
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quantum criticality at the Anderson transition: A typical
medium theory perspective

Samiyeh Mahmoudian, Shao Tang, and Vladimir Dobrosavljević
Phys. Rev. B 92, 144202 — Published 30 October 2015

DOI: 10.1103/PhysRevB.92.144202

http://dx.doi.org/10.1103/PhysRevB.92.144202


Quantum criticality at the Anderson transition: a TMT perspective

Samiyeh Mahmoudian,1 Shao Tang,1 and Vladimir Dobrosavljević1

1Department of Physics and National High Magnetic Field Laboratory,
Florida State University, Tallahassee, Florida 32306, USA.

We present a complete analytical and numerical solution of the Typical Medium Theory (TMT) for the Ander-
son metal-insulator transition. This approach self-consistently calculates the typical amplitude of the electronic
wave-functions, thus representing the conceptually simplest order-parameter theory for the Anderson transition.
We identify all possible universality classes for the critical behavior, which can be found within such a mean-
field approach. This provides insights into how interaction-induced renormalizations of the disorder potential
may produce qualitative modifications of the critical behavior. We also formulate a simplified description of the
leading critical behavior, thus obtaining an effective Landau theory for Anderson localization.

PACS numbers:

I. INTRODUCTION

Many physical systems display puzzling features, which are
often associated with the metal-insulator transition (MIT)1.
Although the important roles of both the Anderson2 (disorder-
driven) and the Mott3 (interaction-driven) routes to localiza-
tion have been long appreciated, formulating a simple order-
parameter theory describing their interplay has remained a
challenge. Important advances have been achieved, over the
last twenty years, with the development of Dynamical Mean
Field Theory (DMFT)4 methods, which provided new in-
sights into how such an order-parameter theory can be con-
structed. Although the original DMFT formulation adequately
describes many features of strongly correlated electron sys-
tems, it proved unable to capture Anderson localization ef-
fects, which cannot be neglected in presence of sufficiently
strong disorder5.

To overcome these limitations, DMFT was extended to
describe spatially nonuniform systems, in approaches some-
times called “Statistical DMFT”5–16 (some authors call the
same approach “Real-Space DMFT”17–19). Here, the lo-
cal DMFT order parameters (i.e. the appropriate local self-
energies) are self-consistently calculated at each lattice site
for a given realization of disorder, in a fashion similar to the
Thouless-Anderson-Palmer (TAP) theory20 for spin glasses.
These efforts immediately produced a wealth of new infor-
mation, discovering phenomena such as disorder-driven non-
Fermi liquid behavior5 and the emergence of Electronic Grif-
fiths Phases1,12 in the vicinity of the MIT. Despite these ad-
vances, progress has remained slow, primarily because such
approaches typically require very large-scale numerical com-
putations.

The missing key point in all these formulations was the lack
of an appropriate local order parameter, which is capable of
recognizing Anderson localization. A hint on how to over-
come this difficulty was first provided in the seminal 1958
work by P. W. Anderson2, who emphasized that the typical
(i.e. geometrically averaged) local density of states (TDOS)
vanishes at the transition, in contrast to its algebraically av-
eraged counterpart. This idea was later confirmed by large-
scale computational studies21 of the wave-function amplitude
statistics, which suggested that this quantity should play the

role of an appropriate order-parameter for this problem.
A self-consistent calculation of TDOS was recently for-

mulated, dubbed “Typical-Medium Theory” (TMT)22, which
can be regarded as the conceptually simplest order-parameter
approach for Anderson localization. This method uses
the same “cavity-field” construction as in standard DMFT
methods4, and represents an elegant and effective approach
to treat both the correlation and the localization effects on
the same footing. Following its discovery in 2003, TMT
was quickly applied to various problems with both interac-
tions and disorder16,23–27, providing useful new information
which would be difficult to obtain by alternative methods.
The numerical solution of TMT equations has been obtained
for both the (non-interacting) Anderson22,28, and the Mott-
Anderson23–27 transition. However, deeper understanding of
what one can generally expect from TMT approaches would
require a complete analytical solution for the critical behavior,
which has not been available so far.

Further motivation for our work is found in recent exper-
iments that were able to visualize the electronic wave func-
tion near the metal-insulator transition, via scanning tunnel-
ing microscopy on Ga1−xMnxAs29. This work highlighted
the crucial importance of the long-range Coulomb interac-
tion, and confirmed the early theoretical prediction of Efros
and Shklovskii (ES)30,31, that Coulomb interactions lead to the
formation of a pseudogap within the insulating phase. Within
the ES picture, the gap opening is produced by the electro-
static shifts of the (random) site energies, resulting in a sig-
nificantly renormalized probability distribution for the effec-
tive random potential seen by the electrons. While the ES
mechanism is by now well documented by both theoretical
and experimental studies on the insulating side of the MIT32,
its precise role for the critical region has remained elusive.
At the minimum, one should investigate the effects of such
pseudo-gap opening in the form of the distribution function
for disorder, and its role at the Anderson transition.

