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Abstract 

We present first principles calculations of the thermal and electronic transport properties of the 

oxide semiconductor CdO. In particular, we find from theory that the accepted thermal 

conductivity κ value of 0.7 Wm-1K-1 is approximately one order of magnitude too small; our 

calculations of κ of CdO are in good agreement with recent measurements. We also find that 

alloying of MgO with CdO is an effective means to reduce the lattice contribution to κ, despite 

MgO having a much larger thermal conductivity.  We further consider the electronic structure of 

CdO in relation to thermoelectric performance, finding that large thermoelectric power factors 

may occur if the material can be heavily doped p-type.  This work develops insight into the 

nature of thermal and electronic transport in an important oxide semiconductor. 
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I.  INTRODUCTION 

     Knowledge of thermal and electronic transport properties of materials is of great interest for 

both fundamental scientific knowledge and practical applications.  For example, characteristics 

of a myriad of semiconductors, including band gaps, band masses, conductivities (thermal and 

electrical), carrier mobility, and numerous other properties, are routinely available in standard 

reference handbooks [1, 2] that are used by researchers and industrial operations worldwide in 

such diverse areas as the automotive industry, microelectronics, and chemical supply.  While 

such data are subject to revision as new information becomes available, the vast majority of such 

revisions are essentially incremental in scope, with slow changes with time in reported 

properties.  For example, a measured direct band gap of 2.28 eV in the oxide semiconductor CdO 

was reported in 1975 by Koffyberg [3] and is repeated in a standard handbook reference [2].  

Since then, a more recent measurement of this band gap gives a value of 2.16 eV [4], only 

nominally lower. 

     In this work we will discuss a situation in which a well-accepted material transport property – 

the lattice thermal conductivity κlattice – of CdO is apparently understated in handbook references 

by as much as an order of magnitude.  Like numerous other binary equiatomic semiconductors, 

e.g., the lead chalcogenides and MgO, CdO forms in a rocksalt structure and heat is primarily 

carried by the lattice via phonons.  Interest in CdO and its properties has developed recently in a 

diverse set of research applications including thin film transparent conductors [5], 

thermoelectrics [6, 7] and plasmonic materials [8].  The standard accepted value of κ for CdO is 

0.7 Wm-1K-1 [1].  Given consideration, this is a surprisingly low value particularly for a simple 

binary oxide, for which high κ values are typical.  ZnO, for example, is reported to have κ=54 

Wm-1K-1 [9], nearly two orders of magnitude larger.  While CdO has a significantly heavier 

average atomic mass than ZnO, and hence lower Debye temperature thus favoring lower κlattice, 



this is not nearly sufficient to account for this difference.  The reported 0.7 Wm-1K-1 figure is in 

fact near the “minimum thermal conductivity” for this system [10], for which the phonon mean 

free paths (MFPs) approach a single lattice spacing. 

      In this work we will show, both from our own fully ab initio calculations of κlattice as well as 

an analysis of recently published thermoelectric transport data, that the true κlattice of CdO is 

much larger and likely falls between 5.6 and 9.3 Wm-1K-1.  Note that owing to recent advances in 

computational power and numerical techniques, it is now possible to calculate κlattice from first 

principles with no adjustable parameters and in generally good agreement with measured values 

[11-17].  This work is among the first fully ab initio calculations of thermal conductivity in a 

semiconducting oxide, which present specific challenges to theory in the light of potential 

electronic correlations. Despite this, our results are in good agreement with available 

experimental results. 

     Although not the focus of this work, we also present electronic structure and Boltzmann 

transport calculations for CdO suggesting that if heavily doped p-type, CdO may show extremely 

large thermoelectric power factors at elevated temperatures.  This is due largely to a highly 

favorable Fermi surface topology, in particular a network of two-dimensional features residing 

essentially at the valence band maximum.  Such features present in the valence band of the high 

performance thermoelectric PbTe [18] have already been shown to be highly beneficial for 

thermoelectric performance [19]. 

