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Topological effects on transition temperatures and response functions in

three-dimensional Fermi superfluids

Brandon M. Anderson,∗ Chien-Te Wu, Rufus Boyack, and K. Levin

James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA

We investigate the effects of topological order on the transition temperature, Tc, and response
functions in spin-orbit coupled fermionic superfluids with a transverse Zeeman field in three dimen-
sions. Our calculations include fluctuation effects beyond mean-field theory and are compatible with
f -sum rules. In the topological phase we find that Tc can be as large as 10% of the Fermi temper-
ature, which should be experimentally accessible in cold gas experiments. At higher temperatures,
above Tc, the spin and density response functions provide signatures of topological phases via the
recombination or amplification of frequency dependent peaks.

The excitement surrounding topological superfluids1–4

derives from both their scientific as well as technological
potential. Inspired by the canonical topological super-
fluid, a spinless px+ipy superfluid

1, it has been argued5–7

that some combination of spin-orbit coupling (SOC), Zee-
man field, as well as superfluid pairing can artificially
produce such a state. This was explored via the prox-
imity effect5 in solid state systems and using intrinsic
pairing in ultracold atomic Fermi gases6,8–11.

In the present paper we address this second case of
intrinsic pairing. A central goal is to determine how a
transition from a trivial to a topological phase is reflected
in the superfluid transition temperature Tc. This is par-
ticularly important since cold gas experiments have now
implemented spin-orbit coupling12–14 and, if Tc is suffi-
ciently large, will be able to address topological phases.
Calculations of Tc in a topological phase which, necessar-
ily go beyond previous15–21 mean-field approaches, are
not available. Indeed, topological order at the transition
is only a meaningful concept if Tc, itself, is computed in
the presence of a pairing gap. Thus, here we emphasize
the importance of fluctuations. In a topological phase
we find that Tc can be as large as 10% of the Fermi
temperature (TF ) which should be quite accessible ex-
perimentally. However, we find that these superfluids
self-consistently adjust to stabilize topological phases in
the lower Tc, BCS regime.

In addition to Tc, it is important to establish signatures
of topological order as reflected in the band-structure.
While there have been a number of proposals in the
literature16,17,22–25 we approach this challenge via stud-
ies of the finite temperature density-density and spin-spin
correlation functions, which should be accessible26 in fu-
ture experiments. We find that the position or threshold
of peaks in these responses reflects the topological na-
ture of the band-structure. Importantly, these response
functions are tightly constrained by sum rules. Our the-
oretical framework satisfies all sum rules, which serves as
a check on our calculations and implies these signatures
of topological order in response functions are unambigu-
ous. In the topological phase we find that a peak in the
density response is significantly amplified due to a sad-
dle point Van Hove singularity, often seen in correlated

superfluids27,28. In the trivial phase the spin response ex-
hibits two distinct peaks, which merge into a single peak
in the topological phase.
Topological superfluids.− The concept of topological

order is based on the Bogoliubov or fermionic quasi-
particle dispersion associated with a mean-field approx-
imation. We therefore begin with the Bogoliubov-de
Gennes (BdG) Hamiltonian for a spin-orbit coupled su-
perfluid:

HBdG =

(
H0 (k) ∆

∆∗ −H̃0 (k)

)
, (1)

where ∆ is a pairing gap and H̃0 (k) = σy [H
∗
0 (−k)]σy

is the time-reversed single-particle (hole) Hamiltonian.
Here the single particle Hamiltonian H0(k) = ξk +
h (k) · σ, where ξk = k2/2m − µ describes a free parti-
cle of momentum k = (kx, ky, kz), mass m, and chemical
potential µ; throughout we set ~ = kB = 1. The spin-
orbit coupling enters through the vector h (k) = h⊥ (k)+
h‖ (k) that couples the spin-1/2 operator σ = (σx, σy, σz)
to a Zeeman field h‖ (k) = bz ẑ and an in-plane SOC field
h⊥ (k) = λk⊥/m, with SOC strength λ.
Of significant theoretical interest has been isotropic