In this paper, we address and clearly answer the follow-
ing physical questions: (1) What types of quantum critical-
ity can be found, for the noninteracting Anderson localization
transition, within the TMT scheme, and how does the result
depend on the model dependent details of the band structure
(e.g. particle-hole symmetry)? (2) How is the critical behavior
modified in cases where the renormalized disorder distribu-
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tion assumes a pseudo-gap form predicted by the ES theory?
We accomplish this by first presenting a detailed numerical
solution of the TMT equation, for several cases of relevance.
We then obtain a full analytical solution of the TMT equation,
describing the leading critical behavior which is in complete
agreement with the numerics, and includes the emergence of
logarithmic corrections to scaling. This insight is shown to
provide a new perspective and a simple physical understand-
ing of several puzzling features of the critical behavior, previ-
ously observed in both numerical studies and in experiments.

The rest of the paper is organized as follows. In section II
we present the general formulation of Typical-Medium The-
ory, and provide some illustrative examples of relevance to
experiments. We show that two distinct types of critical be-
havior can be found within TMT, and investigate their main
features. A general strategy to analytically solve the critical
behavior within TMT is discussed in Section III, based on an
expansion in powers of order parameter (TDOS). We explain
why a simple solution can be obtained only in the special case
of particle-hole symmetry, which already provides a classifi-
cation of possible types of quantum criticality within TMT.
We further investigate how it is affected by the form of dis-
tribution of random site energies. In section IV we present
a detailed analytical solution for the leading critical behavior
in absence of particle-hole symmetry, by reducing the prob-
lem to a close-form solution of an appropriate Fredholm inte-
gral equation. We show that particle-hole asymmetry leads to
the emergence of logarithmic corrections to scaling, leading
to a (mild) modification of the critical behavior at the mobil-
ity edge away from the band center. Finally, based on our
full understanding of the mathematical structure of the theory,
we present a simplified Landau theory for Anderson localiza-
tion in Section V. This approximation ignores the relatively
mild logarithmic corrections, but is still shown to capture all
the important qualitative trends of the full TMT solution, and
to reproduce most of the qualitative features observed in the
large-scale numerics, as well as in some experiments.

II. MODEL AND NUMERICAL SOLUTION OF TMT
EQUATIONS

The general strategy in formulating a local order-parameter
theory such as TMT follows the “cavity” method typically
used in Dynamical Mean Field Theory approaches4. Here, the
dynamics of an electron on a given site can be obtained by in-
tegrating out all the other sites, and replacing its environment
by an appropriately averaged “effective medium” character-
ized by a local self energy Σ(ω). This method can be utilized
to self-consistently calculate any desired local quantity, and
in the following we briefly review its application to TMT of
Anderson localization22,28. For simplicity, we concentrate on
a single band tight binding model of non-interacting electrons
with random site energies εi with a given distribution P(εi),
which the Hamiltonian of this system can be written as:

H = ∑
〈i j〉,σ

ti jc
†
iσ c jσ +∑

i,σ
εic

†
iσ ciσ . (1)

Here, c†
iσ and ciσ are the electron creation and annihilation

operators, and ti j are the inter-site hopping elements. The lo-
cal (retarded) Green function corresponding to site i can be
written as

Gii(ω,εi) = [ω + iη− εi−∆(ω)]−1, (2)

where the “cavity field” ∆(ω) represents the effective
medium, i.e. available electronic states to which an electron
can hop from of a given lattice site. It is defined by incorpo-
rating the local self-energy Σ(ω) as

∆(ω) = ∆0(ω−Σ(ω)), (3)

where ∆0(ω) is the “bare” (corresponding to zero disorder)
cavity field4. It can be obtained from the bare lattice Green’s
function through relation

∆0(ω) = ω− 1
G0(ω)

, (4)

and the bare lattice Green’s function

G0(ω) =

ˆ +∞

−∞

dω
′ ν0(ω

′)

ω + iη−ω ′
. (5)

is given by the Hilbert transform of the bare density of states
ν0(ω) (DOS), which specifies the electronic band structure
for a given lattice. The corresponding local density of states
(LDOS) is given by the imaginary part of the local Green’s
function:

ρi(ω,εi) =−
1
π

ImGii(ω,εi). (6)

Within the effective-medium approximation we consider,
this local quantity displays site-to-site fluctuations. Due to its
dependence on the local site energy εi, it reflects the spatial
fluctuations of the local wave-function amplitudes ρi ∼ |ψi|2.
To properly define the effective medium, one has to perform
an appropriate spatial average, in order to close the self-
consistency loop. The simplest choice is to consider its al-
gebraic average (ADOS)

ρavg(ω) =

ˆ
dεiP(εi)ρi(ω,εi) (7)

as the appropriate order parameter, and this leads to the well-
known coherent-potential approximation (CPA)33, which un-
fortunately fails to capture Anderson localization.

In the presence of strong disorder, however, LDOS displays
strong spatial fluctuations and is very broadly distributed. As a
result, its typical (i.e., most probable) value is ill-represented2

by the algebraic average ρavg(ω). Since the average density of
states can remain finite throughout the insulating phase (even
in the atomic limit) as well as in the metallic phase, it cannot
distinguish between the phases. Therefore, within TMT, we
introduce the typical value of the local density-of-states, as an
appropriate order parameter. The statistic of LDOS reflects
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the degree of localization of quantum wave functions, and its
typical value (TDOS) is known21 to be well-represented by
the geometric average

ρtyp(ω) = exp
[ˆ

dεiP(εi) lnρi(ω,εi)

]
. (8)

