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Majorana quasiparticles localized in vortex cores of a chiral p-wave superconductor hybridize with
one another to form bands in a vortex lattice. We begin by solving a fully microscopic theory
describing all quasiparticle bands in a chiral p-wave superconductor in magnetic field, then use
this solution to build localized Wannier wavefunctions corresponding to Majorana quasiparticles. A
low-energy tight-binding theory describing the intervortex hopping of these is then derived, and its
topological properties—which depend crucially on the signs of the imaginary intervortex hopping
parameters—are studied. We show that the energy gap between the Majorana bands may be either
topologically trivial or nontrivial, depending on whether the Chern number contributions from the
Majorana bands and those from the background superconducting condensate add constructively or
destructively. This topology directly affects the temperature-dependent thermal Hall conductivity,
which we also calculate.

PACS numbers:

It has long been known that an isolated vortex core
in a chiral p-wave superconductor can host zero-energy
Majorana modes1–4. Such topological superconductivity
may be present in Sr2RuO4

5,6, and also has analogues in
the Moore-Read fractional quatum Hall state2,7 and in
the A-phase of superfluid 3He8. When multiple vortices
are brought close together, the Majorana zero modes hy-
bridize, leading to states at positive and negative energy.
From studying pairs of vortices, it has been shown that
the sign as well of the amplitude of this energy splitting
depends on the intervortex distance9,10.

Just as there are two possible signs of the energy split-
ting for a pair of vortices, there are two topologically
distinct possibilities for the energy gap between the Ma-
jorana bands in a system consisting of many vortices11–13.
In this work we provide a way in which to compute
the topological properties of the ground state starting
from a microscopic Hamiltonian describing paired elec-
trons on a square lattice. We show how the topologi-
cally trivial and nontrivial states can be understood as
arising due to destructive or constructive addition of the
Chern number contributions from the Majorana bands
and from the background superconducting condensate,
respectively. We further show that these different topo-
logical states can lead to different behaviors of the intrin-
sic contribution to the thermal Hall conductivity, which
we compute explicitly from the microscopic model.

Several authors have recently studied periodic arrays
of vortices starting from a continuum model of a chiral
p-wave superconductor14–16. Unlike Ref.14, we do not
find any zero-energy flat band with zero Chern number.
This disagreement arises due to the neglect of the mag-
netic field in that work, as well as the different choice of
the spatial profile of the complex phase of the supercon-
ducting order parameter. Our work differs from Ref.16

in that we do not find any strong anisotropy emerging in

our low-energy theory describing Majorana quasiparti-
cles. Further, the authors of that work find a single edge
mode in their low-energy theory, whereas an even num-
ber always emerges from our theory. At present, we do
not understand the precise reason for this disagreement.
Our results extend those of the semiclassical calculation
in Ref.15 by providing a fully quantum treatment, which
is necessary in order to address effects associated with
Berry phases and topological properties.

Finally, very recently another work that has some over-
lap with our results has appeared17. As in our work, the
authors begin from a lattice Hamiltonian describing a
chiral p-wave superconductor in magnetic field and solve
for the full quasiparticle bandstructure. They then ob-
tain a tight-binding description of the Majorana bands
by fitting the hopping parameters to this full solution.
This is a different procedure from our work, in which
deriving a tight-binding model from localized Wannier
functions allows us to determine the signs of these hop-
ping parameters rather than just the absolute values. As
we will show below, these signs are what determine the
topological properties of the Majorana bands, and hence
have a direct affect on the Berry curvature and thermal
Hall conductivity. The calculation of these quantities is
the main result of our work and did not appear in Ref.17.
We emphasize, however, that our results are in complete
agreement with those from Ref.17 where they overlap.

I. MICROSCOPIC LATTICE MODEL

Following the approach of Refs.18,19, we use the fol-
lowing Hamiltonian to describe a superconductor on a
square lattice in a magnetic field:
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H =
∑
r

∑
δ=x̂,ŷ

[
tr,r+δc

†
r,σcr+δ,σ + ∆r,r+δ

(
c†r,↑c

†
r+δ,↓ − c

†
r,↓c
†
r+δ,↑

)
+H.c.

