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We describe the results of first-principles calculations of the properties of oxygen vacancies in
LaNiO3. We consider isolated oxygen vacancies, pairs of vacancies, and vacancies at finite concen-
trations that form oxygen-deficient phases of LaNiO3. The key electronic structure question we
address is whether and to what extent an oxygen vacancy acts as an electron donor to the Fermi
level (mobile and conducting electronic states). More generally, we describe how one can quantify,
based on electronic structure calculations, the extent to which a localized point defect in a metallic
system donates electrons to the Fermi level compared to trapping electrons in localized defect states.
For LaNiO3, we find that an oxygen vacancy does not create mobile carrier but instead makes the
two Ni sites adjacent to it turn into Ni2+ cations. Energetically, we compute the formation energy
and diffusion barrier for oxygen vacancies. Structurally, we show that pair of vacancies prefer to
form on opposite sides of a Ni cation, aligning along a pseudocubic axis. For finite concentrations
of vacancies, we compute the dependence of the LaNiO3 lattice parameters on the vacancy concen-
tration to provide reliable data for experimental determination of oxygen content in LaNiO3 and
LaNiO3 thin films.

PACS numbers: 61.72.jd,61.72.Bb,71.20.-b

I. INTRODUCTION

Rare-earth nickelate perovskite oxides, with chemical
formula RNiO3 were R is a rare-earth atom, continue to
generate much scientific interest. The combined effect
of the crystal structure and the electronic correlations
of Ni d electrons in RNiO3 systems results in a vari-
ety of interesting phenomena.1–3 These phenomena in-
clude metal-insulator transitions (MITs),4,5 spin-density
waves,5 charge order,6–9 and complex magnetic structure
at interfaces.10 Among rare-earth nickelates, LaNiO3 is
the only one that remains metallic in bulk form down
to the lowest measured temperatures. For this reason,
LaNiO3 is widely used as an electrode in oxide electronic
devices, in particular in epitaxially strained perovskite
thin films.11–15 In addition, ultrathin films of LaNiO3

were found to display thickness-dependent MITs.16–18

Finally, much attention has been paid recently to lay-
ered heterostructures involving LaNiO3 in a variety of
attempts to engineer the electronic structure that would
allow for high-temperature superconductivity.16,17,19–31

Many of the physical properties of metal oxides are
sensitive to the presence of oxygen vacancies. In stoi-
chiometric bulk LaNiO3, Ni ion assumes 3+ charge state,
while oxygen deficiency can result in the creation of Ni2+

ions, significantly affecting conductivity and MIT.32–36

Sánchez et al.32 examined bulk LaNiO3, LaNiO2.75, and
LaNiO2.5 and found that conductivity decreases as oxy-
gen vacancy concentration δ increases and MIT occurs
for δ ≥ 0.25. The observed behavior was explained based
on a model positing that LaNiO3 is a charge-transfer
metal,4,37 whereby the interplay between the bandwidths

and energy gaps of the O 2p and Ni 3d bands deter-
mines conductivity. Later, more systematic studies of
the dependence of electronic conduction in LaNiO3−δ

on δ were performed by several groups.33,34 Gayathri et
al.33 also measured the Hall coefficient of a LaNiO3 film
and found it to be positive, meaning that the domi-
nant charge carriers contributing to transport in LaNiO3

are holes. Abbate et al.35 studied the electronic struc-
ture of LaNiO3−δ systems using x-ray absorption spec-
troscopy (XAS), a sensitive probe of the covalent mixing
between the O 2p and transition metal 3d levels. They
confirmed that charge carriers in bulk LaNiO3 contain
considerable oxygen character, and they related the MIT
to the disappearance of charge carriers. Horiba et al.38

performed x-ray photoemission spectroscopy (XPS) and
XAS of LaNiO3−δ thin films and found that the den-
sity of states near the Fermi level in these films is very
sensitive to oxygen content. They also performed first-
principles calculations of bulk LaNiO3 under strain and
found that strain alone cannot explain the experimentally
observed narrowing of the Ni 3d eg peak at the Fermi
level. Using XPS deconvolution analysis, Qiao and Bi39

were able to distinguish Ni3+ and Ni2+ formal valence
states in LaNiO3−δ films which allowed them to deter-
mine oxygen stoichiometry δ accurately. As expected
from previous studies, they found that with decrease of
the Ni3+/Ni2+ ratio, the LaNiO3−δ films turn semicon-
ducting. These authors also performed first-principles
calculations for several LaNiO3−δ structures and showed
that at sufficiently large δ band gap appears due to nar-
rowing of valence and conduction bands.
Despite the significant progress in the understanding of

electronic structure of LaNiO3−δ systems on the experi-
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mental side, there was less work done on the theory side,
including first-principles calculations. In this work, we
provide a first-principles survey of the basic properties of
oxygen vacancies in LaNiO3. The questions we address
are: (i) Do oxygen vacancies act as electron donors to
mobile conducting states at the Fermi level in LaNiO3?
(ii) Generally, how does one use electronic structure cal-
culations to decide to what extent a point defect donates
mobile carriers compared to trapping them in defects
states? (iii) How difficult is it to form an oxygen vacancy
in LaNiO3? How mobile is it once formed? For exam-
ple, do we expect vacancies to be sufficiently mobile to
readily diffuse in the crystal and achieve the equilibrium
structure at the level of oxygen deficiency? (iv) What is
the nature of the interaction between oxygen vacancies:
do they repel or attract and prefer to form complexes?
(v) What is the theoretically expected effect of the finite
oxygen vacancy concentration on the lattice parameters
of oxygen deficient LaNiO3−δ systems?
The paper is organized as follows. Section II describes

the technical details of our numerical calculations. In
Sec. III, our main results are presented, followed by the
summary and conclusions in Sec. IV.

