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The hyperfine field from dynamically polarized nuclei in n-GaAs is very spatially inhomogeneous, as the

nuclear polarization process is most efficient near the randomly-distributed donors. Electrons with polarized

spins traversing the bulk semiconductor will experience this inhomogeneous hyperfine field as an effective

fluctuating spin precession rate, and thus the spin polarization of an electron ensemble normal to the fluctuating

hyperfine fields will relax. A theory of spin relaxation based on the theory of random walks is applied to such

an ensemble precessing in an oblique magnetic field, and the precise form of the (unequal) longitudinal and

transverse spin relaxation is analytically derived. To investigate this mechanism, electrical three-terminal Hanle

measurements were performed on epitaxially grown Co2MnSi/n-GaAs heterostructures fabricated into electrical

spin injection devices. The proposed anisotropic spin relaxation mechanism is required to satisfactorily describe

the Hanle lineshapes when the applied field is oriented at large oblique angles.

Introduction. — The understanding of electrical injection

and detection of spin in ferromagnetic/semiconductor devices

has progressed significantly over the past decade.1,2 A key

obstacle for interpreting spin transport experiments near the

metal-insulator transition has been the complicating presence

of dynamically polarized nuclear spins.3–5 In the process of

dynamic nuclear polarization (DNP), the electron spin polar-

ization, maintained out of equilibrium optically or electrically,

is transferred to the nuclear system over long time scales via

the hyperfine interaction.6–10 The process can produce 99%

polarized nuclei at room temperature in SiC and induce nu-

clear fields up to 5.3 T in GaAs. The nature and distribution

of the electronic states controls the properties of the result-

ing effective hyperfine fields from DNP; for instance, electron

spins in itinerant states interact rapidly with a multitude of

nuclei, which dilutes the effect and leads to inefficient nuclear

polarization. Spins situated at impurity sites, however, inter-

act with many fewer nuclei, which promotes a more efficient6

DNP. At the doping levels examined here, the different donor

wave functions overlap often but do not completely fill the

bulk crystal, which consequently results in a high degree of

nuclear field inhomogeneity [see Figure 1].11,12 Previous de-

scriptions of the spin transport dynamics in n-doped semi-

conductors with spin drift-diffusion equations5,13–17 have ne-

glected this essential inhomogeneity of the nuclear field.

In the past, it has been sufficient to treat the nuclear po-

larization as a mean field and to assume only a single spin

lifetime. This has been adequate to account for the magni-

tudes of the hyperfine fields, although there have always been

discrepancies when quantitatively modeling Hanle effect ex-

periments. It has been impossible to model lineshapes for dif-

ferent degrees of non-collinearity with a single spin lifetime.5

Here we predict a new spin relaxation mechanism in semi-

conductors that occurs when inhomogeneous effective mag-

netic fields are present, such as arise from polarized nuclei.

The mechanism is anisotropic since only those components

of the electron spin relax which are normal to the effective

FIG. 1. (Color online) (a) electron spins (spheres with spin vectors)

in n-doped GaAs. Bumpy (red) regions depict the presence of donors

and nuclear fields generated by dynamic nuclear polarization. (b)

The spin rotation caused by one electron spin entering and departing

a DNP region. (c) Experimental geometry with θ being the angle

between the applied field and sample normal.

magnetic fields. The requirement of the electron spin and

effective magnetic field being non-collinear is met in nearly

all DNP experiments since otherwise detecting the hyperfine

field is difficult.8,18 Intermediately n-doped GaAs, under the

conditions of DNP, offers a testbed for our theory where the

inhomogeneity manifests itself as a bipartite field with val-

ues BBB0 or BBB0 +BBBN with BBB0 being an applied magnetic field

and BBBN the nuclear field induced by DNP near a donor. The

anisotropy of the spin relaxation can be probed by varying the

angle of applied field with respect to the direction of injected

spin since the nuclear field orientation is largely determined
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by the applied field. We demonstrate such a system experi-