     The remainder of this paper is organized as follows: In Section II we present our calculations 

of the thermal conductivity of CdO, along with a discussion of recent thermal conductivity data 

on this material; in Section III we discuss the electronic structure vis a vis thermoelectric 

transport; and in Section IV we present our conclusions. 



II.  THERMAL CONDUCTIVITY OF CdO 

     We calculate the lattice thermal conductivity: 

∑=
jq

jqjqjqlattice vC
r

rrr τ2κ                            (1) 

as a sum over contributions from all phonon modes with wave vector qr  in branch j.  

Diagonalization of the dynamical matrix gives the phonon frequencies jqrω  needed to determine 

the specific heat jqC r  and velocity jqvrr  for each mode [20].  For the cubic crystals considered here 

the thermal conductivity tensor can be described by a single value and the velocity and transport 

lifetime jqrτ  components are in the heat transport direction parallel to a small applied temperature 

gradient.  The transport lifetimes are determined from the full solution of the Peierls-Boltzmann 

equation for phonon transport with harmonic and third-order anharmonic (lowest order in 

perturbation theory) [20-22] interatomic force constants (IFCs) determined from density 

functional theory (DFT) [23, 24].  For the temperatures considered here the differences between 

this full solution and that given by the relaxation time approximation are negligible for CdO.  We 

note that software is now publicly available for calculations of IFCs and phonon thermal 

transport for a variety of systems [25-27].  Here we give a brief description of the DFT and 

transport parameters relevant to the CdO κlattice calculations, and leave further details to 

previously published work [13, 28-30]. 

     Most IFC calculations were done within the local density approximation (LDA) using the 

publicly available Quantum Espresso (QE) software package [31, 32] with norm-conserving 

Martin-Troulliers pseudopotentials [33].  A 100 Ry energy cutoff for the electronic wave 

functions and 10x10x10 k-point meshes were used for the electronic structure calculations.  The 

energy was minimized to determine the equilibrium lattice constant a=4.694 Å for the CdO 



rocksalt structure, in good agreement with the measured value of 4.689 Å [2].  Density functional 

perturbation theory [34] using a 6x6x6 q-point mesh was employed to determine the harmonic 

IFCs.  The dielectric constant and Born effective charges were also determined using the QE 

package to give the long range Coulomb interactions important for describing the splitting of the 

longitudinal and transverse optic branches.  The calculated phonon dispersion is in generally 

good agreement with available measured data.  The anharmonic IFCs are determined from 

numerical derivatives using a series of Γ-point electronic structure calculations on supercells of 

216 atoms systematically perturbed from the ground state [29, 30, 35].  Interactions were 

considered out to the fifth nearest neighbors of the unit cell atoms and all point group symmetries 

and translational invariance conditions were enforced [28-30].  Phonon scattering from naturally 

occurring isotopic mass variances was calculated via perturbation theory [36, 37] and input into 

the Boltzmann transport formalism using Matthiessen’s rule [20].  IFC files and QE input files 

have been made available [38]. 

     Figure 1 gives the calculated κlattice of CdO with naturally occurring isotope concentrations 

(solid curve) as a function of temperature compared with measured κ data (blue [6, 7] and green 

[8] squares) and the room temperature reference handbook value (red square) [1].  Electronic 

transport properties were also characterized in Refs. 6-8 and the electronic contributions to the 

thermal conductivities, κelectronic (triangles), as determined from the Wiedemann-Franz law, were 

separated from the total κ.  Surprisingly, the calculated κlattice and measured room temperature κ 

values are all over an order of magnitude larger than the reference handbook value κ=0.7 Wm-

1K-1 [1] at room temperature.  We have no explanation for this ultralow value.  However, we note 

that it is not consistent with the simple CdO structure and phonon dispersion.  The calculated 

κlattice is in good agreement with the κ data of Li, et. al., [7] over a broad temperature range.  



Agreement with the measured κlattice (circles) becomes best at higher temperatures where the 

anharmonic phonon-phonon scattering is stronger relative to possible extrinsic scattering 

mechanisms, e.g., grain boundaries and defects.  We note that phonon scattering from isotopic 

mass variance plays no significant role in determining κlattice for CdO for T>200 K as the intrinsic 

anharmonic scattering is much stronger.   