II. COMPUTATIONAL METHODS

In this work, we are primarily interested in the ground
state properties of oxygen-reduced LaNiO3 systems,
based on the calculations of total energies, ground-state
electron densities, and crystal structures. For this reason,
we use density-functional theory (DFT) for our calcula-
tions. DFT can already describe many of the physical
properties of bulk LaNiO3

40 or LaNiO3 thin films18, and
we expect this to carry over to the basic properties of
oxygen vacancies. Proper treatment of charged defects
in general may require many-body corrections for cal-
culations of defect formation energies as demonstrated
explicitly in certain insulating systems.41,42 However, in
our case LaNiO3 is robustly metallic, so that defects are
well screened and should be neutral and such many-body
effects should be of less importance.
We performed first-principles calculations in a plane-

wave pseudopotential basis. The calculations were done
with the Quantum ESPRESSO software package.43

We chose local-density approximation (LDA) for the
exchange-correlation functional since it was shown pre-
viously by Gou et al.40 that LDA adequately reproduces
the crystal and electronic structure of bulk LaNiO3 and
in fact may be the best choice among available exchange-
correlation functionals. The LDA exchange-correlation
potential was parameterized using the Perdew-Zunger
method.44 For the computation of the formation energy
of oxygen vacancies, we also cross-checked our results
by using the PBE generalized gradient approximation as
well.45 In this work, we report on non-magnetic LDA cal-
culations and not spin-polarized LSDA: bulk LaNiO3 is
a paramagnetic metal. Furthermore, we have explicitly

TABLE I. Pseudopotential reference valence configurations
and corresponding cutoff radii (atomic units).

Atom Valence configuration rsc rpc rdc

La 5s25p65d16s1.56p0.5 2.2 2.0 2.2
Ni 3d84s24p0 2.0 2.0 2.2
O 2s22p6 1.3 1.3 · · ·

performed spin-polarized LSDA calculations that show
that an isolated neutral oxygen vacancy (2× 2× 2 super-
cell) does not develop magnetization.
The electron-ion interactions were described by Van-

derbilt ultrasoft pseudopotentials.46 The pseudopoten-
tials were generated with the USPP-7.3.6 package47 with
parameters listed in Table I. For lanthanum and nickel,
nonlinear core corrections were applied.48 The La 4f
states were not explicitly generated or described: La as-
sumes 3+ valence state in LaNiO3 with the empty 4f shell
so that these states should not be critical in terms of
bonding. A posteriori, calculations that do not use La 4f
states show excellent agreement with experiment.18,31,40

The kinetic energy cutoff for the plane waves was set to
35Ry and the corresponding energy cutoff for the charge
density was set to 280Ry. For the primitive unit cell of
bulk LaNiO3 (described in detail below), the correspond-
ing Brillouin zone was sampled by a uniform 12×12×12
grid of k points. Equivalent meshes of k points were used
for the larger supercells. The Brillouin zone integrations
were done using the Gaussian smearing method with the
smearing width of 1 mRy. The structural relaxations
were performed until the Cartesian components of forces
on all atoms were less than 3 meV/Å and stress tensor
components were less than 0.1 kbar.
For the bulk and the 2×2×2 supercells, we constructed

maximally localized Wannier functions49,50 (MLWFs) for
analysis of the electronic structure. For this purpose, we
used 9×9×9 and 5×5×5 grids of k points, respectively
for the primitive 10-atom bulk unit cell and 2 × 2 × 2
supercell. The Wannier functions were generated using
the Wannier90 software package.51 The Wannier func-
tions correspond to a pd model for the system: 3 Wan-
nier functions of p symmetry are obtained for each oxy-
gen site and 5 Wannier functions of d symmetry for each
nickel site. In LaNiO3, the oxygen 2p and Ni 3d valence
and conduction bands, taken together as a complex, are
separated from all other bands by energy gaps. Hence,
the choice of energy window for MLWFs generation was
straightforward: to include these bands alone.

III. RESULTS

A. Bulk LaNiO3

The ground state of bulk LaNiO3 assumes a rhombo-
hedrally distorted perovskite structure. The symmetry
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FIG. 1. (Color online) Primitive cell of LaNiO3.

TABLE II. Structural parameters of bulk LaNiO3 (R3̄c space
group) in the rhombohedral setting.

Present work Previous theorya Experimentb

a (Å) 5.25 5.32 5.38
α (◦) 61.4 61.4 60.9
x 0.809 0.801 0.797

a LDA results using Quantum ESPRESSO from Ref. 40.
b Ref. 5.

of this structure is given by the R3̄c space group. The
primitive unit cell has two formula units (10 atoms) and
is shown in Fig. 1. In the rhombohedral setting, the unit
cell can be described by the length of the lattice vectors,
a, and the angle α between any two lattice vectors. The
La, Ni, and O atoms occupy the 2a(1

4
, 1
4
, 1
4
), 2b(0, 0, 0),

and 6e(x, 1
2
− x, 1

4
) Wyckoff positions, respectively. Our

calculated structural parameters for bulk LaNiO3 are
shown in Table II. The table also reproduces previous
theoretical and experimental structural parameters indi-
cating very satisfactory agreement.
The computed electronic band structure of the bulk

is shown in Fig. 2. We also projected the bands shown
in the figure onto Wannier functions with Ni 3d and O
2p characters. We note two important facts from the
figure. First, the top of the O 2p dominated valence
bands is 1 eV below the Fermi level: this means we can
assign the formal charge state O2− to the oxygen atoms
in the bulk. Second, the Fermi level cuts through the
conduction bands which have Ni 3d character so we have
the formal charge state Ni3+ for nickel atoms in the bulk.
These basic facts are important when understanding the
electronic behavior of oxygen vacancies.

B. Isolated oxygen vacancy

In order to simulate an isolated neutral oxygen va-
cancy, we began by constructing a supercell of bulk
LaNiO3 corresponding to a 2 × 2 × 2 pseudocubic per-
ovskite structure with 40 atoms in the supercell. The ex-
plicit relation between the 40-atom pseudocubic 2×2×2
cell and the primitive 10-atom cell shown in Fig. 1 is the

FIG. 2. (Color online) Calculated electronic band structure of
bulk LaNiO3 in the 10 atom unit cell projected on the Ni 3d
(red) and O 2p (blue) Wannier functions. The high-symmetry
points of the Brillouin zone are labeled using the convention
for a corresponding simple perovskite cubic 5-atom unit cell;
i.e., the axial directions connect neighboring Ni cations.