mentally and show that measurements of the steady state spin

polarization are consistent with the devised inhomogeneity-

induced anisotropic spin relaxation mechanism. The theory

described in this Rapid Communication is broadly applica-

ble to a variety of situations where the injected electron spin

is non-collinear to the nuclear fields,19–22 including both via

optical and electrical spin injection, and potentially even up

to room temperature in semiconductors, such as SiC, where

room-temperature DNP has been demonstrated.10

Theory. — The theoretical description presented herein can

be understood qualitatively by examining Figure 1, wherein

the inhomogeneity of the magnetic field is represented by ran-

dom placement of distortions (in red) signifying both the pres-

ence of a donor atom and a DNP-induced nuclear field. Elec-

tron spins cross between these donor regions and regions in

between donors, which lack the DNP-induced nuclear field.

This transit acts on the spin similarly to an effective fluctuat-

ing Zeeman field. The lower part of Figure 1 shows how the

inhomogeneity relaxes the spin; in general the nuclear field

is non-collinear with the applied field, which causes the pre-

cession axis to stochastically modulate when the spin changes

field regions. When the transit time between these regions is

much faster than the change in precession rate experienced

by the spin upon transit, then the regime of spin relaxation

corresponds to the motional narrowing regime. We present a

general form of the theory of spin relaxation in the inhomoge-

neous nuclear field produced by DNP, and specifically within

the motional narrowing regime we obtain compact analytic re-

sults that can be readily incorporated into spin drift-diffusion

theories.

We now present a calculation of the spin relaxation of a

spin ensemble, SSS, ensuing from the aforementioned theory and

assumptions. In other words we would like to solve for the

spin relaxation due to the following precession:

dSSS(t)

dt
= γ[BBB0 +BBBn(t)]× SSS(t), (1)

where the spatial inhomogeneity of the nuclear field is writ-

ten as a time-dependent nuclear field that takes on only two

possible values of either bbbn or 0. Since BBBn(t) changes rapidly,

the first approximation is to replace it with its average value:

〈BBBn(t)〉= bbbn/2 with

bbbn = bnuc〈III〉=
bnucSSS · (BBB0 + beSSS)

|BBB0 + beSSS|2 + ξB2
ℓ

(BBB0 + beSSS), (2)

where III is the nuclear spin, bnuc is the Overhauser coefficient,

be is the Knight coefficient, and
√

ξBℓ denotes the strength

of the random local field. The Knight field allows the nuclear

field to be non-collinear to the applied field.

Since the average nuclear field is static, that alone will not

relax the spin; temporal fluctuations around the average are

required:

dSSS(t)

dt
= γ[BBB0 +

1

2
bbbn +

1

2
bbbn f (t)]× SSS(t), (3)

where f (t) is a stochastic function. f (t) is equal to +1 (−1)

for an average time interval 1/kn (1/k0), where 1/k0 (1/kn)

is the average time the spin experiences the field BBB0 (BBB0 +BBBn)

before that field changes. We would like to find the dissipative

effects from the time-dependent field so we will ignore the

static applied field and average nuclear field:

dSSS(t)

dt
=

γ

2
f (t)bbbn × SSS(t) = f (t)ΩΩΩ ·SSS(t), (4)

where ΩΩΩ(t) is the skew-symmetric matrix

ΩΩΩ =
γ

2
bnΩ̂ΩΩ =

γ

2
bn





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0





≡
γ

2
bn





0 −cosα sinαsin β
cosα 0 −sinαcosβ

−sinαsin β sinαcosβ 0



 , (5)

where α and β are the spherical coordinates of the nuclear

field. Depending on the value of f (t), the solution to the pre-

cession equation in between field switchings is

SSS(t) = eΩΩΩt ·SSS0, SSS(t) = e−ΩΩΩt ·SSS0, (6)

where SSS0 is the initial spin vector.