(Rashba) SOC, described by k⊥ = (kx, ky , 0) with an
out-of-plane momentum k‖ = k − k⊥ = (0, 0, kz); in the
main text we primarily consider this Rashba case. Note
that most experimental success12,13 has related to the
crossed-Raman configuration29,30 where k⊥ = (kx, 0, 0)
and k‖ = (0, ky, kz). We also considered this case; the
mathematical analysis is identical after appropriate re-
definition of k⊥ and k‖, and the results are rather simi-
lar.
There are four branches in the BdG eigenvalue spec-

trum, ηEαk for α, η = ±1 with the positive energy dis-
persion

Eαk =

√
ξ2k + |h|

2
+∆2 + 2α

√
ξ2k |h|

2
+∆2b2z. (2)

For the three-dimensional case, this leads to three dis-
tinct topological phases. The topological phase dia-
gram is specified by inequalities derived from solving
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E−(k‖,k⊥ = 0) = 0. No nodes appear when bz < ∆, cor-
responding to a non-topological or “trivial” superfluid.
If µ > 0 and (µ2 + ∆2) > b2z > ∆2, the topological su-
perfluid has four nodes (4-Weyl points) which emerge at

k2‖ = µ±
√
b2z −∆2. Finally, for arbitrary µ, the system

is a topological superfluid with two nodes (2-Weyl points)
when b2z > (µ2 + ∆2)15,16,24. For Rashba SOC, the dis-
persion around the nodes is linear in momentum, and is
described by a Weyl Hamiltonian with topologically pro-
tected nodes. For the crossed-Raman scheme the Weyl
points are instead topologically protected nodal rings24.
Along with the usual number equation determining µ,

central to a mean-field theory is the self consistent con-
dition or gap equation 15,16,24, which determines ∆. We
rewrite this suggestively as

Γ−1 (0, T ) =
1

2

∑

k

∑

ηαα′

δη,+1 − (ηf (Eαk) + f (ξα′k))

ηEαk + ξα′k

×vηαα′ (k,k) + g−1 = 0, (3)

where f(x) is a Fermi distribution and g < 0 is an at-
tractive interaction. Where relevant, we regularize inte-
grals by introducing a scattering length defined through
g−1 = m/4πa −

∑
km/k

231. The coherence factor
vηαα′ (k,k) (and its generalization, vηαα′ (k,k − q)), is
presented in the Appendix. Their specific form is irrele-
vant for the present discussion.
Fluctuation Formalism.− The transition temperature,

Tc, necessarily contains fluctuation effects32,33 which
serve to distinguish it from the lowest temperature, de-
noted T ∗, at which the mean-field gap equation satis-
fies ∆(T ∗) = 0. The fluctuations in question are non-
condensed pairs32,34. We choose these pairs in a spe-
cific manner32 to satisfy the Hugenholtz-Pines constraint,
making use of Eq. (3). Requiring that these pair excita-
tions are gapless in the ordered phase, we extend Eq. (3)
to finite Q ≡ (iω,q) (where iω is a Bosonic Matsubara
frequency) which leads to:

Γ−1 (Q, T ) =
1

2

∑

k

∑

ηαα′

δη,+1 − (ηf (Eαk) + f (ξα′k−q))

(ηEαk + ξα′k−q)− iω

×vηαα′ (k,k − q) + g−1. (4)

From the structure of Eq. (3) it is apparent that Γ (0, T )
depends on both the full energy spectrum Eαk as well
as the bare energy ξαk. Thus, one might expect (as im-
plemented in Eq. (4)), that the fluctuation propagator
Γ(Q, T ) should depend on an asymmetric combination of
bare and dressed Green’s functions35.
We next consider the propagator in Eq. (4) expanded

at small momenta, where (using Eq. (3)) Γ (Q, T ) ≈
a−1
0 (iω − ωq)

−1. Here temperature dependent a0 =(
∂iωΓ

−1 (Q, T )
∣∣
Q=0

and the T dependent pair disper-

sion is ωq = a−1
0

(
Γ−1 (q, T )− Γ−1 (0, T )