Indeed, large-scale computational studies, as well as the avail-
able analytical results in d = 2+ε dimensions , demonstrated
that TDOS vanishes in a power-law fashion at the critical
point, and also displays the appropriate finite-size scaling be-
havior (for reviews see Refs.21,34). These results strongly
suggest21 that TDOS should be chosen as an appropriate local
order parameter; its self-consistent calculation can be viewed
as the conceptually simplest order-parameter theory of Ander-
son localization. In order to obey causality, the corresponding
“typical” Green’s function, is defined22,28 by performing the
Hilbert transform

Gtyp(ω) =

ˆ
∞

−∞

dω
′ ρtyp(ω

′)

ω + iη−ω ′
. (9)

Note that the Gtyp(ω) has to be defined on the real frequency
axis, because this is computed where LDOS is defined as a
positive definite quantity and has a well-defined geometric av-
erage. Finally, we close the self-consistency loop by setting
the Green functions of the effective medium to be equal to
that corresponding to the local order parameter22,28,

Gtyp(ω)≡ G0(ω−Σ(ω)). (10)

From this self-consistency condition and Eq. (4), we obtain
the following equation which determines the self-energy of
the system

Gtyp(ω) = [ω + iη−Σ(ω + iη)−∆(ω + iη)]−1. (11)

It is important to emphasize that our procedure defined by
TMT self-consistent equations (2-11) is not specific to the
problem at hand; the same strategy is used in any mean-field
(DMFT-like) theory characterized by a local self-energy4. The
only requirement specific to TMT is the choice of the typical
(geometrically-averaged) LDOS as the local order parameter.
In other words, the only crucial difference between CPA and
TMT is the fact that TMT utilizes the appropriate order pa-
rameter for Anderson localization.

This set of TMT self-consistent equations can be solved nu-
merically for any specific lattice model, or any form of the ran-
dom site energy distribution. However, as in any other mean-
field formulation, only a limited number of qualitatively dis-
tinct types of critical behavior (i.e., universality classes) can
arise, and in the following we discuss two distinct situations
that we have found within TMT. Previous work mostly fo-
cused on models with continuous (e.g., uniform) distributions
of site energies, and even some analytical results were obtain
in this case22.

In the following, we present the results obtained numeri-
cally by solving the TMT equations for semi-circular DOS
which is given by ν0(ω) = 2

√
1−ω2/π . Here and in the

the rest of the paper, all energies are expressed in units of
the half-bandwidth. As an example, we consider the uni-
form model where the distribution of random site energies
is continuous and is given by Puni f orm(εi) ≡ 1

W , over the in-
terval −W

2 6 εi 6 W
2 . We display the resulting behavior for

this model22 in Fig. 1, showing the evolution of ρtyp(ω) as
disorder increases. The extended states are identified by the
frequency range where ρtyp > 0, which is seen to shrink and
eventually disappear at a critical disorder W =Wc, where the
entire band localizes. The metallic phase is separated from
the Anderson insulator insulating phase by the mobility edge
trajectory ω = ωc(W ), corresponding to TDOS vanishing.
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Figure 1: Evolution of the order parameter ρtyp(ω) with in-
creasing disorder for uniform model: ρtyp(ω)for several val-
ues of the disorder strength (top panel). The bottom panel
shows the phase diagram in the ω −W plane, where the mo-
bility edge (black dashed line) separates the extended states
(ρtyp > 0) from the localized states (ρtyp = 0), and ρtyp is color
coded.

The situation is qualitatively different if the disorder dis-
tribution has a gap or a pseudo-gap, so that P(ε) vanishes
at one energy or in an entire energy interval. This situation
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can arise for discrete (e.g., binary) distributions of disorder,
which can be found in alloys. A similar situation can also
arise in presence of electron-electron interactions which we
briefly discuss in the following. Here, the effective disor-
der potential (i.e., the renormalized random potential) seen
by quasi-particles can be significantly modified by interaction
effects, especially in presence of long-range Coulomb inter-
actions, which leads to the formation of the soft “Coulomb
gap” (pseudo-gap) at the Fermi energy. This behavior, which
was recently brought to attention by scanning tunneling mi-
croscopy (STM) experiments29 on Ga1−xMnxAs, has been
first discussed in the well-known theoretical work of Efros
and Shklovskii (ES)30–32. These authors argued that the key
effect of the long-range Coulomb interactions is to provide a
strong renormalizations of the electronic on-site energies, due
to the fluctuating electrostatic potential produced by distant
charges. Therefore, the renormalized site energy ε̃i is given
by

ε̃i = εi + e2
∑

j

n j

Ri j
, (12)

where ε̃i is the renormalized site energy, n j = 0,1 is the occu-
pation number of a given lattice site j, e is the electron charge,
and Ri j is the distance between sites i and j.

According to the ES theory, the main result of the Coulomb
interactions is to produce a renormalized distribution of dis-
order, which (in spatial dimension d) assumes a low-energy
pseudo-gap form (vanishes in power-law fashion)

P(ε̃)∼ ε̃
d−1, (13)

where the renormalized energy ε̃i is measured with respect
to the Fermi energy. In other words, the renormalized distri-
bution function vanishes at the Fermi energy, i.e., P(0) = 0,
a situation which, as we shall see, leads to qualitatively dif-
ferent critical behavior of TDOS within TMT. The ES re-
sult was derived using a classical electrostatic model, which
should be sufficient deep in the Anderson-localized phase.
Closer to the MIT, the precise form of P(ε̃) may be affected
by quantum fluctuations, as argued in Ref.35, and it may need
to be self-consistently calculated, in order to accurately cap-
ture the interplay of Anderson localization and the effects
of the Coulomb interactions. Such a calculation may be
possible within the framework of a DMFT-like formulation,
by combining TMT with the EDMFT approach to Coulomb
correlations36, but this rather complicated analysis is left as a
challenge for future work.