]
− µσc†r,σcr,σ

 . (1)

Here cr,σ is the electron operator, with implicit sum-
mation over spin σ =↑, ↓. The hopping, which in-
cludes a Peierls phase factor due to the magnetic field, is
given by tr,r+δ = −te−iAr,r+δ , where Ar,r+x̂ = πyΦ/φ0,
Ar,r+ŷ = −πxΦ/φ0, φ0 = hc/e is the elementary flux
quantum, and Φ is the magnetic flux through each pla-
quette. The superconducting pairing term is ∆r,r+δ =

∆δe
iθ(r) exp

(
i
2

∫ r+δ

r
dl · ∇θ

)
. For chiral p-wave pair-

ing, the amplitudes are given by (∆r,r±x̂,∆r,r±ŷ) =
(±∆,±i∆) or (±∆,∓i∆) for “px + ipy” or “px − ipy”
pairing, respectively. As discussed in previous works18,19,
the phase of the superconducting order parameter θ(r) is
chosen to be a solution to the continuum London equa-
tions:

∇×∇θ(r) = 2πẑ
∑
j

δ(r− rj),

∇2θ(r) = 0.

(2)

Finally, the chemical potential term in general includes
a spin-dependent Zeeman term: µ↑,↓ = µ ± hZ . When
written in the Bogoliubov-de Gennes language, the Zee-
man term is proportional to the identity matrix in the

Hamiltonian (see (3) below), so that hZ merely shifts
the energy bands as a chemical potential would for an or-
dinary fermionic system without superconductivity. We
consider the effects of this shift when calculating the ther-
mal Hall conductivity below.

We consider a magnetic unit cell of Lx×Ly sites, with
each unit cell containing two vortices, as shown in Figure
1. The superconductor is assumed to be strongly type-
II, with a sufficiently small vortex core size and suffiently
large penetration depth that the amplitudes of both the
order parameter and magnetic field are constant in space.
By employing a singular gauge transformation18–21, the
Hamiltonian (1) can be made periodic with spatial period
Lx(y) along the x (y) direction, thereby enabling the use
of Bloch’s theorem. Performing the following particle-
hole transformation:(

cr,↑
c†r,↓

)
=

1√
Nuc

∑
k

eik·r
(
eiθ(r)/2ψr,↑(k)
e−iθ(r)/2ψr,↓(k)

)
, (3)

where kx,y ∈ ( −πLx,y
, π
Lx,y

], and the new fermionic oper-

ators satisfy ψr+R,σ(k) = ψr,σ(k), the Hamiltonian (1)
becomes

H =
∑

r∈u.c.

∑
k

∑
δ=x̂,ŷ

[
eik·δ

(
t↑↑r,r+δψ

†
r,↑(k)ψr+δ,↑(k)− t↓↓r,r+δψ

†
r,↓(k)ψr+δ,↓(k)

)
+H.c.

]
− µ̃σψ†r,σ(k)ψr,σ(k)


+
∑

r∈u.c.

∑
k

∑
δ=x̂,ŷ

[
λ↑↓r,r+δ

(
eik·δψ†r,↑(k)ψr+δ,↓(k) + e−ik·δψ†r+δ,↑(k)ψr,↓(k)

)
+H.c.

]
≡
∑
k

∑
r,r′∈u.c.

∑
σ,σ′

ψ†r,σ(k)Hk(r, σ; r′, σ′)ψr′,σ′(k),

(4)

where t↑↑r,r+δ = t↓↓
∗
r,r+δ = tr,r+δe

i
2 θ(r+δ)e−

i
2 θ(r), λ↑↓r,r+δ =

∆r,r+δe
− i

2 θ(r+δ)e−
i
2 θ(r), and µ̃↑(↓) = ±µ + hZ . The

branch cuts in eiθ(r)/2 are chosen to connect vortices pair-
wise within a unit cell, as shown in Figure 1. (Further
details regarding the treatment of branch cuts can be
found in Ref.19.)