FIG. 3. (Color online) The 2 × 2 × 2 pseudocubic supercell
of LaNiO3 with a single oxygen vacancy showing NiO6 octa-
hedra. The position of the vacancy is indicated by the black
circle.

following. Let a1 = a(0, 1, 1)/
√
2, a2 = a(1, 0, 1)/

√
2

and a3 = a(1, 1, 0)/
√
2 be the lattice vectors for the 10-

atom cell. The the lattice vectors of the 40-atom cell are√
2(−a1+a2+a3),

√
2(a1−a2+a3) and

√
2(a1+a2−a3).

We then removed one neutral oxygen atom as indicated
in Fig. 3 which was chosen to be an O bonded along the
unit cell z direction between its two Ni neighbors (we
note that all O atoms are identical in this unit cell so
this is simply a convenient choice for analysis).

Since the formal charge state of oxygen is O2− in the
bulk, it is expected that the removal of a neutral oxygen
atom will liberate two electrons which will then redis-
tribute in the defective system. This process is expected
regardless of the fact that there is significant covalency
in LaNiO3

52: since the oxygen 2p valence bands are well
below the Fermi level, creating the neutral vacancy will
add two electrons to the system. The main question is
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FIG. 4. (Color online) Theoretically calculated 3D electron
redistribution function ρ(VO)+ρ(O)−ρ(bulk) in LaNiO3 upon
neutral oxygen vacancy formation. Red (blue) 3D isosurfaces
shows the increase (decrease) of the electron density in space.
Arrows indicate the primary direction of electron redistribu-
tion from the vacancy site to the d3z2−r2 orbitals of the two Ni
neighboring the vacancy. The isosurfaces are drawn at ∼ 20%
of the maximum value of the electron density. The smaller
red (larger blue) circles denote the O (Ni) atoms. The black
dashed lines indicate the Ni–O bonds. The electron redistri-
bution is highly localized.

where the two electrons end up going. There are three
basic possibilities: (i) both electrons delocalize and are
mobile so they raise the Fermi level and lead to n-type
doping of LaNiO3; (ii) both become bound to and local-
ized around the vacancy site and thus do not dope the
system; or (iii) some intermediate situation is reached
where some part are bound and some part are mobile.
As we explain below, our calculations conclude that sce-
nario (ii) is correct.

We begin in real space where we compute the electron
density redistribution. We compute the electron densities
of the fully relaxed system with a vacancy ρ(VO), of a
bulk-like LaNiO3 ρ(bulk) where the oxygen atom is added
back (with no structural relaxation), and of a neutral
oxygen atom at the vacancy position in the otherwise
empty supercell ρ(O) (see Fig. 3). The redistribution
∆ρ = ρ(VO) + ρ(O) − ρ(bulk) is plotted in Fig. 4. We
clearly see that oxygen vacancy donates electron charge
to the d3z2

−r2 orbitals of the nearest two Ni atoms (where
local z axes are directed from the two neighboring Ni
sites towards the vacancy). Furthermore, the electron
redistribution appears to be extremely localized in space
and confined to the two Ni neighbors only. While an
O vacancy formally donates two electrons to the system,
and it appears that one electron goes to each neighboring
Ni, actual values of electron transfer depend strongly on
the method used to do the counting. A Löwdin analysis
of orbital populations shows that only 0.1 electrons is
transferred to d3z2

−r2 orbitals of each of the two nickel
atoms.
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FIG. 5. (Color online) Bulk band structure of the 2 × 2 × 2
supercell (black thin curves). Projections of the bands onto
Wannier functions with Ni eg character are indicated by red
overlays where the thickness is proportional to the projection.
The Fermi level is at 0 eV.
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FIG. 6. (Color online) Band structure of a 2× 2× 2 supercell
with a single vacancy. Same nomenclature as Figure 5.

This type of discrepancy between formal electron
counting and real-space based electron counting has been
noted before: the change in electron count based on real-
space counting is always significantly smaller, or at times
essentially zero, when compared to formal charge values
for many materials systems53,54 Therefore, we continue
our analysis in reciprocal space as well to understand the
modification of band structure and band occupancy in-
duced by the vacancy.

We compare the band structure of our 2×2×2 LaNiO3

supercell without and with the vacancy in Figures 5 and
6, respectively. The bulk band structure in Fig. 5 also
shows projections onto the Ni Wannier functions of eg
symmetry: Ni3+ in bulk LaNiO3 has 7 d electrons which
fill the Ni d orbitals based on the crystal field splittings.
The 3-fold degenerate lower energy t2g manifold is full
with 6 electrons and the 2-fold degenerate eg manifold
(composed of the d3z2

−r2 and dx2
−y2 orbitals) is quarter-

filled with one electron. As expected from the crystal
field analysis, the bands at the Fermi level are indeed of
eg character. We note that these eg bands disperse over
an energy range of ∼3 eV.
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FIG. 7. (Color online) Classification of Ni atoms in a 2×2×2
supercell based on the proximity to the oxygen vacancy. The
vacancy is indicated by the white hole in the blue square, and
the three types of inequivalent Ni site are indicated as well.

Figure 6 shows the band structure of a system with
a single oxygen vacancy and projections onto the Ni eg
states. Compared to the bulk bands, the symmetry re-
duction has split some of the band energies across the
Brillouin zone. We still have dispersive Ni eg bands cross-
ing the Fermi level. Critically, some weakly dispersing
bands now appear about −1.5 eV below the Fermi level.

The next step is to examine local densities of states
near and far from the vacancy. In a 2 × 2 × 2 supercell,
there are 8 distinct Ni sites which can be divided into
three distinct groups depending on their proximity to the
O vacancy as illustrated in Fig. 7. For a perfectly cubic
perovskite structure, there are only three inequivalent Ni
sites (see Fig. 7). In the fully relaxed rhombohedral struc-
ture with the vacancy, in principle more Ni sites become
inequivalent. However, in order not to overcomplicate
the analysis, we ignore the small symmetry breaking ef-
fects since we find that geometric proximity of Ni sites
to the vacancy plays the dominant role.