In this paper, we limit our attention to analyzing, within
TMT, the consequences of having such a pseudo-gap form
for the disorder distribution function. As an illustration, we
consider a model distribution of random site energies which
assumes a pseudo-gap form expected from the ES picture in
three dimensions:

Ppseudo(ε̃i)≡
1

(W
6 )

3
√

2π
ε̃

2
i exp(− ε̃2

i

2(W
6 )

2
), (14)

which we will refer as pseudo-gap model42 in the following
text. We solved the TMT equations for this model of disorder,
and the results for ρtyp(ω) and ρavg(ω) are presented in Figs.
2 and 3. As disorder increases, the TDOS order parameter
displays the most pronounced decrease precisely at the Fermi
energy (here chosen at ω = 0); the corresponding electronic
state is the one to first localize at the critical disorder strength
Wc1 = 2.07. As disorder increases further, there emerges a
finite “mobility gap” around the Fermi energy, where our
TDOS order parameter ρtyp vanishes at |ω| < ωc(W ), and
all the electronic states within this region become localized.
At even larger disorder W = Wc2 the entire band localizes.
The trajectories of the corresponding mobility edges (shown
by a dashed black line in Fig. 2(b)) displays the same non-
monotonic behavior as found in the recent large-scale numer-
ical study of the localization transition in Coulomb glasses37.
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Figure 2: Evolution of the order parameter ρtyp(ω) with in-
creasing disorder for pseudo-gap model: ρtyp(ω) for several
disorder strength (top panel). The electronic states near the
Fermi energy (ω = 0) are localized before the rest of the band
would be localized.

For comparison with experiments, we also computed the
algebraically-averaged local density of states (ADOS), which
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shows very different behavior. ADOS at the Fermi energy
(ω = 0 ) is found to vanish at precisely the same critical disor-
der W =Wc1 for localization29, but it remains finite at all other
energies (|ω|> 0) within the localized phase, as shown in Fig.
3(b). Since we found that TDOS vanishes for W > Wc1 and
|ω| < ωc(W ) in Fig. 3(a), our numerical results immediately
reveal that, within the entire localized phase, ADOS assumes
a power-law low energy form

ρavg(ω)∼ ω
2. (15)

In order to analytically understand this result, note that from
Eq. (7), ADOS can be expressed as:

ρavg(ω) =
1
π

ˆ
dεP(ε)

∆′′(ω)

(ω− ε−∆′(ω))2 +∆′′(ω)2 . (16)

At W >Wc1 the imaginary part of the cavity field also vanishes
at region |ω| < ωc(W ), since it behaves as ∆′′ ∼ ρtyp (See
appendix A). As it can be proven straightforwardly and is also
shown numerically, the real part of the cavity field is a linear
function as ∆′(ω) = Aω with A a finite constant, and we find

ρavg(ω) =
1
π

lim
∆′′→0
{
ˆ

dεP(ε)
∆′′

((1−A)ω− ε)2 +∆′′2
}

= P((1−A)ω)∼ P(ω)∼ ω
2,

in agreement with ES theory. We mention that the leading
ADOS critical behavior on the metallic side, as well as that
at W = Wc are identical to that of TDOS, which again can
directly be seen from Eq. (16).

Our results thus provide a qualitative picture of pseudo-gap
formation of ρavg(ω), which is centered at ω = 0 both at the
critical point (W = Wc1) and in the entire insulating phase
(W > Wc1). This result (also shown in Fig. 3(b)) is consis-
tent with large-scale exact diagonalization results37, and the
available experimental findings29,35.

The emergence of qualitative different critical behavior, for
the two distinct models of disorder, is even more clearly seen
by examining our order parameter ρtyp at the center of the
band (ω = 0). Fig. 4 (top panel) shows that for pseudo-gap
model ρtyp vanishes as square root of distance from transition
viz. ρtyp ∼ (Wc1−W )

1
2 , while for the uniform model (Fig. 4

bottom panel) we find linear behavior viz. ρtyp ∼ (Wc−W ).
In order to try and understand the origin of these differences,
in Section III we analytically recover the same critical behav-
iors at the band center (ω = 0). Although this result gives us
insight into the important differences between the two models,
away from the band center this behavior cannot be explained
in a simple way. This fact has been identified in previous
work28; it has so far remained ill-understood, and clarifying
this issue is the subject of our complete analytical solution in
Sec. IV.

(a)

(b)

Figure 3: The evolution of the (a) typical and (b) average den-
sity of states for pseudo-gap model.

III. ANALYTICAL SOLUTION: THE LANDAU
EXPANSION

It is well known that the Anderson transition is a second-
order phase transition, where the order parameter ρtyp(ω)
vanishes continuously as the transition is approached, as also
confirmed by our numerical solution of the TMT equations.
Using the fact that ρtyp(ω) is infinitesimally small in the close
vicinity of the transition, we can proceed as in deriving any
Landau theory, by directly expand the TMT equations in the
powers of the order parameter. For the sake of simplicity in
notation we define

ρtyp(ω)≡ ϕ(ω). (17)
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The Anderson transition is found along the critical (mobility
edge) line on the phase diagram, defined by the expression

ϕ[ωc(W )] = 0, (18)

as shown by a black dashed line in Fig. 1(b) and Fig. 2(b).
In order to obtain the solution as the transition is ap-

proached, we start with the general expression for TDOS, as
given by Eq.(8), Eq.(6), and Eq.(2), which can be rewritten as

πϕ(ω) = ∆
′′(ω)g(∆′′(ω),∆′(ω)), (19)

where,

g(∆′′(ω),∆′(ω)) ≡ exp{−
ˆ

dεP(ε)

× log[(ω− ε−∆
′(ω))2 +∆

′′(ω)2]}.