  Sachet, et. al. report a significantly lower κlattice=5.6 Wm-1K-1 [8] compared to Li, et. al. 

[7].   We note that using the generalized gradient approximation (GGA) our calculations also 

give κlattice lower than LDA, κlattice=5.76 Wm-1K-1, due to lower frequency optic phonons and thus 

more scattering of the heat-carrying acoustic phonons.  The thermoreflectance κ measurements 

of Sachet, et. al., were done on thin film samples (0.4-0.5 μm thick) doped with Dy (5×1019-

1×1021 cm-3 concentrations) with significant native O vacancy defect concentrations.  The grain 

sizes of the treated commercial CdO powder of Ref. 7 were 5-10 μm and also expected to have 

natural native O vacancy concentrations.  We tested the effects of finite sample size and Dy 

substitutional and O vacancy defects on the calculated κlattice of CdO.  The defect scattering was 

modeled as a simple mass variance perturbation exactly as the isotope scattering [36, 37].  Even 

at the highest concentrations reported in Ref. 8, the calculated room temperature κlattice was not 

sensitive to the mass variance of the Dy dopants and O vacancies, being reduced by only 0.32% 

and 0.13%, respectively.  However, as discussed in Ref. 8, the lattice distortions around the 

defects may play a more significant role in determining κlattice.  Using Green’s function 

calculations, Katcho, et. al., [39] found that vacancies in diamond can enhance the phonon 

scattering cross section of vacancies by a factor of ten over simple mass variance.   

     The size dependence of κlattice was estimated using an empirical boundary scattering term, 

Lv jq
boundary

jq /,1 rr
r=−τ , [20] where L gives a measure of grain or system size.  This is of particular 



relevance for thermoelectric performance as nanostructuring has proven an effective method for 

reducing κlattice and enhancing thermoelectric figures of merit in other materials [40, 41].  The 

dashed black curve in Fig. 1 gives the calculated κlattice with boundary scattering for L=5 μm.  

This gives improved agreement with the measured κlattice from Ref. 7 for a sample having similar 

grain sizes.  As expected, boundary scattering is relatively weak compared to intrinsic 

anharmonic scattering at high T and plays a more significant role in determining κlattice as 

temperature decreases.  For L=0.4 μm the calculated room temperature κlattice=7.16 Wm-1K-1 is in 

substantially better agreement with the 5.6 Wm-1K-1 value of Ref. 8 with comparable film 

thickness.  Phonons at very low frequency with large MFPs, particularly the longitudinal 

acoustic modes, give ~10% of the total κlattice and their contributions are truncated by the 

boundary scattering.  Acoustic phonons with MFP<0.5 μm give the dominant contributions to 

κlattice.  We note that optic phonon contributions to κlattice are non-negligible at room temperature, 

giving ~8% of the total.  This often occurs in materials with low phonon frequency scales with 

thermally populated optic modes and dispersive optic branches, e.g., in Mg2Si, Mg2Sn [28], PbSe 

and PbTe [14].  

     We also characterized the effect of alloying CdO with another rocksalt material MgO, an 

important constituent of the Earth’s mantle.  MgO has a much larger calculated room 

temperature κlattice=59.14 Wm-1K-1 [42], ~6 times higher than that of CdO, and in good 

agreement with measured data [43].  Phonon-isotope scattering from the naturally occurring 

isotope concentrations were included.  The higher κlattice of MgO is partly due to the lighter Mg 

mass and partly due to stronger interatomic bonding as suggested by the smaller lattice constant 

and larger IFCs of MgO.  These give higher acoustic phonon velocities and higher lying optic 

branches, the later leads to larger acoustic lifetimes due to reduced scattering with higher 



frequency optic modes.  We used a virtual crystal approximation in which the harmonic and 

anharmonic properties (e.g., IFCs, lattice constants, masses) are averaged in proportion to the 

concentration of the constituent Cd and Mg elements to model the alloy Cd1-xMgxO properties.  