)
≈ q2⊥/2M⊥ +

q2‖/2M‖. We identify M⊥ (M‖) as the effective pair mass

for the component of momentum parallel (perpendicu-
lar) to the SOC vector. While it is sometimes possible to
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FIG. 1. Phase diagrams for the superfluid temperature Tc

and (where shown) the mean-field transition temperature T ∗.
The T = 0 topological phases are indicated by shaded regions
in light (dark) blue color with 2 (4)-Weyl points. The top two
panels show the dependence on either SOC strength λ (left) or
scattering length 1/kF a (right), with other parameters fixed.
The lower panels show Tc versus bz with λ/kF = 1 for both
panels, 1/kF a = −1 on the left and 1/kF a = 2 on the right.
Dotted lines indicate δµ = 0. Once a topological phase is
entered the system becomes more BCS-like.

calculate the effective pair masses M⊥, M‖ analytically,
in general this is not necessary. Rather, it suffices to cal-
culate numerically the second-order derivative at small
q36.
Notice that the small-Q form of Γ (Q, T ) reflects, up

to a constant, the non-interacting Green’s function of a
thermal Bose gas with pair dispersion ωq, at or below the
condensation temperature (Γ−1 (0, T ≤ Tc) = 0). We can
relate

∑
Q Γ (Q, T ) to a quantity proportional to the Bose

occupation number nB and write:

−
∑

Q

Γ (Q, T ) = a−1
0 nB = ∆2, at T = Tc. (5)

This last equality, which constrains Γ (Q, Tc) follows from
the fermionic self-energy. It characterizes the excitation
gap in the limit in which all pairs are non-condensed. The
condition for Tc is then simply obtained32–34 by equating
the constraint on ∆(Tc) via Eq. (5) with that obtained
from the mean-field gap equation in Eq. (3).
Importantly, this approach, which can be generalized

to any BCS-BEC mean-field theory, explicitly avoids the
nonphysical first order transition found in all other BCS-
BEC theories37. Interpreting Eq. (3) and Eq. (5), we see
that Eq. (3) is equivalent to setting the bosonic chemical
potential to zero below Tc and Eq. (5) guarantees that
the number of non-condensed bosons reaches a maximum
at Tc (which is determined by the fermionic pairing gap).
We will assume throughout that, above Tc, the mean-field
gap represents a reasonable (but not essential) approxi-
mation38 for the normal state ∆.
Phase diagram.− To understand the effects of SOC

and the Zeeman field on condensation and pairing, we
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numerically compute T ∗ and Tc, varying 1/kFa, bz, and
λ. Where relevant, we measure quantities in terms of
the Fermi momentum (kF ), energy (EF ), or temperature
(TF ) as defined with respect to the λ = bz = 0 limit.
It is convenient to define a shifted chemical potential,
δµ = µ − µ0, where µ0 = −Eso(1 + b2z/E

2
so)/2 if Eso ≥

bz and µ0 = −bz if Eso < bz; here the SOC energy is
Eso = λ2/m. In this way, a necessary (but not sufficient)
condition for a topological phase is that δµ > 0.

Figure 1 plots Tc and (in some cases) the pairing onset
temperature T ∗ as a function of either λ, bz or 1/kFa.
Dotted lines indicate where δµ = 0. Where relevant,
these plots are consistent with earlier work23. A close
analogy between varying λ and varying 1/kFa is seen in
Fig. 1(a) and Fig. 1(b). We define “weak” or “enhanced”
pairing relative to bz = 0. The former is associated with
small λ or negative 1/kFa while the latter corresponds
to either large λ or large positive 1/kFa. Thus, Fig. 1(c)
is characteristic of the generic weak pairing regime while
Fig. 1(d) is characteristic of the strong pairing case pro-
duced by either large 1/kFa or large λ.

We analyze the top two figures by focusing on a de-
creasing abscissa which effects a transition from a trivial
to topological phase (shown as shaded). In Fig. 1(a), cor-
responding to 1/kFa = 0 and bz = 2.5EF , this transition
is driven by varying the SOC strength λ. In Fig. 1(b) it
is driven directly by varying the scattering length 1/kFa;
somewhat after the point δµ > 0 is crossed, a further
decrease in 1/kFa (towards the BCS limit) allows the
system to reach a topological phase. Here we see a series
of two transitions from topologically trivial to 4-Weyl and
then to 2-Weyl superfluids. While there is some initial
decline in Tc with diminishing 1/kFa, the most signifi-
cant decrease in Tc occurs in the 2-Weyl case.