The time evolution of the spin ensemble can be computed

by the theory of continuous-time-random-walks.23–30 The dif-

ficulty of the theory is reduced since the field modulates be-

tween only two values.31,32 The polarization function is a re-

sult of random walks between the two spin environments:

P(t) =
1

2

[

eΩΩΩtΦn(t)+

∫ t

0
Φ0(t − t ′)e−ΩΩΩ(t−t′)Ψn0(t

′)eΩΩΩt′dt ′+

∫ t

0

∫ t′

0
Φn(t − t ′)eΩΩΩ(t−t′)Ψ0n(t

′− t ′′)e−ΩΩΩ(t′−t′′)Ψn0(t
′′)eΩΩΩt′′dt ′′dt ′

+ ...+ signs of ΩΩΩ switched and n ↔ 0

]

·SSS0,

where Ψi j are wait-time distributions to transition between state i to state j, and Φi are the survival probabilities in state
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i. Using exponential wait-time distributions leads to:

PPP(t) =
1

2

[

e(ΩΩΩ−kn)t +

∫ t

0
e(−ΩΩΩ−k0)(t−t′)kne(ΩΩΩ−kn)t

′
dt ′

+

∫ t

0

∫ t′

0
e(ΩΩΩ−kn)(t−t′)k0e(−ΩΩΩ−k0)(t

′−t′′)kne(ΩΩΩ−kn)t
′′
dt ′′dt ′

+ ...+ signs of ΩΩΩ switched and n ↔ 0

]

·SSS0. (7)

Utilizing the Laplace transform and its convolution properties,

the polarization function in the Laplace domain simplifies to

P̃PP(s) =
1

2

[

(R̃0 + R̃n +(k0 + kn)R̃0R̃n)
] ∞

∑
j=0

(k0knR̃0R̃n)
j ·SSS0,

(8)

with

R̃0(n) =
1

s+ k0(n)±ΩΩΩ
, (9)

which has a Laplace transform equal to

P̃PP(s) =
s+ k0 + kn

s(s+ k0 + kn)−A
·SSS0 = M̃(s) ·SSS0. (10)

where

A =−(kn − k0)ΩΩΩ+ΩΩΩΩΩΩ. (11)

This general expression can be analytically transformed to the

time domain.33

We now apply the approximation of fast transitions,

k0,n >> γBn. To leading order in s, M̃(s) = [s1−A/(k0 +

kn)]
−1 which is inverted to be M(t) = eAt/(k0+kn) and then

ṖPP(t) = A
k0+kn

PPP(t). The next order correction yields33

ṖPP(t) =
( A

k0 + kn

−
AA

(k0 + kn)3

)

PPP(t) (12)

which when written out to second order in ΩΩΩ becomes

dPPP(t)

dt
=−

1

4

γ2

k0 + kn

[

1−
(kn − k0

k0 + kn

)2]

bbbn × (PPP(t)× bbbn)

−
γ

2

kn − k0

k0 + kn

bbbn ×PPP(t). (13)

Only the first term has the capability to relax the spin ensem-

ble. The second term is a correction to the Larmor precession.

By combining spin effects such as spin injection, other spin

relaxation sources, and adding back in the applied and average

nuclear field in Eq. (3), we can write the following equation

to encompass the (non-diffusive) spin evolution:

dPPP(t)

dt
= γ[BBB0 +

k0

k0 + kn

bbbn]×PPP(t)

−
1

τs

PPP(t)− γ2τbbbn × (PPP(t)× bbbn)+GGG, (14)

where

τ =
1

4

1

k0 + kn

[

1−
(kn − k0

k0 + kn

)2]

, (15)

GGG||x̂ is the spin generation vector, and τs is other spin relax-

ation mechanisms which we assume to be isotropic. We have

simulated the spin evolution with a Monte Carlo approach and

found agreement with solutions to the differential equation

(14).33

Experiment. — To test the theory, we probed the spin polar-

ization P in n-GaAs using electrical Hanle measurements in a

standard three-terminal (3T) configuration. The sample used

was an epitaxially grown Co2MnSi/n-GaAs (100) heterostruc-

ture. A 2.5 µm thick Si-doped n = 4× 1016 cm−3 n-GaAs

channel was grown on an insulating GaAs (100) substrate. To

thin the naturally occurring Schottky barrier and create a tun-

nel barrier for efficient spin injection34, a 15 nm n → n+ tran-

sition layer (n = 5 × 1018 cm−3) was grown followed by a

18 nm n+ layer. 5 nm of ferromagnetic (FM) Heusler alloy

Co2MnSi was then grown, followed by Al and Au capping

layers.