Phonon scattering from the alloy mass disorder is treated in the same manner as isotope 

scattering, and disorder in the harmonic and anharmonic IFCs is neglected.  This virtual crystal 

approximation worked well previously in describing κ of Mg2SixSn1-x [28].   

     Figure 2 gives the calculated room temperature κlattice of Cd1-xMgxO as a function of Mg 

concentration x.  Surprisingly, despite increasing phonon frequencies of the virtual crystal, the 

room temperature κlattice of Cd1-xMgxO initially decreases from that of CdO with increasing Mg 

concentration, attaining a minimum value nearly half the κlattice of CdO and more than 12 times 

reduced from that of MgO for x=0.2.  At 1000K the competing effects of mass disorder and 

increasing phonon frequencies initially give non-monotonic behavior with increasing x, however, 

κlattice generally increases in going from pure CdO to pure MgO.   

III.  ELECTRONIC STRUCTURE AND THERMOELECTRIC TRANSPORT IN CdO 

     Although the basic electronic structure of CdO is well-known (see Refs. 44-54 for more 

information) we present here a brief summary for reference.  All results in this section were 

characterized using the linearized augmented plane wave (LAPW) code WIEN2K [55], using an 

augmentation of the GGA [56] known as a modified Becke Johnson potential [57], which yields 

band gaps much closer to experiment than those calculated in the GGA, which generally 

understates band gaps and in fact predicts metallic behavior for CdO [45].  LAPW sphere radii of 

2.4 Bohr for O and 2.37 Bohr for Cd were employed, and the self-consistent calculations used 

approximately 2000 k-points in the full fcc Brillouin zone.  RKmax was set to 9.0, where R is the 

O sphere radius and Kmax is the largest plane-wave vector.  The transport calculations used 



approximately 10000 k-points. Our band-structure results are consistent with those of Ref. 54, 

which also used the modified Becke-Johnson method.  

     Depicted in Figure 3 is the calculated band structure of CdO.  We find a calculated indirect 

band gap of 1.65 eV, with the conduction band minimum at the Γ point and the valence band 

maximum at the L point.  Both band edge locations are as experimentally observed, while the 

calculated direct band gap of 2.91 eV is somewhat larger than the measured values of 2.16-2.28 

eV [3, 4].  However, this band gap overstatement proves not of serious consequence.  We have 

checked the transport calculations with a “scissors shift” calculation with the indirect band gap 

reduced to 1 eV, with no change to the thermopower results in the relevant doping and 

temperature ranges. We also note band degeneracy at the L point and a comparatively small 

dispersion in the valence band, both generally favorable for thermoelectric performance. 

     In Figure 4 we depict the calculated electronic density-of-states (DOS) of CdO.  There is 

some hybridization, with the valence band being mainly Cd and the much lighter conduction 

band a mixture of Cd and O.  Of most interest here, however, is the extremely rapid increase in 

the DOS just below the VBM, reaching nearly 2/(eV-unit cell) (note there is one formula unit per 

cell) only 100 meV below the VBM.  This is suggestive of a large effective mass, and it is well 

known that, at constant carrier concentration, the thermopower is proportional to the effective 

mass.  In order to understand this behavior, in Figure 5 we plot the isoenergy, or Fermi surface, 

of CdO for the T=0 Fermi level taken 70 meV into the valence band.  This figure shows a bowed 

two-dimensional cylindrical feature necking out from the L-points and connecting with similar 

features from the other L points.  All told there are twelve of these cylinders, roughly forming 

the edges of a cube inscribed within the fcc Brillouin zone.  One recalls that an exactly two 

dimensional cylinder has a step function DOS, and while these cylinders are not perfectly two 



dimensional the near-vertical band edge in the DOS plot emphasizes this two dimensional 

quality.  Similar cylinders were found theoretically in the valence band of PbTe [18].  Despite 

lying 0.25 eV into the valence band in that material, they are believed to substantially contribute 

to the exceptional thermoelectric performance, or ZT, measured.  Here, however, the cylindrical 

features fall virtually at the band edge and can therefore be expected to even more strongly 

enhance thermoelectric transport.   