Figure 2 shows the band structure obtained by diag-
onalizing the Hamiltonian (4) for the case of a square
vortex lattice with Lx = Ly. (Non-square vortex lattices
are discussed at the end of Section II.) The spectrum
features a large gap with energy ∼ ∆, with two bands

near ε = 0 arising from the intervortex tunneling of Ma-
jorana zero modes. The bandwidth of these low-energy
bands decreases exponentially with the distance between
vortices. Upon closer inspection, one finds that the Majo-
rana bands feature two gapped Dirac cones, which is ex-
pected from the fact that the imaginary hopping param-
eters describe a π-flux model, as pointed out previously22

and described in detail below.

Using the numerically determined eigenstates of the
Hamiltonian (4), the integrated Berry curvature summed
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Ly

FIG. 1: Square vortex lattice, with arrows indicating the sign
of the imaginary nearest-neighbor hopping of fermionic quasi-
particles between vortices. The dotted lines indicate branch
cuts connecting the two vortices within each magnetic unit
cell.

over all occupied bands is given by19,23,24

σ̃xy(ξ) = −i
∫

d2k

(2π)2

∑
Em(k)<ξ<En(k)

×

〈
mk

∣∣∣∂Hk

∂kx

∣∣∣nk〉〈nk ∣∣∣∂Hk

∂ky

∣∣∣mk

〉
− (x↔ y)

(Em(k)− En(k))2
.

(5)

In this equation, m and n denote the quasiparticle bands,
and the summation is over all m and n subject to the con-
straint Em(k) < ξ < En(k). Methods for evaluating this
expression efficiently were discussed in Ref.19. Figure 3
shows the behavior of σ̃xy(ξ). Near the top and bot-
tom portions of the energy spectrum, the quasiparticle
bands are either electron- or hole-like, so that 2πσ̃xy(ξ)
just sums up the Chern numbers ±1 as ξ passes through
each quasiparticle band. A large jump from positive to
negative values occurs at the van Hove singularity, where
there is a pile-up of Berry curvature. For |ξ| . ∆, σ̃xy(ξ)
is suppressed due to the fact that the quasiparticle states
are superpositions of electron and hole states, and hence
carry little or no Berry curvature. Closer inspection,
though, reveals an interesting structure in this region.
Rather than completely vanishing, the integrated Berry
curvature (i.e. the Chern number) within the large energy
gap below the lower Majorana band (or above the upper
Majorana band) takes a value ±1 for px ± ipy pairing,
reflecting the topological nature of the superconducting
state. At energies between the two Majorana bands, how-
ever, the Chern number becomes either 0 or ±2. As we
shall show below, this reflects the fact that the Majo-
rana bands carry Chern number ±1. One thus sees that
the topological nature of the gap between the Majorana
bands depends on the interplay of the topologies of the
Majorana bands and of the background condensate.
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FIG. 2: (a) Quasiparticle energy bands of a p-wave super-
conductor with px − ipy pairing in a perpendicular magnetic
field, for a square vortex lattice with intervortex distance
Lx = Ly = 12, pairing strength ∆/t = 0.5, chemical potential
µ/t = −2, and Zeeman shift hZ = 0. (b) Detailed view of the
two Majorana bands, where the dashed lines are obtained by
solving the full Hamiltonian (4), while the (virtually indis-
tinguishable) solid lines come from the effective tight-binding
theory with first- and second-neighbor hoppings. (c) Mag-
netic Brilluoin zone, showing the path along which the en-
ergy bands are plotted. (d) The Majorana bands feature two
Dirac cones along the line ky = −kx, which are gapped due
to next-nearest neighbor hopping.

II. EFFECTIVE TIGHT-BINDING MODEL FOR
MAJORANA FERMIONS

In order to better understand the topological nature of
the Majorana bands, we proceed to derive a 2× 2 tight-
binding Hamiltonian describing the hopping of Majorana
quasiparticles between vortices. Given Bloch eigenstates
ψnk(r, σ) of the Hamiltonian (4), Wannier functions can
be defined as

wα(r−R− rα, σ) =
1

Nuc

∑
nk

U (k)
nα e

−ik·(R+rα)ψnk(r, σ),(6)
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FIG. 3: The integrated Berry curvature, summed over bands
up to energy ξ, with same parameters as in Figure 2. The
lower panel provides a detailed view near ξ = 0, showing that
the Chern number within the large energy gap is ν = −1,
while the Majorana bands carry Chern numbers ν = ±1.