The next two panels contrast the regime of weak pair-
ing (Fig. 1(c)) with that of enhanced pairing (Fig. 1(d)).
In the first case, the system is BCS-like everywhere. In-
creasing bz gradually suppresses Tc and there is no clear
signature in Tc of the change from a trivial to a topo-
logical phase (shown as shaded in the figure). As shown
in Fig. 1(d), when the pairing is enhanced, Tc becomes
insensitive to variations in the Zeeman field until δµ = 0.
Shortly thereafter, the topological phase transition is
crossed and Tc rapidly declines.

We can see from the last figure, in particular, that the
satisfaction of the topological inequality and the δµ =
0 condition importantly define a transition (often quite
sharp, as in Fig. 1(d)) between a superfluid, characterized
by a larger gap, and larger pair mass, M⊥ ∼ 2m (i.e.,
more “BEC-like”), and a superfluid with a small gap,
∆/EF ≪ 1, and a small pair mass M⊥ ≪ m which is
“BCS-like”. The resulting behavior of Tc arises in the
topological phase because there is a competition between
the effects of a decreasing pair mass and a decreasing
mean-field pairing gap as bz increases. The net effect is
a lowering of Tc in the topological phase. This can, in
turn, be viewed as a form of BEC-BCS transition.

One can inquire as to why the topological transition

becomes more apparent (as reflected in Tc) on the strong
pairing side (Fig. 1(d)), whereas it is less evident (from
the perspective of Tc) when in the weak pairing limit
(Fig. 1(c)). These differences are reflected in the evo-
lution of the band-structure via a Van Hove singularity
as the topological transition is crossed. To address this,
Fig. 2 presents a constant energy contour plot for the
band +E−1,k. The two axes correspond to the in-plane
(k⊥) and out-of-plane (k‖) momenta. For definiteness,
we have chosen 1/kFa = 0 and µ(T ), ∆(T ) are deter-
mined for a temperature just above Tc. Local extrema
in this figure reflect Van Hove singularities, either at iso-
lated points or extended in a ring-like structure. Each of
the three panels in a given row corresponds to increasing
values of bz with only the left-most figures in the triv-
ial phase. The top three figures are in the weak pairing
regime whereas the bottom three figures are in the regime
of enhanced pairing.
A key observation from these figures is that in the weak

pairing limit there is a smooth evolution from a trivial
to topological phase, whereas for enhanced pairing the
band-structure evolves rather dramatically from a triv-
ial and BEC-like phase to a topological and BCS-like
phase. Indeed, the topological transition in the lower
panel is roughly correlated with the appearance of addi-
tional Van Hove singularities (as indicated). This is in
contrast to the upper panel where Van Hove singulari-
ties of the trivial and topological phases are relatively
unchanged. These figures help interpret the behavior ob-
served in Fig. 1(c) and Fig. 1(d).
Frequency dependent spin and density response func-

tions.− It is important to establish tightly constrained
experimental signatures of topological order. There are
proposals in the literature which suggest that the topo-
logical phase might be observed in atomic Fermi gases
through the compressibility κ16,22,23 or via radio fre-
quency (RF) based probes17. However, changes in κ
appear to reflect topology only in the limit of small
SOC16,23. RF experiments in principle measure the elec-
tronic dispersion, but resolution and finite temperature
broadening effects are not yet39 well controlled. Our ap-
proach is to study density and spin responses, and their
associated sum rules.
Here, as in previous work33 we consider the correlation

functions (above Tc) given by

χSiSj
(iω,q) =

∑

k

∑

αα′,ηη′

(
f(ηEαk)− f(η′Eα′k+q)

ηEαk − η′Eα′k+q + iω

)

× wαα′,ηη′(k,k + q). (6)