Figure 8 shows projected density of states (PDOS)
onto Ni d3z2

−r2 , dx2
−y2 , and t2g Wannier functions for

2 × 2 × 2 supercells with and without the vacancy. To
align these densities of states along the energy axis, we
have visually aligned the Ni PDOS of bulk LaNiO3 to
match as closely as possible that of Ni3 in the system
with the vacancy since Ni3 is the farthest Ni from the
vacancy site and thus should be most bulk like. (The
qualitative nature of the alignment procedure is sufficient
for our purpose of qualitative analysis of the PDOS.) We
see that the PDOS of all Ni in the supercell closely resem-
ble that of Ni in bulk LaNiO3 with the exception of the
d3z2

−r2 PDOS of Ni1 adjacent to the vacancy. The Ni1
d3z2

−r2 is narrowed compared to the bulk and its main
peaks have moved to lower energies. The physical reasons
for these modifications are straightforward and two-fold:
these orbital point at the vacancy, and the removal of
the oxygen O2− ion (i) lowers their electrostatic crystal
field energy, and (ii) the removal of the anti-bonding O
pz-Ni d3z2

−r2 interaction also lowers the energy of these
orbitals (reduced covalency) and reduces their electronic
connection to the lattice (reduced band width). In ad-
dition, we see the creation of a sharp peak in the Ni1
d3z2

−r2 PDOS near −1.5 eV below the Fermi level which
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FIG. 8. (Color online) Projected density of states (PDOS)
onto the Ni 3d Wannier functions for 2× 2× 2 supercell. The
naming of the Ni sites is shown in Fig. 7. The Fermi level is
at 0 eV. We also show the Ni PDOS for bulk LaNiO3 which is
aligned in energy to match that of Ni3 as closely as possible.
The resulting position of the Fermi level of the bulk PDOS is
indicated by the vertical dashed line.

is tied to the weakly dispersive bands observed in the
band structure of Fig. 6. Furthermore, this ties in with
the electron transfer to Ni observed in Fig. 4 where the
lobes of the Ni orbitals accepting electrons resemble those
of d3z2

−r2 states.

Up to now, our electronic structure calculations show
that the creation of the neutral oxygen vacancy leads
to significant electron transfer to localized states on the
neighboring Ni sites into orbitals of primarily d3z2

−r2

character pointing at the vacancy site. To be able to
make a more quantitative assessment and to decide on
the exact degree of localized versus delocalized electron
transfer form the vacancy, we need a more precise anal-
ysis.

We provide a simple and general analysis of the doping
effect for a metallic system at zero temperature within
band theory to organize our thinking. Let d0(E) be the
density of states (DOS) per formula unit for bulk LaNiO3

and EF,0 the associated bulk Fermi level which corre-
sponds to m electrons per formula unit. Let D(E), EF,
and M be the corresponding quantities for a large super-
cell with N ≫ 1 formula units containing one vacancy.
The dilute nature of the vacancy means that D(E) dif-
fers from Nd0(E) by a quantity of order O(N0) = O(1).
Thus we can write D(E) = Nd0(E) +∆D(E) where the
modification of the DOS, ∆D(E), is O(1). The creation
of the vacancy via removal of a neutral oxygen atom cor-
responds to a change in the number of electrons by δ for
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the large supercell. In our case, δ = −4, corresponding
to the removal of four 2p electrons along with the neutral
oxygen atom (we can ignore the deep lying 2s states in
this analysis). Hence M = Nm+ δ. The Fermi levels are
determined via

m =

∫ EF,0

−∞

dE d0(E)

and

M =

∫ EF

−∞

dE D(E)

which is equivalent to

Nm+ δ =

∫ EF

−∞

dE [Nd0(E) + ∆D(E)] .

We also define the change of Fermi level ∆EF = EF −
EF,0. The quantities δ and ∆D(E) scale as O(N0) while
∆EF scales as O(N−1). Therefore, we can expand the
above relation to leading order in powers ofN−1 to arrive
at

∆EF =
δ −

∫ EF,0

−∞
dE∆D(E)

Nd0(EF,0)
(1)

This relation is useful in understanding what one can
expect in the general case. The rigid band doping model
corresponds to the case where ∆D(E) only stems from
the removal of three O 2p bands from the valence band
manifold of the supercell (since each O atom contributes
three 2p states to valence band formation). In this case,
the numerator of Eq. (1) is simply the number 2 — the
integral in the numerator is −6 as three filled O 2p bands
are removed upon creation of the vacancy — and we re-
cover the rigid band doping relation for the Fermi level
shift where ∆EF ∝ 1/N . The opposite limit is when a
bound state for the vacancy appears below the Fermi en-
ergy which can accommodate all the doped electrons: in
this case the numerator is zero and the Fermi level does
not shift so no mobile electrons were added. Finally, one
can always have an intermediate situation where the nu-
merators is between the two extremes so we have partial
doping: on average, a fraction of the two available elec-
trons are mobile and the rest are bound around the va-
cancy. We note that the last situation can only happen
for a metallic system where the Fermi level is crossing
a finite density of states of some bands. In gapped sys-
tems, if a bound defect state is created in the energy gap,
it binds all electrons and no mobile electrons are created;
if no bound state forms, all the electrons are added or
removed at the band edges which are always delocalized
Bloch states and are mobile.
These general considerations explain that the change

of Fermi level is the important quantity to monitor as it
tells us whether far from the vacancy any mobile electrons
are added in the bulk-like regions which corresponds to

TABLE III. Relation between the change of Fermi level ∆EF ,
Ni 3d Löwdin occupations, and the number of added electrons
per Ni atom in bulk LaNiO3 within a rigid-band model. The
second and fourth row correspond to two added electrons in
the 4× 4× 4 and 2× 2× 2 supercells, respectively.