where n is a quasiparticle band index, Nuc is the number
of points in momentum space, and α = A,B denotes the
two vortex sublattices. The vectors R and rα point to a
magnetic unit cell and to the position of a vortex of type
α within the unit cell, respectively. In building a low-
energy theory, we keep only the values of n correspond-

ing to the two Majorana bands. In this case U
(k)
αn is an

arbitrary 2× 2 unitary matrix at each k, which we want
to choose such that each Wannier function is localized at
one of the vortex cores located at r = R + rα. This can
be accomplished straightforwardly using projection op-
erators starting from a trial wavefunction25,26. The first
step is to define initial guesses |gRα〉 for the Wannier
functions, which we take to be real Gaussian functions
localized near each vortex core. We then project these
trial wavefunctions onto the Bloch functions for the two
Majorana bands:

|φαk〉 =
∑
m

|ψmk〉〈ψmk|gR=0,α〉, (7)

where the band index m runs only over the pair of bands
near 0. Unlike the original Bloch functions, which have
an arbitrary phase at each k, these states will have phases
that are smooth as a function of k. The next step is
to orthonormalize these states to obtain pseudo-Bloch
functions:

|ψ̃αk〉 =
∑
n

|φαk〉(S−1/2
k )nα, (8)

where (Sk)nα =
∫
u.c.
〈φnk|φαk〉 (the integral refers to av-

eraging over the unit cell). The Wannier functions are
then given by

|wRα〉 =
1

Nuc

∑
k

e−ik·(R+rα)|ψ̃αk〉. (9)

The coefficients appearing in (6) are thus given by

U (k)
nα = 〈ψnk|ψ̃αk〉 =

∑
rσ

ψ∗nk(r, σ)ψ̃αk(r, σ). (10)

With the localized Wannier functions in hand, we are
now in a position to derive a low-energy tight-binding
Hamiltonian to describe the hopping of quasiparticles be-
tween vortex sites. We begin by expanding the fermion
operators appearing in (4) (putting a hat on the opera-
tors to avoid confusion) in a basis of Bloch eigenstates:

ψ̂rσ ≡ e−iq·rψ̂r,σ(q) =
∑
kn

ψkn(r, σ)ân(k). (11)

We can then invert (6) to obtain the Bloch states in terms
of Wannier functions:

ψnk(r, σ) =
∑
Rα

(U (k)
αn )∗eik·(R+rα)wα(r−R− rα, σ),(12)

and rewrite the Hamiltonian as∑
rσ

∑
r′σ′

ψ̂†rσH(rσ, r′σ′)ψ̂r′σ′

=
∑
rσ

∑
r′σ′

∑
nk

∑
n′k

â†n(k)ân′(k′)

× ψ∗nk(r, σ)H(rσ, r′σ′)ψn′k′(r′, σ′),

(13)

where H(rσ, r′σ′) ≡ Hk=0(rσ, r′σ′) is the Hamiltonian
in real space before applying Bloch’s theorem. Using
(12) and defining the new fermion operators that create
quasiparticles on vortex sublattice α

d̂†α(k) =
∑
n

U (k)
nα â

†
n(k), (14)

the Hamiltonian becomes

H =
∑
αα′

∑
k

d̂†α(k)Hαα′(k)d̂α′(k), (15)

where

Hαα′(k) =
∑
rσ

∑
r′σ′

∑
∆R

eik·(∆R+rα′−rα)

× w∗α(r− rα, σ)H(rσ, r′σ′)wα′(r′ −∆R− rα′ , σ′).
(16)

Due to the localization of the Wannier functions, only a
limited number of terms with small ∆R will give signifi-
cant contributions to (16).