The density-density correlation function χρρ(Q) corre-
sponds to i = j = 0, with σ0 = 12, whereas i, j ∈ {x, y, z}
gives the corresponding spin-spin correlation function.
The differences between the density or spin responses
are the coherence factors wαα′,ηη′(k,k + q), which are
rather complicated and are presented in the Appendix.
As a numerical check on these calculations, the f -sum
rule for the density response and related sum rules33 for
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FIG. 2. Evolution of the dispersion as the topological tran-
sition is crossed by tuning bz. In the weak pairing limit
(top panel), the system smoothly evolves across the transi-
tion, whereas for enhanced pairing (bottom panel) there is a
more abrupt change in band-structure. In all plots we show
constant energy contours +E−1,k/EF at unitarity, with k⊥
and k‖ in units of kF . For panels (a)-(c) we set λ/kF = 0.5
and the Zeeman field bz/EF = 0.4, 0.6, 0.8, whereas for panels
(d)-(f) we set λ/kF = 1 and bz/EF = 1.2, 1.7, 1.8 respectively.
Only the left-most figures are in a trivial phase.

the spin response hold for all q.
Quite generally, the correlation functions for a paired

normal state can be decomposed into two parts; one in-
volving the difference: E(2,−)(k,q) = |E−1,k − E±1,k+q|
which enters as a thermal contribution (at T 6= 0), and
the other involving the sum: E(2,+)(k,q) = |E−1,k +
E±1,k+q|, which we call the multiparticle contribution.
We address the q = 0 spin response, χSiSj

(ω, 0), (where
i, j are x or y) so that inter-band terms dominate. Thus,
for the ±1 subscript in the density response, the −1 band
label yields the main contribution, whereas in the spin
response the +1 band label is most important.
Figure 3(a) shows χSxSy

(ω, 0) for both the trivial and
topological phases. In the trivial phase there are two
clearly resolvable peaks; the first peak is associated with
the thermal contribution and the second with the mul-
tiparticle contribution. By contrast, there is only one
peak in the topological phase. A related signature for
the Hall conductivity (in 2D) at T = 0, rather than, as
here, above Tc, was suggested earlier25.
Importantly, this provides a means of distinguishing

between the trivial and topological phases. We can an-
alytically identify the position of the maximum in the
first (thermal) peak, which is due to a flat band in
E(2,−)(k, 0), and appears at precisely 2bz. The thresh-
old for the second peak is ω1 ≡ minkE

(2,+)(k, 0). In the
trivial phase we find that, if µ > 0, ω1 = 2∆, whereas if
µ < 0, ω1 = 2(∆2 + µ2)1/2. Hence ω1 is strictly greater
than the frequency of the first peak (2bz), thus yielding
two distinct peaks in the response function. In the topo-
logical phase, ω1 = 2bz so that the two peaks merge.
We now focus on the density-density correlation func-

tion χρρ(ω,q), which is only non-zero when q 6= 0. This
is shown in Fig. 3(b) for the case of unitarity: 1/kFa = 0,
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FIG. 3. Contrast between topological (solid, red) and trivial
(dashed, black) phases of the frequency dependent spin-spin
(Fig. 3(a)) and density-density (Fig. 3(b)) correlation func-
tions. Both response functions are calculated at 1/kF a = 0
and λ/kF = 1, with respective wave-vectors of q = 0 and
q = 0.5kF ẑ for the spin and charge responses. The inset in
Fig. 3(b) shows the energy contours of E(2,+)(k,q)/EF in the
topological phase, with k⊥ and k‖ in units of kF . The dashed
lines highlight the saddle point Van Hove singularity whose
magnitude determines the frequency location of the peak re-
sponse in Fig. 3(b).

and we can again compare the trivial and topological
phases. Here λ/kF = 1 and we plot the imaginary

part of the response function, χ
′′
ρρ(q, ω)33, deep in the

topological phase (bz/EF = 2) and in the trivial phase
(bz/EF = 1.2) at q = 0.5kF ẑ and T = 0.21TF (just
above Tc).
In the trivial phase there are two peaks, one associ-

ated with thermal contributions involving E(2,−)(k,q)
and the second with the multiparticle component involv-
ing E(2,+)(k,q). In the topological phase, there is a large
peak at ω/EF = 0.6, which arises from a (2D) saddle
point Van Hove singularity contribution in E(2,+)(k,q).
This is associated with ∇kE