To proceed, we note that near the mobility edge, where ϕ�
1, the imaginary part of the cavity field is also small (∆′′� 1),
since to leading order22

∆
′′ =Cπϕ, (20)

where C =
´

dω ′ω ′2ν0(ω
′), and ν0(ω) is a bare density of

states (See Appendix A). In contrast, ∆′(ωc) generally re-
mains finite. Indeed, we checked numerically that all quali-
tative features of the critical behavior do not depend on the
specific choice of band structure22, which only modifies the
precise value of the prefactor C in Eq.(20), and other non-
universal quantities. We can, therefore, expand the right hand
side of Eq.(19) in terms of ϕ ∼ ∆′′, giving us a Landau-type
expansion of the form

1
C

= [a(ω)+b(ω)ϕ +d(ω)ϕ2 + ...]. (21)

Here,

a(ω)≡ exp{−2
ˆ

P(ε)dε log | ω− ε−∆
′(ω) |}, (22)

b(ω) =−2π
2a(ω)P(ω−∆

′(ω)), (23)

d(ω) = a(ω)(ηπ
2 +2π

4P(ω−∆
′(ω))2), (24)

and

η = lim
∆′′→0
{
ˆ

dεP(ε)
(∆′′2− (ω− ε−∆′(ω))2)

((ω− ε−∆′(ω))2 +∆′′2)2
}, (25)

where η remains finite for the models we examined.
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Figure 4: Critical behavior of TDOS as a function of disor-
der strength W at half-filling (ω = 0), for (a) the pseudo-gap
model, and (b) the uniform model of random site energies.

A. General critical behavior

As in any Landau theory, we can now directly obtain the
critical behavior of the order parameter ϕ(ω), in terms of the
coefficients in the expansion. For simplicity, consider a simple
model band structure with semi-circular DOS where C = 1,
and solve the Eq. (21) for the order parameter ϕ(ω). For the
generic model (e.g. uniform distribution of disorder) where
b(ωc) 6= 0, the leading critical behavior of typical density of
states takes the form

ϕ(ω) =
1− 1

a(ω)

2π2P(ω−∆′(ω))
, (26)

In contrast, whenever b(ωc) = 0 (e.g. the pseudo-gap
model), we find

ϕ(ω) = (

1
a(ω) −1

ηπ2 )
1
2 , (27)
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At first glance, it seems that the critical behavior can be
obtained easily given the cavity field, which is the functional
of order parameter ϕ(ω), as ∆(ω) = F [ϕ(ω)]. However, the
analytical solution is very complicated because the real part
of the cavity field ∆′(ω) is an unknown function of ω which
is linked to imaginary part ∆′′(ω) by the Hilbert transform.
Thus, it is impossible to solve these equations analytically
over a broad frequency range. As it has been shown numer-
ically, we claim that this unknown function is finite near the
mobility edge (ω ≈ ωc). In order to obtain the leading criti-
cal behavior of order parameter at transition, in in expression
containing P(ω), we can replace

P(ω−∆
′(ω))≈ P(ωc−∆

′(ωc)). (28)

However, in other terms, e.g. in the expression for a(ω) (Eq.
22)), one needs to retain the full frequency dependence, which
proves to assume a sufficiently singular form to contribute to
leading order (see below). As a result, the critical behavior
becomes a more complicated form, as we shall see from the
full analytical solution of Eq.(21) close to the mobility edge.
The specific form of the analytical solution has been provided
in section IV for the two different classes of random distribu-
tions (uniform and pseudogap-gaussian), and it successfully
has been compared with numerical results.

B. Critical behavior at half-filling

Here, we explore the exact functional form of order pa-
rameter close the transition, focusing on half-filling, where
∆′(0) = 0. In this case, there is no need to perform the
Hilbert transform, so all Landau coefficients can be evaluated
in closed form a

a(0) = exp{−2
ˆ

P(ε)dε log | ε |} ≡ a, (29)

and

b(0) =−2π
2P(0). (30)

Our Landau-like expansion now takes simple form

1 = a[1−2π
2P(0)ϕ +(ηπ

2 +2π
4P(0)2)ϕ2 + ...]. (31)

Note that here the value of P(0) plays an important role,
and this what causes two different forms of criticality, for the
generic model where P(0) 6= 0, and for the pseudo-gap model
where P(0) = 0. For the generic case, the TDOS vanishes lin-
early at the transition

ϕ ∼ (W −Wc), (32)

while for models with P(0) = 0, the critical behavior assumes
a square-root form

ϕ ∼ (W −Wc1)
1
2 . (33)

We emphasize that the parameter η remains finite at the tran-
sition, and can be directly calculated for any specific form for
P(ε) from Eq. (25). The condition a = 1 directly gives us
the critical value of disorder; for example, for the considered
pseudo gap model we obtain Wc1 = 2.07, in excellent agree-
ment with numerical results shown in Fig .4 (a) and Fig. 4(b).