Doping (e/Ni) ∆EF (eV) Ni 3d occupation (e)
0.000 0.000 8.374
0.031=2/64 0.017 8.393
0.125=2/16 0.070 8.449
0.250=2/8 0.153 8.523
0.375 0.258 8.595
0.500=2/4 0.375 8.665

doping in band theory. If ∆EF ∝ 1/N we have mobile
electrons being doped; oppositely, a faster scaling to zero
than 1/N indicates that bound states have formed below
the Fermi level that accommodated all the electrons. To
find ∆EF , it is easier to monitor orbital occupancies —
which are monotonic function of EF — rather than the
Fermi level itself. Namely, we monitor the number of 3d
electrons on a Ni site far from the vacancy to understand
the change of Fermi level.
The first step is to examine how adding electrons to

bulk LaNiO3 changes the Fermi level and Ni 3d occupa-
tions. We do this within a rigid-band model: we com-
pute the electronic structure and densities of states of
bulk LaNiO3, and then add some electrons to these fixed
bands and find the corresponding EF and Ni 3d filling.
Table III displays such data for bulk LaNiO3: values of
the Ni 3d electron count and corresponding Fermi level
for a range of electron addition values. We now com-
pare these values to those obtained from our supercell
calculations that have vacancies.
For the 2 × 2 × 2 supercell, the Ni 3d occupation for

the Ni farthest from the vacancy (Ni3), which is the most
bulk like, is found to be 8.399. Separately, we integrate
the bulk Ni PDOS and find that such a change corre-
sponds to a rise of the Fermi level by 0.023 eV. This value
is 6 time smaller than the value of 0.153 eV (fourth row
of Table III) that we would expect for a rigid band model
for doping by 2 electrons in a unit cell with 8 Ni cations.
Next, we create a 4× 4× 4 supercell atom supercell with
64 Ni cations and with a single oxygen vacancy and fully
relaxed its structure (319 atom supercell). The 3d elec-
tron count on the Ni farthest from the vacancy is now
8.375 which corresponds to shifting the bulk Fermi level
by 5×10−4 eV: this is 34 times smaller than the expected
rigid band model shift of 0.017 eV from Table III. We
conclude that the oxygen vacancy creates a bound state
below the Fermi level that accommodates both electrons:
the isolated vacancy is not an electron donor in the sense
of donating mobile electrons. In other words, when we
create an oxygen vacancy, the two neighboring Ni ions
to the vacancy site each accept one electron on a highly
localized state so that we have two Ni2+ ions surrounding
the vacancy: the electron transfer is extremely localized
and bound around the vacancy site.
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C. Vacancy formation energy

The formation energy of a neutral oxygen vacancy is
given by55,56

Ef
VO

(µO) = E(VO)− E(bulk) +
1

2
E(O2) + µO, (2)

where µO is the chemical potential of oxygen atoms ref-
erenced to the half of the total energy of the O2 molecule
in its triplet ground state E(O2), E(VO) is the total en-
ergy of a supercell containing the vacancy, and E(bulk)
is the total energy of a corresponding bulk supercell. The
formation energy primarily depends on the imposed ex-
ternal conditions (temperature and pressure) through the
chemical potential µO.
By definition, µO = 0 corresponds to the oxygen-rich

limit. In the opposite oxygen-poor limit, µO is limited
from below by the decomposition of LaNiO3 into other
phases. Here, we estimate the lower bound based on
the formation of La3Ni3O8. The condition of equilibrium
between LaNiO3 and La3Ni3O8 determines our minimum
µO as

µmin
O = 3E(LaNiO3)− E(La3Ni3O8)−

1

2
E(O2) . (3)

Both Eqs. (2) and (3) involve the total energy of the
O2 molecule in its ground state, which contains a sub-
stantial error within usual approximations for DFT.57 In
particular, the formation energies predicted by the above
equations differ substantially when different pseudopo-
tentials or different exchange-correlation approximations
are used. For example, in Table IV, we compare results
based on the LDA and PBE exchange-correlation func-
tionals (columns marked LDA and PBE, respectively)
using the 2 × 2 × 2 supercell. We see that the vacancy
formation energies in the oxygen-rich limit differ by a
large amount of ∼ 0.8 eV.
To correct this large error originating primarily from

the error in E(O2), we use the approach of Finnis, Lo-
zovoi, and Alavi (FLA).58 Here, one does not explicitly
compute the gas phase energy E(O2) but instead uses
energies from the solid state and corrects the formation
enthalpy to match experiment (one approximates theo-
retical enthalpies by energies). For example, by using
the experimental formation enthalpy of Al2O3 from the
reaction of bulk fcc Al and O2 gas, ∆H f(Al2O3), the
corrected energy E(O2) is

1

2
E(O2) =

1

3

{

E(Al2O3)− 2E(Al)−∆H f(Al2O3)
}

.

(4)
Here, the total energies of bulk Al2O3, E(Al2O3), and
bulk fcc aluminum, E(Al), are calculated by DFT while
the formation enthalpy ∆H f(Al2O3) = −17.37 eV is
the experimental value.59 Again, the advantage of this
method is that it avoids theoretical computation of the
gas phase E(O2) and relies only on solid state forma-
tion energies and enthalpies. The FLA-based formation

TABLE IV. Formation energy obtained using the 2 × 2 ×

2 supercell of LaNiO3 calculated using LDA and PBE
exchange-correlation functionals with and without the FLA
correction.58 The last row shows the lower bound on oxygen
chemical potential computed with Eq. 3.