While the sums in (16) could be computed using
the Wannier functions constructed in (9), a simpler ap-
proach is to reexpress these Wannier functions in terms
of the Bloch function eigenstates of Hk(rσ, r′σ′) =

e−ik·rH(rσ, r′σ′)eik·r
′
. One thus obtains



5

Hαα′(k) =
∑
rσ

∑
∆R

∑
qn

∑
q′n′

eik·(∆R+rα′−rα)eiq·rαe−iq
′·(∆R+rα′ )(U (q)

nα )∗U (q′)
n′α′ψ

∗
nq(r, σ)En′q′ψn′q′(r, σ)

=
∑
∆R

eik·(∆R+rα′−rα)
∑
qn

e−iq·(∆R+rα′−rα)(U (q)
nα )∗U (q)

nα′Enq.
(17)

Given the U
(q)
αn determined by the Wannier functions in

(10) and the energies for the Majorana bands shown
in Figure 2, this sum can be easily evaluated numeri-
cally to determine the tight-binding parameters describ-
ing hopping between vortex cores separated by distance
∆R + rα′ − rα.

For a square vortex lattice, the nearest- and next-
nearest-neighbor hoppings are all imaginary, with signs
of the nearest-neighbor hoppings indicated by the direc-
tions of the arrows in Figure 1. This corresponds to a
π-flux state, in which each plaquette is penetrated by a
half quantum of magnetic flux22,27–29. The low-energy
effective Hamiltonian takes the form

HM (k) =− t0 sin
(
kxLx+kyLy

2

)
σ1

+ t0 cos
(
kxLx−kyLy

2

)
σ2

+ t1[sin(kxLx)− sin(kyLy)]σ3.

(18)

The real parameters t0 and t1 correspond to nearest- and
next-nearest-neighbor hopping, respectively35. Diagonal-
izing (18) leads to energy bands with dispersion

ε±k = ±
[
t20 sin2

(
kxLx+kyLy

2

)
+ t20 cos2

(
kxLx−kyLy

2

)
+ t21[sin(kxLx)− sin(kyLy)]2

]1/2

,

(19)

which describes two massless Dirac cones at the points
(kx, ky) = ±(π/Lx,−π/Ly) when t1 = 0, with these
cones becoming gapped when t1 6= 0, as shown in Figure
236.

The fact that the hopping parameters must be imag-
inary is a consequence of the Majorana statistics of the
quasiparticles, and has been assumed in previous low-
energy effective theories of Majorana particles in super-
conducting vortex lattices14,17. This fact also allows one
to interpret the low-energy effective theory as a Z2 gauge
theory22. Our low-energy tight-binding model agrees
with those used in these previous works, with the added
advantage that the correct phases emerge from our calcu-
lation, in which these phases of the hopping parameters
are computed from a fully microscopic starting point.

As expected from previous studies9,10,17, the tight-
binding parameters t0 and t1 oscillate as a function of
kFL, where kF is the Fermi wavevector and L =

√
LxLy

is the magnetic length. Because kF is determined by the
chemical potential, we show the oscillations of t0 and t1
as a function of µ in Figure 4. We also find, as shown
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FIG. 4: (a) Oscillations in the nearest- and next-nearest-
neighbor hopping parameters for the Majorana bands de-
scribed by the low-energy effective Hamiltonian (18). Solid
(dashed) lines correspond to t0 (t1, multiplied ×10), and blue
(red) lines correspond to px − ipy (px + ipy) pairing, with
magnetic length Lx = Ly = 16, chemical potential µ/t = −2,
and pairing strength ∆/t = 0.5. (b) Energy difference per site
between the two pairing states, showing that px − ipy pairing
is favored for larger values of µ. (c) Phase diagram showing
the total Chern number in the gap between Majorana bands,
which is determined by the type of pairing and the sign of t1.
The pairing is px + ipy to the left of the red line and px − ipy
to the right.

in Figure 4(b), that the ground state energy (defined as
the sum of all quasiparticle energies over occupied bands)
becomes lower for px − ipy pairing than for px + ipy as
µ is increased when the magnetic field is along the +ẑ
direction (as determined by the Peierls phase factors in-
troduced below (1)). This illustrates that, although the
two possible chiralities of the order parameter couple to
the magnetic field with opposite sign, determining which
pairing state is energetically favorable is rather subtle,
with the result depending on nonuniversal parameters
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that influence the detailed structure of the quasiparticle
bands. (Note, however, that we have not determined the
value of ∆ from a fully self-consistent calculation, which
should be performed in order to make a more definitive
comparison between different candidate order parame-
ters.)