IV. FREDHOLM INTEGRAL EQUATION AND GENERAL
SOLUTION

Here, we obtain the full analytical solution for the critical
behavior, valid even away from particle hole symmetry, and
for an arbitrary model of disorder.

A. Analytical solution for a "generic model" with b(ωc) 6= 0

The critical behavior of our TDOS order parameter, is given
by Eq.(26), where it is expressed in terms of (the yet un-
known) function ∆′(ω). Note, however, that (viz. Eq. 20) in
the critical region ϕ(ω)∼ ∆′′(ω) is linked through the Hilbert
transform to ∆′(ω), since

∆
′(ω) = H[∆′′(ω)]. (34)

Both quantities, therefore, need to be self-consistently calcu-
lated, as we do in the following. To do this, we express the all
expressions in terms of ∆′′(ω); for simplicity we focus on the
semi-circular band structure model where C = 1, and we can
write

∆
′′(ω) = (1− 1

a(ω)
)

1
2πP(ω−∆′(ω))

. (35)

Using Eq. (28), to leading order we find

∆
′′(ω)≈ δa(ω)

1
2πP(ωc−∆′(ωc))

, (36)

where δa(ω)≡ (1− 1
a(ω) ) can be directly computed as a vari-

ation of a(ω) from Eq. (22) giving

δa(ω)≈ 2
ˆ

dεP(ε)
1

ω− ε−∆′(ωc)
(δω−δ∆

′(ω)). (37)

Here, δω ≡ |ω−ωc| and δ∆′(ω) ≡ ∆′(ω)−∆′(ωc). Using
Eq.(36) we get the following integral equation linking ∆′(ω)
and ∆′′(ω)

∆
′′(ω) = Λ0(δω−δ∆

′(ω)). (38)

Here, Λ0 is a finite number, given by

Λ0 =
1

πP(ωc−∆′(ωc))

ˆ
dε

P(ε)
ωc− ε−∆′(ωc)

. (39)

This result is valid for any (generic) model of disorder with
P(ωc−∆′(ωc)) 6= 0. More explicitly, Eq.(38) can be rewritten
as

∆
′′(ω)− Λ0

π

ˆ
∞

−∞

dω
′∆
′′(ω ′)

ω ′−ω
= Λ0(δω−∆

′(ωc)). (40)

This integral equation (40) can be recognized as the Fredholm
Integral Equation (FIE), which assumes the form

y(x)−λ

ˆ
∞

−∞

dt
y(t)
t− x

= f (x). (41)
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By comparison of Eq.(40) and Eq.(41) it can be seen that in
our case y(x) = ∆′′(ω), λ = Λ0

π
, and f (x) =Λ0(δω−∆′(ωc)).

For completeness, we outline in the following the standard
reasoning used in solving the FIE. It uses the fact that the
Hilbert transform is a linear operator, with the additional prop-
erty of being "idempotent", i.e. obeying and H2 = −1; this
immediately gives us a hint how to solve it in closed form.
We first apply the Hilbert transform on Eq.(41), and we can
write

1
π

ˆ
∞

−∞

dt
y(t)
t− x

+λπy(x) = H[ f (x)]. (42)

Next, we use Eq.(41) and Eq.(42) to eliminate38 the term
with the integral and express y(x) entirely in terms of f (x)
giving

y(x) =
1

1+π2λ 2

{
f (x)+λ

ˆ
∞

−∞

f (t)dt
t− x

}
. (43)

Applying this solution to our Eq.(40) we find

∆
′′(ω) =

Λ0

1+Λ 2
0

δω +
Λ 2

0

1+Λ 2
0

h(
δω

ω0
). (44)

Here, h( δω

ω0
) = H[1− ω ′

ω0
] is the Hilbert transform of (1− ω ′

ω0
)

over the range where the (leading order, linear) approximation
in Eq. (38) is valid, and it can be written as follows with ω0
as the cut-off of the limited frequency range:

h(
δω

ω0
) =

1
π

{
log |

1+ δω

ω0

1− δω

ω0

|+δω

ω0
log |

( δω

ω0
)2−1

( δω

ω0
)2
|

}
.

(45)
As mentioned before, this solution does not depend on the
form of the disorder distribution function, other than through

the value of the parameters Λ0
1+Λ 2

0
and Λ 2

0
1+Λ 2

0
. As ω→ωc, these

quantities can be estimated simply as Λ0
1+Λ 2

0
∼ωc−∆′(ωc) and

Λ 2
0

1+Λ 2
0
∼ 1. This condition can be satisfied for both the pseudo-

gap and the uniform model close to the mobility edge. There-
fore, in this limit, from the Eq.(44) and Eq.(45) we find

∆
′′(ω)∼ϕ(ω)∼

(
ωc−∆

′(ωc)+
2

πω0

)
δω− 2

π

δω

ω0
log

δω

ω0
.

(46)
Remarkably, we identified logarithmic corrections to the (lin-
ear) scaling behavior near the Anderson metal insulator tran-
sition, obtained with TMT theory. As we show in Section V,
these non analytic corrections, however, are sufficiently mild
to allow for a simplified theory to be formulated by neglect-
ing them, without sacrificing the main quantitative prediction
of full TMT.