FIG. 2. Shown is the oblique-angle 3T Hanle signal measured at

60 K. The black lines are the experimental data, with a second or-

der (magnetoresistance) background removed and the different an-

gles artificially offset. Shown in gray is the numerical solution to Eq.

16 for the device geometry, (a) without the anisotropic hyperfine re-

laxation terms and (b) with the anisotropic hyperfine relaxation terms

included. One set of fitting parameters was used to simultaneously fit

all the angles. These fitting parameters for both situations are shown

in Table I. The anisotropic hyperfine terms improved the fit the most

for larger oblique angles.

The structures were patterned into lateral spin injection

devices35 using standard photolithographic techniques. The

injection contact was 5 µm × 50 µm. Spin was electrically in-

jected into the n-GaAs channel by imposing a DC current bias

(800 A/cm2 at 0.51 V) across the FM/n-GaAs interface. For

the measurements discussed here, the interface was forward-
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biased, so that electrons flowed from the semiconductor into

the ferromagnet. In a 3T measurement the FM/n-GaAs inter-

face voltage is measured by measuring the voltage with re-

spect to a remote contact outside of the charge current path.

The spin polarization in the channel directly below the in-

jection contact was probed by measuring the change in the

3T voltage ∆V3T upon application of an external out-of-plane

magnetic field B. This transverse magnetic field serves to pre-

cess the spins and destroy the spin polarization in the channel

via the Hanle effect1.

The influence of DNP on the spin polarization in our sam-

ples is most clearly seen by measuring the 3T Hanle effect

when the applied field is tilted at small oblique angles θ away

from the vertical direction and toward the easy axis of the fer-

romagnetic contact, as shown in Fig. 1(c). The oblique ge-

ometry allows for a significant hyperpolarization of the nuclei

(Overhauser effect). Satellite peaks are then observed that cor-

respond to fields at which the applied dephasing transverse

field is partially cancelled by the Overhauser field5. (A less

prominent satellite peak at very low fields is due to the Knight

field of the polarized electrons.) The effectiveness in repro-

ducing the oblique 3T Hanle lineshapes therefore serves as a

test of the validity of the model used to account for the affects

of DNP.

Discussion. — Thus far we have only examined the non-

diffusive dynamics. However the importance of spin diffusion

on Hanle curves has been well-documented.35 In light of the

theory hitherto presented, we write the following spin diffu-

sion equation:

dPPP(t)

dt
= γ[BBB0 +

k0

k0 + kn

bbbn]×PPP(t)−
1

τs

PPP(t)− γ2τbbbn × (PPP(t)× bbbn)+GGG+DS∇2PPP+
JJJ

ne
·∇PPP, (16)

which is identical to Eq. (14) except for the addition of the

last two terms which describe spin diffusion and spin drift.

The physical device geometry was cast into a 1D finite-

element model, where spin may drift and diffuse laterally in

the sample plane. The simplification to 1D is appropriate at

cryogenic temperatures given the device aspect ratio, where

the spin diffusion length in GaAs is larger than the chan-

nel thickness. Eq. 16 is iterated forward until steady state

( dPPP
dt

= 0) is reached. The standard form for the Overhauser

field5 is used to calculate bbbn at each spatial coordinate. Upon

solving for the steady-state spatially dependent spin polariza-

tion in the channel at each applied field, the 3T Hanle signal

∆V3T is extracted by projecting the spin polarization at the in-

jector contact PPPin j onto the magnetization of the injector fer-

romagnet MMM,1 i.e ∆V3T ∝ PPPin j ·MMM. A single overall scaling

factor is applied to compare the model to the data.