(2,+)(k,q) = 0, which (via
the density of states) enters as a denominator in the the
response functions. These saddle point Van Hove singu-
larity effects are well known27,28 and are illustrated in the
inset on the right. Importantly, here we observe that as
the system enters the topological phase they amplify the
peaks in the density-density correlation function, thus
helping to distinguish between the trivial and topologi-
cal phases.
Conclusions.− This paper addresses how an intrinsi-

cally produced condensation temperature varies across a
topological transition, induced by varying SOC, Zeeman
coupling, or the scattering length. Importantly, the intro-
duction of fluctuations necessarily introduces a feedback
of the topological band-structure into Tc. The passage
from the trivial to the topological phase is accompanied
by a transition in which the system is driven towards a
low Tc, more BCS-like phase with smaller pair mass and
smaller gap. Nevertheless, there is a range of bz in the
topological phase where Tc ∼ 0.1TF , which is experimen-
tally accessible31.
Because of difficulties in cooling in current experi-

ments, we also present methods of detecting the topo-
logical band-structure above Tc, exploiting frequency de-
pendent peaks in the density and spin responses. The
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topological transition appears in the spin response as a
recombination of two peaks, which are separate in the
trivial phase. In the topological superfluid, the dynam-
ical density response exhibits a greatly amplified peak
associated with a (2D) saddle point Van Hove singular-
ity.
Acknowledgements.− This work was supported by

NSF-DMR-MRSEC 1420709.
Note added.− Recently, we became aware of a comple-

mentary paper that considers fluctuation effects in spin-
orbit coupled superfluids with fixed relative population
density using a closely related formalism40.

I. APPENDIX: DERIVATION OF THE VERTEX

FUNCTION Γ (Q) AND COHERENCE FACTORS

Here we present derivations of the vertex function
Γ(Q), where Q ≡ (iω,q), along with the coherence fac-
tors vηαα′ (k,k − q) and wαα′,ηη′(k,k+ q), which ap-
pear in Eq. (4) and Eq. (6) of the main text. We begin
by writing the non-interacting Green’s function in terms
of projectors as follows

G0 (K) =
∑

α

P 0
α(k)

iν − ξαk
, (7)

where K ≡ (iν,k) and P 0
α(k) = 1

2Uk (1 + ασz)U
†
k is a

projector into the band α = ±1. The unitary matrix
Uk is the unitary operator that diagonalizes H0 (k) to
produce the single particle dispersion ξαk = ξk + α |h|.
Similarly, the Nambu Green’s function G (K) for a su-

perfluid can be written in terms of projectors as

G (K) = [iν −HBdG (k)]−1

=

(
G (K) F (K)

F̃ (K) G̃ (K)

)

=
∑

αη

Pηα

iν − ηEαk
, (8)

where we have used the inverse of the BdG Hamiltonian,
HBdG, to define the normal and anomalous Green’s func-
tions G(K) and F (K), along with their time-reversed

counterparts G̃(K) = iσy [G(−K)]T iσy and F̃ (K) =

iσy [F (−K)]
T
iσy. The projectors Pηα = ψηαψ

†
ηα are

constructed from the BdG eigenvectors

ψηα = Uk




α

√
1
2

(
1 + α ξk

E0k

)√
1
2

(
1 + αη ζαk

Eαk

)

η

√
1
2

(
1− α ξk

E0k

)√
1
2

(
1− αη ζαk

Eαk

)

αη

√
1
2

(
1 + α ξk

E0k

)√
1
2

(
1− αη ζαk

Eαk

)

√
1
2

(
1− α ξk

E0k

)√
1
2

(
1 + αη ζαk

Eαk

)




, (9)

where Uk = diag {Uk, Vk} rotates the particle (hole) sec-
tor to the spin-orbit basis with a unitary matrix Uk

(Vk), and we have defined θ = cos−1(bz/|h|), E0k =√
ξ2k +∆2 cos2 θ, and ζαk = E0k + α|h|. Note that ζαk

limits to ξαk as ∆ → 0 or bz → 0, and to
√
ξ2k +∆2+αbz

as λ→ 0.