B. Analytical solution at the emergence of the pseudogap

Here, we obtain the critical behavior of ρtyp(ω) as the
pseudo-gap opens at W = Wc1. In this case the form of

the disorder distribution prohibits us using Eq. (26) because
b(ωc) = 0; we need to retain the terms to second order in ∆′′,
in the expansion of Eq. (21). Therefore, from the Eq.(27) and
Eq.(25) the imaginary part of the cavity field is expressed as

∆′′(ω)2

(Wc1
6 )2

= (1− 1
a(ω)

) = δa(ω). (47)

Since we are interested in the behavior of the system at W =
Wc1, we directly evaluate Eq.(37) as

δa(ω) ≈ 2
(
ω−∆

′(ω)
)ˆ

dεP(ε)
1

ω−∆′(ω)− ε
.

≈ 2(
6

Wc1
)2 (

ω−∆
′(ω)

)2

Here, ω −∆′(ω) is small near the mobility edge (ωc = 0) .
Therefore, the same integral equation as Eq. (38) can be writ-
ten here in the following form:

∆
′′(ω)−

√
2

π

ˆ
∞

−∞

dω
′∆
′′(ω ′)

ω ′−ω
= f (ω), (48)

where, f (ω) =
√

2ω. Eq.(48) has the corresponding solution
which is given by

∆
′′(ω) =

√
2

1+2π2 ω +
2

1+2π2 h(
ω

ω0
). (49)

Therefore, the critical behavior of TDOS, at critical disorder
W =Wc1 where the gap opens, can be written as

∆
′′(ω)∼ ϕ(ω)∼ (

2
πω0

+

√
2

1+2π2 )ω−
2

1+2π2
ω

ω0
log

ω

ω0
.

(50)
The full analytical solution of TMT equations again pro-

vides evidence for the emergence of logarithmic correction to
scaling, even at the critical point W = Wc1. Our numerical
result in Fig.2(a) confirms that our TDOS order parameter is
assumed the same qualitative behavior at W = Wc1, as it has
been also found near finite mobility edges with ωc 6= 0 at gen-
eral W , for both the "generic" and the pseudo gap models.

C. Numerical tests of the logarithmic corrections

Here, we show numerically that the mild logarithmic cor-
rection can be ignored far enough critical point, without
changing the main qualitative features of our TMT results.
For example, the critical form of TDOS at W = Wc1 for the
pseudogap model takes the form

ρc(ω)∼ ϕ(ω)∼ a1ω−a2ω log
ω

ω0
. (51)

To test this prediction, we directly plot our full numerical so-
lution for ρtyp(ω)/ω at W = Wc1, as a function of log(ω).
The results, as shown in Fig. 5, fully support our analytical
prediction for logarithmic corrections to scaling.
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Figure 5: The behavior of TDOS for the pseudo gap model for
W =Wc1, on semi-logarithmic scale, for small 0 < ω < 0.1.

Note, however, that if our result is examined only in a lim-
ited frequency interval, it can be represented as an power-law
function, with an effective exponent β (ω), being a weak func-
tion of frequency.

To confirm this idea, we calculate β (ω) both using our ana-
lytical results, and also using the full numerical solution of the
TMT equations. From our analytical solution, we can write

ρc(ω)≈ a1ω(1− a2

a1
log

ω

ω0
) = a1ω

β (ω), (52)

where

β (ω) = 1+ log
(1− a2

a1
logω + a2

a1
logω0)

logω
. (53)

As we can see from Fig. 6, this analytical prediction is found
to be in excellent quantitative comparison with the numer-
ics. Within both methods, the effective exponent is β (ω)
remains close to one in the entire critical region, therefore
displaying moderate deviation from linear behavior found if
the logarithmic corrections are ignored. We conclude that the
mild logarithmic corrections we found near mobility edges
can be neglected if we are not interested in the exact values
for the critical exponents, which are generally dimensionality-
depdendent, and cannot be expected to be accurately predicted
by a mean-field approach such as TMT. This notion leads us
to develop an effective (simplified) Landau theory for Ander-
son localization, which neglects such logarithmic corrections
which preserving most qualitative trends found within TMT.

-0.1 -0.05 0 0.05 0.1

ω

0

0.5

1

β
(ω

)

β(Approximate form)

βNumerics

Figure 6: The behavior of effective exponent, at the critical
disorder W =Wc1.

V. SIMPLIFIED LANDAU THEORY

In this section, we argue how the mean field solution of
TMT equations can be simplified as we are not extremely
close to the critical point, where mean-field theories such as
TMT cannot be accurate in any case. Since we are interested
in the qualitative behavior of the order parameter and other
physical observables across the phase diagram, and not only
very close to the critical point, this approximation is justified
and useful in predicting general trends. We have already seen
that the only essential difference found within TMT, as com-
pared to any mean-field theory is the emergence of mild log-
arithmic corrections to scaling. Ignoring them, therefore, pro-
vides us with a simplified formulation, where the equation of
state, i.e. the self-consistency condition for the order param-
eter assumes simply a polynomial form, as any ordinary Lan-
dau theory. In the following, we formulate such a simplified
Landau theory, and show that it captures the main qualitative
trends, while preserving the key difference between the two
classes of models of disorder we examine.