     To assess this, in Figure 6 we plot the calculated T=800 K thermopower S (computed within 

the constant scattering time approximation, see Ref. 58 for details of this approximation) versus 

calculated conductivity (with respect to an unknown scattering time), compared with the known 

high performance thermoelectrics PbTe and PbSe.  One recalls that high ZT requires both high 

thermopower and high electrical conductivity simultaneously.  We see that while the n-type 

performance of CdO is likely less than that of PbTe and PbSe, the p-type CdO may exhibit very 

large power factors.  In fact in the region in which S varies between 200 and 300 μVK-1 (the 

typical thermopower range for a high-ZT material), the σ/τ of CdO is twice, or more, larger than 

that for PbTe.  This doping range corresponds to a hole concentration of 0.023-0.077 holes/unit 

cell, or p=8.9×1020 – 2.9×1021 cm-3.  These results are noteworthy given that in this temperature 

range optimized PbTe exhibits a ZT value of 2.2 [59], among the highest of any bulk material.  

While one cannot exclude scattering time differences, or the generally lower thermal 

conductivity of PbTe, from this comparison, it suggests that p-type CdO may be of considerable 

interest as a thermoelectric material. 

 We note that CdO generally forms n-type, so that it will be a significant experimental 

challenge to attain the required p-type doping.  Nevertheless, there is precedent for the 

practicality of p-type doping of oxide systems. ZnO, for example, was for many years found only 



to form n-type, but there is now a substantial body of experimental work [60-64] suggesting the 

possibility of p-type doping in ZnO.  We anticipate a similar scenario for CdO, with the most 

likely potential p-type dopants being the monovalent alkali metals.  

IV.  SUMMARY AND CONCLUSIONS 

     Using a rigorous first principles Peierls-Boltzmann transport equation approach we have 

demonstrated that the lattice thermal conductivity κlattice of CdO is more than an order of 

magnitude larger than the reported handbook value [1], and in agreement with recent 

measurements [6-8].  The dependence of the calculated κlattice on temperature, impurities, 

boundaries and alloying with MgO was shown and discussed.  Despite the higher thermal 

conductivity of MgO, alloying CdO with this material can reduce the CdO κlattice by ~2 times, 

perhaps giving improved thermoelectric performance.  Other relevant thermoelectric properties 

of CdO were also calculated and discussed, including a demonstration that the thermoelectric 

power factor of p-type CdO may outperform that of PbTe for certain temperatures and carrier 

concentrations.  CdO may be an important material for a range of applications, e.g., thin film 

transparent conductivity, plasmonics and thermoelectrics.  Accurate knowledge of the 

fundamental transport parameters of CdO, including κlattice, is important for determining the 

utility of this material for such purposes.   
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Figure Captions 

 

Figure 1:  The calculated κlattice of CdO versus temperature with naturally occurring isotope 

concentrations (solid black curve).  The dashed black curve gives κlattice with boundary scattering 

included, L=5μm, consistent with the measured data in Refs. 6 and 7.  Experimental κ data from 

Li, et. al., [6, 7] and Sachet, et. al., [8] are given by blue and green symbols, respectively.  

Squares give measured κ values, triangles give κelectronic calculated from the Wiedemann-Franz 

law and electronic transport measurements and circles give the subsequent κlattice.  Also shown is 

the reference handbook κ value (filled red square) [1]. 

 

Figure 2:  The calculated κlattice of Cd1-xMgxO versus Mg concentration x at T=300K (black 

circles) and T=1000K (red circles).   

 

Figure 3:  The calculated electronic band structure of CdO.  Energy zero is set to the valence 

band maximum. 

 

Figure 4:  The calculated electronic density-of-states of CdO.  Energy zero is set to the valence 

band maximum. 

 

Figure 5:  The calculated isoenergy surface of CdO for EF taken 70 meV into the valence band. 

 

Figure 6:  The calculated thermopower S vs. conductivity σ/τ for CdO and the high performance 

thermoelectrics PbTe and PbSe. 
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