The phase diagram in Figure 4(c) illustrates the ef-
fect of the oscillations of the tight-binding parameter on
the Chern number for various values of magnetic length.
We emphasize that, although the chemical potential is
a nonuniversal parameter, so that it is unlikely that the
Chern number could be precisely predicted a priori for a
given material from a phase diagram such as that shown
in Figure 4(c), the fact that the Chern number oscil-
lates as a function either of µ or of magnetic field, with
the energy gap closing between these regions, is a robust
prediction of the theory with experimentally important
consequences.

Writing the Hamiltonian as H(k) =
∑3
i=1 hi(k)σi, one

finds that the Majorana bands have nontrivial Berry
curvature30:

Ωk = ∓ 1

|h(k)|3
(
h(k) · ∂h(k)

∂kx
× ∂h(k)

∂ky

)
, (20)

with the upper (lower) sign corresponding to the higher-
(lower-) energy band. Integrating the Berry curvature
over momentum gives the Chern number of each Majo-
rana band:

ν = ∓sgn(t1), (21)

where again the upper (lower) sign corresponds to the
higher- (lower-) energy band.

Finally, although the focus so far has been on the
square vortex lattice, we note that the effective Hamil-
tonian (18) can also describe non-square vortex lattices
with Lx 6= Ly if the next-nearest-neighbor hopping terms
are allowed to be different along different directions,
i.e. the σ3 term in (18) is replaced by t1 sin(kxLx) −
t′1 sin(kyLy). In such anisotropic vortex lattices, the
Dirac cones are gapped, even in the case where further-
neighbor hopping is tuned to zero. It is because of the
appearance of the Dirac cones in the square-lattice case
that we have chosen to focus on the square vortex lattice
case in presenting our results. The Majorana bands still
have Chern number ±1 for non-square vortex lattices,
and all conclusions about the topological properties dis-
cussed above for the square-lattice case still hold. In
the special case of a triangular vortex lattice37, where
Lx/Ly =

√
3, one has (t1, t

′
1) → (0, t0), and the Chern

numbers of the Majorana bands are simply determined
by the sign of t0, as shown in previous work30.

III. EDGE STATES AND THERMAL
CONDUCTIVITY

When the topologically nontrivial Majorana bands are
considered within the background of the chiral p-wave
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FIG. 5: Energy eigenvalues for a chiral p-wave superconduc-
tor (with px − ipy pairing and magnetic length Lx = Ly = 8)
in the vortex state on a cylinder with periodic boundary con-
ditions along the y-direction and open boundary conditions
along the x-direction. The right panels show the correspond-
ing integrated Berry curvature summed over occupied bands.
(a) With µ/t = −2, the gap between Majorana bands is topo-
logically trivial due to cancellation of the Berry curvature of
the Majorana bands with that of the superconducting conden-
sate, so that no edge modes are present. At energies above
and below the Majorana bands, however, states localized at
the right (red) and left (blue) edges are present due to the
nontrivial topology of the background superconducting con-
densate. (b) With µ/t = −1.5, the gap between Majorana
bands is topologically nontrivial due to constructive addition
of the Berry curvature of the Majorana bands with that of
the condensate, so that two chiral edge modes are present .

condensate, two possibilities arise: either the Chern num-
bers of the Majorana bands add constructively with those
of the condensate, giving overall Chern number ν = ±2,
or they add destructively, giving ν = 0. A phase diagram
showing these cases is shown in Figure 4(c). The edge
states for the two cases are shown in Figure 5, from which
it can be seen that the number of edge modes corresponds
to the Chern number in each case. In particular, in both
cases there is a single chiral edge mode in the large energy
gaps above and below the Majorana bands, reflecting the
chiral nature of the superconducting condensate. (These
gaps could be accessed by shifting the Majorana bands
with a Zeeman term, which is not included in the figure.)
Figure 5(a) shows a case in which the Chern number aris-
ing from the Majorana bands cancels with that of the
background condensate, so that there are no edge modes
near energy ε = 0. In contrast, Figure 5(b) shows a case
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in which there are two chiral edge modes near ε = 0, with
one arising from the superconducting condensate and the
other arising from the topological Majorana bands.