For convenience, the 4 × 4 projector matrices can be
expressed as four 2× 2 sub-matrices as

Pηα(k) ≡

(
Pηα(k) Qηα(k)
Rηα(k) Sηα(k)

)
. (10)

The Green’s function G (K) is found from the appropri-
ate 2× 2 sub-matrix with the corresponding projector

Pηα(k) =
1

4E0kEαk
Uk

(
(E0k + αξk) (Eαk + αηζαk) α∆2 sin θ cos θ

α∆2 sin θ cos θ (E0k − αξk) (Eαk − αηζαk)

)
U †
k. (11)

We can now define a quantity χ (Q), known as the
pair susceptibility, which has been introduced in previous
papers; it is a natural extension of χ (0) and appears in
Γ (Q):

χ (Q) ≡
1

2
Tr

[
∑

K

G (K) G̃0 (K −Q)

]
, (12)

where G̃0 (K) = iσy [G0 (−K)]
T
iσy is the time-reversed,

or hole, Green’s function.

Substituting the above definitions then gives

χ (Q) =
1

2
Tr

[
∑

K

∑

ηα

Pηα (k)

iν − ηEαk

∑

α′

P 0
α′ (k− q)

iν − iω + ξα′k−q

]
,

=
1

2

∑

k

∑

ηαα′

(
∑

iν

1

iν − ηEαk

1

iν − (iω − ξα′k−q)

)

×Tr
[
Pηα (k)P 0

α′ (k− q)
]
. (13)

Performing the summation over Matsubara frequencies
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reduces this expression to

χ (Q) =
1

2

∑

k

∑

ηαα′

(
f (ηEαk)− f (−ξα′k−q)

iω − (ηEαk + ξα′k−q)

)

×vηαα′ (k,k− q) . (14)

Here the coherence factor discussed in Eq. (3) and Eq. (4)
of the main text is

vηαα′ (k,k− q) = Tr
[
Pηα (k)P 0

α′ (k− q)
]
. (15)

The vertex function can now be defined by Γ(Q) ≡[
χ(Q) + g−1

]−1
. Using the expression for the suscepti-

bility in Eq. (14), we obtain the vertex function Γ(Q)
as given in Eq. (4) of the main text. The familiar gap
equation can then also be obtained from the Thouless
criteria: χ(0) + g−1 = 0.
We now derive the density-density and spin-spin cor-

relation functions for the normal phase (T > Tc) in the
presence of SOC and a Zeeman field. In the normal
phase there are no collective-mode contributions. The
density-density or spin-spin correlation functions, as in
the main text, can be written as χSiSj

(Q) ≡
∫
dτ eiωτ

〈TτSqi (τ)S−qj (0)〉, for a many-body density or spin op-

erator Sqi =
∑

ss′k c
†
ks (σi)ss′ ck+qs′ . Here i = j = 0,

with σ0 = 12, corresponds to the density-density cor-
relation function χρρ(Q), and i, j ∈ {x, y, z} gives the
corresponding spin-spin correlation function.

We emphasize that in the normal state there is no
anomalous Green’s function component, but the exis-
tence of normal state pairs allows one to write the corre-
lation functions as the sum of two terms

χSiSj
(Q) (16)

=
∑

K

Tr
[
σiG(K)σjG(K +Q) + σiF (K)σjF̃ (K +Q)

]
.

Here we associate F (K) = (∆/∆∗)F̃ (K) with a pseudo-
gap vertex contribution, which leads to

χSiSj
(Q) =

∑

K

∑

αα′,ηη′

1

iν − ηEαk

1

iν + iω − η′Eα′k+q

×wαα′,ηη′(k,k+ q), (17)

where we have introduced the coherence factor

wαα′,ηη′(k,k+ q) = Tr[σiPηα(k)σjPη′α′(k+ q)] (18)

+ Tr[σiQηα(k)σjRη′α′(k + q)].

Upon performing the summation over Matsubara fre-
quencies, we obtain the expression for the density-density
or spin-spin correlation function given in Eq. (6) of the
main text.
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