Ef (eV) LDA FLA-LDA PBE FLA-PBE
Oxygen-rich limit 3.00 2.92 2.24 2.97
Oxygen-poor limit −0.10 −0.10 −0.35 −0.35

µmin
O (eV) −3.10 −3.02 −2.59 −3.32

energies using Eq. (4) are shown in Table IV as columns
FLA-LDA and FLA-PBE. Happily, there is a much closer
agreement between LDA and PBE in the oxygen-rich
limit. The formation energy in the oxygen-poor limit
does not actually depend on the value of E(O2) (com-
bine Eqs. (2) and (3)) so that the corresponding entries
in Table IV have the same values before and after the
FLA correction.
A simple way to approximately gauge the accuracy of

the FLA-based formation energies is to compare predic-
tions from two different exchange-correlation approxima-
tions (LDA and PBE) for a fixed set of bulk materials
energies — here those in Eq. (4). By comparing results
for both oxygen-poor and oxygen-rich conditions, the er-
ror in the calculation seems to be ∼ 0.2 eV. Of course, a
larger set of exchange-correlation approximations should
be used to test the robustness of this estimate, but such
a tabulation is beyond the scope of this initial study.
A more challenging way to estimate the accuracy is to

also use multiple bulk reference materials. We note that
the use of Al2O3 simply follows the original FLA recipe,
but any other bulk oxide reaction could be used as a ref-
erence to extract E(O2): our purpose in using the FLA
is simply to remove the large error stemming from the
poor description of the O2 molecule. However, using a
variety of reference bulk materials and then comparing
the results implicitly assumes that the DFT calculation
is equally accurate over the range of bulk materials, a po-
tentially problematic assumption that requires care when
dealing with transition metal oxides.
To illustrate this point, we calculate the FLA-based

oxygen vacancy formation energy in the oxygen-rich limit
based on five different reference oxide materials. The
solid state reactions considered are

2Al +
3

2
O2 ↔ Al2O3 ,

Si + O2 ↔ SiO2 ,

Ti + O2 ↔ TiO2 ,

Ni +
1

2
O2 ↔ NiO ,

1

2
La2O3 +Ni +

3

4
O2 ↔ LaNiO3 .

The resulting FLA-LDA and FLA-PBE formation en-
ergies are presented in Table V. As the table shows,
almost all values of the vacancy formation energy agree
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TABLE V. Oxygen vacancy formation energy in eV per va-
cancy obtained using the 2× 2× 2 supercell of LaNiO3. Both
LDA and GGA exchange-correlation functionals are employed
together with the FLA correction58 based on the listed ref-
erence oxides. The experimental formation enthalpies in eV
from the literature are provided as well. The averages and
variances do not include the NiO data (see text for why).

Reference FLA-LDA FLA-PBE Formation enthalpy
Al2O3 2.92 2.97 −17.37a

SiO2 3.03 2.95 −9.44a

TiO2 2.65 2.70 −9.73a

NiO 3.93 3.80 −2.49b

LaNiO3 2.81 2.62 −3.08c

Average 2.85 2.81
Sample variance 0.16 0.18

a Ref. 59
b Ref. 61
c Ref. 62

well with each other with the exception of those based
on the NiO reference. Prior work has shown that in
addition to the error in E(O2) discussed above, DFT-
based formation energies for transition-metal oxides also
can suffer from significant errors due to the an inade-
quate description of strong electron correlation effects.60

In particular, NiO and MnO were shown to be the most
affected, and the DFT+U approach can be used to over-
come the deficiency.60 In our case, this type of correction
is problematic since it is non-trivial to describe NiO and
LaNiO3 equally well for a fixed exchange-correlation ap-
proximation: as per Section II, LaNiO3 is best described
by LDA whereas NiO has a poor LDA formation energy.
For this reason, we view NiO as a systematic outlier and
exclude it as a reference material (this is also the reason
we chose the formation reaction for LaNiO3 to involve
fcc metallic Ni and not NiO). Separately, while TiO2

is also a 3d transition-metal oxide, it suffers less from
the strong-electron-correlation problem60 leading to more
reasonable results for oxygen vacancy formation energy
in Table V. Based on the data in the table not involving
NiO, we estimate the accuracy of the formation energy
with the FLA method to be about ∼ 0.2 eV.

The next step involves the removal of finite size er-
rors and extrapolation to the thermodynamic limit of an
isolated vacancy. To this end, we have computed the
vacancy formation energy in the oxygen rich limit us-
ing a number of additional supercell with sizes ranging
from 4 to 319 atoms. For the four smallest supercells, we
have also computed PBE-based formation energies. The
results of these calculations are shown in Fig. 9, where
formation energies are plotted versus the inverse charac-
teristic size of the supercell, L−1 = V −1/3, where V is
the supercell volume.

Fig. 9 shows good agreement between LDA and PBE
for all supercells. We extrapolate to infinite-sized super-

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

L
−1 (a.u.−1)

2.0

2.5

3.0

3.5

E
f
(e
V
)

LDA

PBE

FIG. 9. (Color online) Formation energies calculated using
supercells of various sizes in the oxygen-rich limit with LDA
and PBE exchange-correlation functionals. The extrapolation
to infinite cell size is made using similar supercells within LDA
(filled squares) and is shown with a solid line.

cell using the form63

Ef(L) = Ef
∞

+ a1L
−1 + a3L

−3 (5)

where Ef
∞

is the desired formation energy in the infinite
supercell limit. To perform the extrapolation, we only
use supercells that describe the structure of bulk LaNiO3

properly. For example, the 4 atom unit cell originates
from a 5 atom cubic perovskite unit cell of LaNiO3 which
can not describe the oxygen octahedral rotations present
in bulk LaNiO3. Specifically, we consider 2 × 2 × 2 (40
atoms) and 4×4×4 (320 atoms) pseudocubic supercells,
as well as 1× 1× 1 (10 atoms), 2× 2× 2 (80 atoms) and
3 × 3 × 3 (270 atoms) rhombohedral supercells. These
supercells are indicated by the filled squares in Fig. 9.

By performing a least squares fit of our data to Eq. (5),
we find Ef

∞
= 2.28 eV in the oxygen-rich limit and

−0.82 eV in the oxygen poor limit. This result means
the formation of oxygen vacancies becomes thermody-

namically favored when the chemical potential of oxygen
µO becomes less than ≈ −2.3 eV. To translate this into
experimental conditions, by using the relation

µO(T, pO2
) =

1

2
gO2

(T ) +
1

2
kBT ln

{ pO2

1 atm

}

, (6)

where values of gO2
(T ) are taken from experiment,64 we

find that for a partial pressure of oxygen of 10−7 torr,
µO = −2.3 eV corresponds to a temperature of 1000 K.
Another useful comparison is to SrTiO3 where the the-
oretically computed formation energy is much larger at
∼ 6 eV in the oxygen rich limit.65 Despite this large value,
it is well known that oxygen vacancies can be formed in
SrTiO3 easily in vacuum at high temperatures. Com-
pared to SrTiO3, LaNiO3 has a much stronger preference
for oxygen vacancy formation.
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TABLE VI. Energy barrier, Eb, computed using NEB as a
function of number of atoms.