In Figure 2, the results of measuring the oblique angle de-

pendence of the 3T Hanle signal at 60 K are shown, along with

the corresponding fits to the model described above. For com-

parison, the effects of adding the anisotropic hyperfine relax-

ation terms discussed previously are shown side-by-side with

the fits without the anisotropic hyperfine relaxation terms. In

both cases, a single set of parameters are used to fit the data

at all angles. The results show that adding the anisotropic hy-

perfine terms noticeably improve the fitting of the Overhauser

peak at large oblique angles, for which diffusion alone sys-

tematically overestimates the magnitude and underestimates

the width of the satellite peak. Without anisotropic relax-

ation, the height and width of the satellite are determined

only by the spatial variation of the Overhauser field on the

scale of the electron spin diffusion length. This mechanism

alone, however, is not sufficient to explain the broadening and

suppression at larger oblique angles. Inclusion of the addi-

tional smaller length-scale nuclear field inhomogeneity, via

the anisotropic term, further reduces and broadens the Over-

hauser peaks. Table I contains the parameters used to fit the

3T signal both without and with the anisotropic hyperfine

terms. Note that the addition of the anisotropic mechanism

does not change the other fitting parameters significantly, and

the isotropic lifetime is essentially unchanged. Measurements

were also taken as a function of injection bias current at fixed

angle. The fits to the model in this case are comparable to

those for the angle dependence at fixed bias. Discrepancy be-

tween model and experiment is attributed to a ± 1◦ uncer-

tainty in the angle of field with respect to sample. Addition-

ally the obtained small values for kn and k0 are only on the

edge of the strong motional narrowing approximation.

Parameter w/o aniso. term w/ aniso. term

τs 3.3 ns 3.4 ns

bnuc −1.50×104 Oe −1.67×104 Oe

be −82 Oe −73 Oe
√

ξBL 104 Oe 95 Oe

k0 −− 2.1 ns−1

kn −− 0.45 ns−1

TABLE I. Fitting parameters for curves in Figure 2.

Oblique angles larger than ±20◦ were experimentally in-

accessible due to the switching of the ferromagnetic contact

when the in-plane component of the field reached the coer-

cive field. Figure 3 shows the solutions of Eq. (16) for two

larger angles, 30◦ and 45◦. The trend followed at these higher

angles is similar to what is viewed at the lower ones – the

anisotropic terms tend to decrease the magnitude of the Over-

hauser peak (black) when compared to their exclusion (red).

If ferromagnetic contacts with larger coercivity are available,

a more rigorous test of the predictions of this theory will be

possible.

Now we consider how the anisotropic mechanism may also
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FIG. 3. Large angle solutions to the spin diffusion model, Eq. (16),

with and without the anisotropic spin relaxation terms.

be evident in optical spin injection experiments.7,8,19 In these

experiments, the nuclear field is extracted by taking the dif-

ference of the total precession frequency and the precession

frequency due solely to the applied field.22 As we have dis-

cussed here, due to the inherent inhomogeneity of the nuclear

field, the inferred nuclear field is actually an average nuclear

field in the probed macroscopic optical spot size. From Eq.

(14), the inferred nuclear field is then BBBn = k0bbbn/(k0 + kn)
which leads to the anisotropic term being

− γ2 (k0 + kn)
2

k2
0

τBBBn × (PPP(t)×BBBn). (17)

We predict this term to be observable in time-resolved Faraday

or Kerr rotation experiments.

Conclusions. — The influence of DNP on spin evolution in

semiconductors has been observed for many years. However

the inherent inhomogeneity of the large nuclear fields has been

neglected as a spin relaxation process. We have shown that

the nuclear field inhomogeneity leads to an anisotropic spin

relaxation mechanism and we have demonstrated that this new

mechanism can account for the oblique Hanle measurements

for electrical spin injection into n-GaAs.
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10 A. L. Falk, P. V. Klimov, V. Ivády, K. Szász, D. J. Christle, W. F.

Koehl, A. Gali, and D. D. Awschalom, Physical Review Letters,

114, 247603 (2015).
11 J. Huang, Y. S. Chen, A. Ludwig, D. Reuter, A. D. Wieck, and

G. Bacher, Appl. Phys. Lett., 100, 132103 (2012).
12 K. D. Christie, C. C. Geppert, S. J. Patel, Q. O. Hu, C. J. Palm-

strøm, and P. A. Crowell, submitted (2014).
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