA)V1+A (C16)
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2. Approximation of Amplitudes Equation

Imagine that each site on Fig. 8 consists of a cross
sectional plane of atoms in the mixed interface (Fig. 1b).
For the SC and FCC scalar systems, the force constants
are invariant in the transport direction, periodic in the
transverse direction and scalar between atoms. Thus,
V = V1+ = V1− = V3+. V is the matrix associated with a
Fourier transformation into the transverse k-space, whose
columns are plane waves defined by k⊥ over the N atomic
positions rn in a cross sectional plane

V =
1√
N





| |
eik⊥1rn eik⊥2rn · · ·

| |



 . (C17)

Using this information we simplify the relation between
the impinging and transmitted waves (Eq. C16) as

C =
(

∆̃ + Z̃B − Z̃C

)−1 (

Z̃B − Z̃A

)

A (C18)

where the tilde means the matrix in Fourier space, i.e.
Z̃A = V †ZAV . Because of transverse periodicity, all the
matrices in Eq. C18 are diagonal except

[

M̃2

]

i,j
=

1

N

∑

n

[M2]n,ne
i(k⊥j−k⊥i)·r (C19)

For i = j the term reduces to the average if the interfacial
masses

[

M̃2

]

i,i
= 〈M2〉 = (1− α)ml + αmh, (C20)

where α is the fraction of heavy atoms at the interfacial
layer. For i 6= j we are calculating a frequency compo-
nent of a random distribution of masses, which should
spam over all the k⊥ spectrum. Thus we assume that all
the off diagonal components of M̃2 have the same mag-
nitude. We estimate the value using Parseval’s theorem,
the power spectrum in real space and the transformation
of the interfacial mass function at k⊥ = 0

∣
∣
∣M̃i,j

∣
∣
∣ =

√

(1− α)α

N − 1
|ml −mh| . (C21)

Plugging this simplification and ZB = −ZA into Eq. C18
our problem reduces to solve

C = −2











ζk⊥1
ǫ

ǫ ζk⊥2

. . .











−1 




Z̃Ak⊥1

Z̃Ak⊥2

. . .




A,

(C22)

with

ζk⊥
= ω2

(

〈M2〉 −
mh +ml

2

)

− (Z̃Ak⊥
+ Z̃Ck⊥

)

ǫ = ω2

√

(1− α)α

N − 1
|ml −mh| .

ǫ is small since it is inversely proportional to
√
N − 1,

so we approximate the inverse of the matrix using the
first order of its Taylor expansion (A + B)−1 ≈ A−1 −
A−1BA−1 with A being the diagonal part and B the rest.
Finding the inverse and solving Eq. C22 we get that

C = QA (C23)

with

Qln =







−2ZAk⊥n

ζk⊥n

if l = n
ǫ2ZAk⊥n

ζk⊥l
ζk⊥n

if l 6= n
(C24)

Where Qln relates the amplitude An of the n incident
mode with amplitude Cl of the l transmitted mode.

3. Find the Transmission

Now that we know the coefficients we can calculate the
transmission from mode An to mode Cl by dividing the
transmitted by the incident current [29, 30]

Tln =
Γrkl

Γlkn

∣
∣
∣
∣

Cl

An

∣
∣
∣
∣

2

=
Γrkl

Γlkn

|Mln|2

to obtain

Tln =







Γlk⊥n
Γrk⊥n

|ζk⊥n |2
if l = n

ǫ2Γlk⊥n
Γrk⊥l

|ζk⊥l |2|ζk⊥n |2
if l 6= n

(C25)

with

ζk = ω2

[

〈mn〉 −
ml +mr

2

]

+ i

[
Γlkn

2
+

Γrkn

2

]

.

Here we replace

ZAk⊥
= −i

Γlk⊥

2
ZCk⊥

= −i
Γrk⊥

2
,

which is true only for the propagating modes and there-
fore it works only when both of the modes involved in
Tln are propagating, i.e. when Tln 6= 0.
Then the MT per unit cell is

MTpuc =
1

N

∑

n

Γlkn
Γrkn

|ζkn
|2

+
1

N

∑

l 6=n

ǫ2Γlkn
Γrkl

|ζkl
|2 |ζkn

|2

and from there Eq. 10, 11 and 12 follow.
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