A. Analytical prediction of the effective Landau theory

As we have seen from Eq. (21), our TMT order-parameter
satisfied a Landau-type equation of state, of polynomial form

r(ω,W )+u1(ω)ϕ(ω)+u2(ω)ϕ2(ω)+ ...= 0. (54)

To test these ideas, we use our numerical results for the TMT
order parameter, and fit them to a polynomial form

ϕ(ω)∼
√

r(ω,W ). (55)

These results reproduce our previous results at half-filling
(ω = 0), where r(0,W ) ∼ (Wc−W ), as well as the general
trends for the approach to mobility edges elsewhere in the
phase diagram.
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B. Numerical fitting of the effective Landau coefficients for the
pseudo-gap model

To test these ideas, we apply our effective Landau theory
to the pseudo-gap model (u1 = 0) close to the critical point.
To do this, we note that according to Eq. (54), in this case to
leading order

r(ω,W )∼ ρ
2
typ(ω,W ), (56)

and we can directly obtain the functional form of r(ω,W )
from our numerical solution of the TMT equation. Accord-
ing to our Landau theory assumption, we expect it to be a
smooth (analytic) function of frequency, and thus to assume a
polynomial form

r(ω,W )∼ B0 +B2ω
2−B4ω

4 + · · · (57)

In the following, we calculate these coefficients numerically,
as shown in Fig. 7 and Fig. 8. The coefficient B0 vanishes
linearly at the transition, consistent with previous results (See
inset Fig. 4(a)). As it has been seen in Fig. 8, the coefficients
B2 and B4 depend on W , but display on very weak dependence
on the distance to the transition. As a final test, we show in
Fig. 9 the behavior of TDOS, which is obtained both using
our simplified version of TMT (simplified Landau theory) and
the exact TMT solution. The numerical results indicate very
similar behavior for order parameter within two different ap-
proaches. These results confirm the validity of our simplified
Landau theory in capturing the main trends obtained form the
exact solution of the TMT equations.
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Figure 7: The behavior of the coefficient B0 as a function of
(Wc1−W ) close to the transition.
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Figure 8: The Landau coefficient 2B2 and B4
10 display only

weak disorder dependence as the transition is approached.
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Figure 9: Comparison between the exact numerical TMT
solution and the approximate solution, which is calculated
within simplified Landau theory.

VI. CONCLUSIONS

In summary, we carried out a detailed TMT study of the
critical behavior for the Anderson metal-insulator transition,
both analytically and numerically. Although the exact TMT
theory gives us non-analytic critical behavior, we showed that
the offending logarithmic corrections to scaling are not very
significant if we are not too close to the transition. Given the
fact that mean-field theories are generally not reliable very
close to phase transitions, our results demonstrate that for
practical purposes these subtle issues can safely be ignored,
allowing us to formulate a much-simpler Landau-like formu-
lation for Anderson localization. Such a mean-field formula-
tion cannot hope to capture the exact values of the relevant
critical exponents, but as any Landau theory, it still can pro-
vide very useful guidance for general trends for various phase
transitions, including the general topology of the phase dia-
grams.

In this work we also demonstrated that, within TMT, two
different universality classes for the critical behavior may ex-
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ist, depending on the qualitative form of disorder. We ex-
plored the opening of a soft pseudo-gap in the single-particle
density of states near the Fermi energy, which is shown to
emerge when the (renormalized) disorder is chosen to have a
form appropriate for electrons interacting through long-range
Coulomb interactions. In relevant cases, our results are found
to be in excellent agreement with recent large-scale exact di-
agonalization results37, as well as with recent experiments29.
Moreover, recently developed cluster refinements of TMT
demonstrated39–41 that significant corrections to (single site)
TMT are only found very close to the Anderson transition. All
these findings provide further evidence that TMT represents a
flexible and practically useful tool for successfully describ-
ing the main qualitative trends for physical observables, in the
vicinity of disorder-driven metal-insulator transitions.
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Appendix A: Expression for the cavity function for general
band-structure models

For simplicity, we focus on the band center (ω = 0), where
all quantities we self-consistently calculate (Green’s func-
tions, cavity field, self-energies) are pure imaginary. In this
case, there exists a simple relation between the typical Green’s
function, the self energy, and the typical density of states,
given by the expressions

Gtyp =−πρtyp, (A1)

and

Σ =−∆− 1
πρtyp

. (A2)

In order to close the self-consistent loop, we use Eq. (5),
which contains the information on the form of the electronic
band-structure, through the form of the "bare" (disorder-fee)
density of states

Gtyp(ω) =

ˆ
dω
′ ν0(ω

′)

ω−ω ′−Σ
. (A3)

We expand the right-hand side of Eq.(A3) in terms of 1
Σ

, which
remains small as we approach to transition, and write

Gtyp =−
1
Σ
− (

1
Σ
)3
ˆ

dω
′
ω
′2

ν0(ω
′)+O(

1
Σ
)5, (A4)

From Eq.(A1) and Eq.(A2), and keeping the leading terms in
Eq.(A4), we can obtain the general expression for cavity field
as follows

∆ =Cπρtyp +O(ρ2
typ), (A5)

where

C =

ˆ
dω
′
ω
′2

ν0(ω
′). (A6)

This result shows how the coefficient C can be directly cal-
culated at half-filling for any band-structure model. A similar
a relation is valid even away from half-filling (as we also con-
firmed but detailed numerical work), but the specific numer-
ical value depends on the relevant non-universal parameters.
Therefore, as in other DMFT-like theories, to capture the qual-
itative aspect of the critical behavior, it is suffices to consider
the simple semi-circular model density of states where C = 1
for any filling and value of disorder.
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