# of atoms 4 9 39 79
Eb (eV) 1.16 1.27 1.37 1.24

D. Energy barrier for vacancy propagation

The mobility of oxygen vacancies plays an important
role in the annealing, oxidation, and reduction of metal
oxides. To get an idea of the mobility of oxygen va-
cancies in LaNiO3, we performed nudged-elastic-band
(NEB)66 calculations for a vacancy propagating from one
site to the nearest equivalent site. In bulk LaNiO3 (Sec-
tion IIIA, all O sites are related by symmetry so there
is a single energy barrier to be computed. The NEB
calculation determines the most favorable reaction path
for vacancy propagation and the energy profile along the
path. The energy barrier height along the path is a mea-
sure of the defect mobility.
Unlike calculation of the formation energy described

in a previous section, the NEB requires a series of total-
energy calculations with a fixed number of atoms, and
therefore we expect the LDA to be sufficient for this com-
putation. Table VI shows the calculated barrier height
Eb using several supercells. One can see that Eb changes
little with increasing supercell size. The 4-atom cell NEB
calculation is based on a 5-atom parent unit cell of bulk
LaNiO3 that corresponds to an ideal cubic perovskite
structure which has higher symmetry than the actual
ground state of LaNiO3. However, one can see that this
calculation already provides a good estimate for the NEB
energy barrier height.
Our best estimate for the barrier height obtained with

the 79-atom supercell is 1.24 eV. We can compare this re-
sult to the corresponding barrier height of 0.6 eV for oxy-
gen vacancy in SrTiO3.

67 Thus, we conclude that oxygen
vacancies in LaNiO3 might be happier to form from the
energetic viewpoint but are much less mobile than oxy-
gen vacancies in SrTiO3. Transition state theory allows
us to quantify this difference: at room temperature, a va-
cancy diffuses to a neighboring site in ∼1 ms in SrTiO3

while it takes ∼2 years for it to happen in LaNiO3.

E. Vacancy interactions

To understand the segregation tendencies of oxygen
vacancies in LaNiO3, we performed total-energy calcu-
lations using 2 × 2 × 2 supercells containing two oxygen
vacancies. If we ignore the effects of distortion of the
lattice away from the ideal perovskite structure, there
are 7 distinct ways to arrange two oxygen vacancies in
a 2 × 2 × 2 supercell. These are shown schematically in
Fig. 10. We performed structural relaxations on these 7
systems keeping the supercell shape and volume fixed.
The formation energy of a pair of oxygen vacancies

Oxygen vacancy

A cation sites

(a) (b) (c) (d)

(e) (f) (g)

d = 1.0 a d = 0.7 a d = 1.0 a d = 0.9 a

d = 1.4 a d = 1.4 a d = 1.7 a

FIG. 10. (Color online) Schematic illustration of the 7 distinct
configurations for two oxygen vacancies in a 2×2×2 LaNiO3

supercell. The solid blue lines indicate the volume of the
supercell. Dashed black lines indicate the 8 interior pseudo-
cubic 1×1×1 cells (each has one formula unit). The positions
of the two vacancies are indicated by the blue squares. As
the legend in the lower right shows, the vacancy position is
at the center of a square (the white hole) and A site cations
(La) are on the corners of the square. The orientation of the
square shows the plane bisecting the line between the two
Ni neighboring a vacancy. The approximate distance between
two vacancies for each case is indicated in units of the 1×1×1
pseudocubic lattice constant a.

TABLE VII. Divacancy binding energies computed using
Eq. (8) in a 2× 2× 2 supercell. The configurations are those
shown in Fig. 10. The (shortest) relaxed distance between
the vacancy pair for each configuration is given in units of
the pseudocubic lattice constant a.

Divacancy configuration (a) (b) (c) (d) (e) (f) (g)
Vacancy separation (a) 1.0 0.7 1.0 0.9 1.4 1.4 1.7
Ebind

2VO
(eV) −0.38 0.38 0.13 0.23 0.40 0.37 0.15

(divacancy) is given by

Ef
2VO

(µO) = E(2VO)− E(bulk) + E(O2) + 2µO. (7)

However, it is more informative to consider the binding
energy of the divacancy given by

Ebind
2VO

= Ef
2VO

− 2Ef
VO

= E(2VO)− 2E(VO) + E(bulk) .
(8)

This is the energy of the divacancy relative to a pair of
vacancies at infinite separation. This binding energy does
not depend on the chemical potential. A negative bind-
ing energies mean the divacancy configuration is more
favorable than separated vacancies.
The binding energies are presented in Table VII. Di-

vacancy configuration (a) from Fig. 10 is the only stable
case. Therefore, vacancies generally repel each other so
there is an energy barrier for them to cross before forming
the stable bound structure (a).
In configuration (a), the vacancies line up along a pseu-

docubic axis and are on opposite sides of one Ni atom. A
similar observation was made by Cuong et al.67 in their
study of oxygen vacancies in perovskite SrTiO3. These
authors referred to such a configuration of a pair of va-
cancies as an apical divacancy. They calculated the band
structure of SrTiO3 with an apical divacancy and found
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FIG. 11. (Color online) Band structure of a 2×2×2 supercell
with an apical divacancy, projected on the d3z2−r2 Wannier
functions of the Ni atoms nearest to vacancies.

that a low-energy flat defect band (localized state) forms
in the bulk band gap. The stability of the divacancy is
then attributed to the low-energy nature of the defect
state: electrons prefer to fill these states instead of those
of the isolated vacancy.
Figure 11 shows our computed band structure for the

stable divacancy configuration in LaNiO3. Although in
the case of LaNiO3 there is no band gap, we see that a
nearly flat band forms below the Fermi level. Thus, by
analogy with SrTiO3, we can conclude that the apical
divacancy creates favorable low-energy localized states
for electrons to fill thereby rationalizing the stability of
the divacancy configuration.

F. Oxygen reduced lanthanum-nickelate phases

When the number of vacancies increases and reaches
finite concentrations, phases of lanthanum nickel ox-
ide other than the perovskite formula (LaNiO3) are
stabilized.68,69 In this section, we examine a number of
such LaNiO3−δ structures where the oxygen deficiency
0 ≤ δ ≤ 1, and for simplicity, focus primarily on the
effect of the oxygen vacancies on the lattice parameters
of the materials. The primary reason is that such results
are useful for experimental determination of approximate
oxygen content of a new material or thin film since mea-
surements of lattice parameters are straightforward using
x-ray methods. While it is well know that the density of
defects in oxides modifies their lattice parameters, the
lack of reliable data on a wide range of oxygen content
makes this structure-property relationship in LaNiO3−δ

structures a subject where first principles theory can pro-
vide useful guidance.
In our analysis, we limit ourselves to those materials

which are derived from perovskite LaNiO3 by lining up
the oxygen vacancies along the pseudocubic axes. This
decision is based on our results from the previous section,

0.0 0.2 0.4 0.6 0.8 1.0
x

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

c/
a

LaNiO3−x

FIG. 12. (Color online) c/a as a function of O vacancy con-
centration in tetragonal LaNiO3−δ .

showing that divacancies are most stable when aligned
along a pseudocubic axis, and due to experimental ev-
idence on actual materials.68,69 In addition, to simplify
the calculations and ease the comparison of various struc-
tures, we enforce tetragonal symmetry of the Bravais lat-
tice in our calculations so that the in-plane lattice were
equal (a = b). While this is a theoretical restriction for
bulk phases of LaNiO3−δ, pragmatically the use of tetrag-
onal symmetry is justified by the fact that thin films of
LaNiO3 are typically grown on the substrates with square
in-plane symmetry, such as (001) LaAlO3 and SrTiO3.
The epitaxial constraint then forces a tetragonal struc-
ture on the thin film. For what follows, we used n×n×1
supercells, considered n ≤ 3, and relaxed all atomic po-
sitions and the two lattice parameters a and c.

Figures 12 and 13 show the dependence of the c/a ra-
tio and unit cell volume on the oxygen vacancy concen-
tration δ. One can see that c/a ratio decreases mono-
tonically by about 15% as δ changes from 0 to 1. The
volume, on the other hand, remains almost constant for
δ up to ∼ 0.4 and then decreases. The comparison to
available experimental data is fair especially given the
wide spread in nominally identical experimental systems
at δ = 0.5. Smaller scale discrepancies are also likely due
to the fact that we enforced orthogonality for La2Ni2O5

systems (with in-plane lattice constants a = b) whereas
experimentally they were found to be monoclinic.68

For the case of LaNiO3 thin films, we calculated the
dependence of the relaxed out-of-plane parameter c/a
for LaNiO3−δ systems strained to LaAlO3 substrate (see
Fig. 14). We find that in this case the c/a ratio decreases
less rapidly that for the bulk cases as it becomes ∼ 10%
smaller as δ goes to 1. This data can be used to calibrate
the oxygen content of LaNiO3 thin films based on their
c/a parameters.
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FIG. 13. (Color online) V/V0 as a function of O vacancy
concentration in tetragonal LaNiO3−δ . The labels ‘Exp 1’
and ‘Exp 2’ denote results from Refs. 68 and 69, respectively.
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FIG. 14. (Color online) c/a as a function of O vacancy con-
centration in tetragonal LaNiO3−δ . The in-plane lattice pa-
rameters are strained to those of bulk LaAlO3.

IV. SUMMARY

We performed first-principles study of properties of
oxygen vacancies in LaNiO3. Our analysis of the elec-
tronic structure of LaNiO3 with an isolated neutral oxy-
gen vacancy shows that introduction of this defect results
in the formation of a localized states with the energy
∼ 1.5 eV below the Fermi level. These states accept the

two electrons that are released upon removal of a neu-
tral atom from the material. Thus, an oxygen vacancy
does not act as a donor in the sense of adding mobile
carriers at the Fermi level; instead, each vacancy donates
an electron to localized states on the two Ni ions neigh-
boring the vacancy and thus creates two Ni2+ ions. If
we choose the oxygen vacancy to occur between to Ni
separated by a pseudocubic lattice constant along the z
direction, then the localized states accepting electrons
are essentially the d3z2

−r2 orbitals of the two Ni ions ad-
jacent to the vacancy. The d3z2

−r2 orbitals on these two
Ni ions form narrower bands and are at lower energies
when compared to bulk-like Ni ions that are fully oxygen
coordinated. Many of these electronic state modifica-
tions are in agreement with previous studies of surfaces
of (001) NiO2-terminated LaNiO3 films where the sur-
face Ni atoms have missing oxygen neighbors and thus
have very similar densities of states for the Ni d3z2

−r2

orbitals.18,25,30

We also calculated the basic thermodynamic and ki-
netic properties of oxygen vacancy such as the vacancy
formation energy and energy barrier for vacancy propa-
gation. We find that formation of oxygen vacancies in
LaNiO3 becomes thermodynamically favorable for oxy-
gen chemical potential µO below −2.3 eV. The energy
barrier for oxygen vacancy diffusion was found to be
1.24 eV. These results allow us to make a comparison
to SrTiO3 and conclude that oxygen vacancies are easier
to form in LaNiO3 compared to SrTiO3 but are much
less mobile.
Finally, we analyzed the segregation tendencies of oxy-

gen vacancies by looking at the energetics of a pair of oxy-
gen vacancies. Oxygen vacancies are found to prefer to
form lines along pseudocubic axes. For finite concentra-
tions of oxygen vacancies, we described the dependence of
lattice parameters on vacancy concentration. Our results
may be useful for experimentalists as a straightforward
approach to determine the oxygen vacancy concentration
based on the lattice parameters measurements.
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