Although these edge modes do not contribute to elec-
trical transport due to the fact that they occur within
a superconducting state, they do contribute a thermal
current in the presence of a temperature gradient. The
thermal Hall conductivity is given by19,23,31

κxy =
1

~T

∫ ∞
−∞

dξξ2

(
−∂nF (ξ)

∂ξ

)
σ̃xy(ξ), (22)

where nF (ξ) = 1/(eξ/T + 1) is the Fermi occupation fac-
tor. The thermal Hall conductivity is thus determined by
the integrated Berry curvature, convolved with a ther-
mal factor that is peaked near ξ = 0. This quantity
is plotted in Figure 6. In Figure 6(a) we show the re-
sult without Zeeman shift (hZ = 0), and in this case
κxy(T )/T is determined by the σ̃xy(ξ) near energy ξ = 0
at low temperature. At higher temperature, the ther-
mal factor in (22) broadens beyond the width of the Ma-
jorana bands, so that κxy(T )/T is instead determined
by σ̃xy(ξ) at energies above and below the Majorana
bands. Figure 6(b) shows κxy(T )/T with Zeeman shift.
As noted above, the effect of Zeeman coupling is sim-
ply to shift the overall energy of the quasiparticle bands,
so that σ̃xy(ξ) → σ̃xy(ξ − hZ), and κxy(T ) is deter-
mined via (22) by the value of σ̃xy near ξ ∼ hZ . In
this example, we choose the Zeeman energy hZ to be
half of the cyclotron energy, as it is for free electrons:
hZ = ~ωc/2 = 2πt/(LxLy), where we have expanded the
tight-binding dispersion near its minimum to obtain the
effective mass m = ~2/(2t). In this case κxy(T )/T is
determined by σ̃xy(ξ ∼ hZ) at low temperatures, while
it shows a modest change as the thermal factor in (22)
broadens at higher temperatures, increasing or decreas-
ing to reflect the behavior of σ̃xy(ξ) near ξ ∼ 0.

IV. CONCLUSION

Currently the best candidate topological p-wave su-
perconductor is Sr2RuO4, for which very clean samples
are available and thermal conductivity measurements
are feasible. Because it is a multiband superconduc-
tor, however, a more realistic lattice model should be
used if quantitative comparison is to be made. In ad-
dition, there is evidence that this superconductor may
exhibit “half-quantum” vortices32 rather than the ordi-
nary full-quantum vortices considered here, so this dif-
ference would also have to be taken into account. Our
results may also be relevant for the Moore-Read frac-
tional quantum Hall state, which can be thought of as a
gas of composite fermions with chiral p-wave pairing.

While we have focused on the idealized case of a clean
system in this paper, some general remarks about the ex-
pected effects of disorder can be made. Due to the oscil-
lation of the sign of the Majorana hopping between vor-
tices with distance, variations in the distances between
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FIG. 6: Thermal Hall conductivity divided by temperature
for ∆/t = 0.5, Lx,y = 8, and px − ipy pairing. The black
dotted line corresponds to the quantized value for a system
with Chern number ν = −1. Solid red and dashed blue lines
show the results for the cases where the gap around energy
ξ = 0 has Chern number ν = −2 (at µ/t = −2) and ν = 0
(at µ/t = −1.5), respectively (see phase diagram in Figure
4(c)). Insets show the corresponding σ̃xy(ξ), which deter-
mine κxy(T ) via (22). (a) With no Zeeman coupling, the low-
temperature behavior is determined by σ̃xy(ξ) near ξ ∼ 0.
(b) With Zeeman coupling hZ = 0.1t, the low-temperature
behavior is determined instead by σ̃xy(ξ) near ξ ∼ hZ .

vortex cores, e.g. due to vortex pinning, will have impor-
tant consequences for the low-energy properties. If the
vortex lattice can be described as having domains with
different intervortex distances in each domain, then the
Chern numbers characterizing these domains may differ
from each other, in which case there will be gapless edge
modes at the boundaries of such domains30. In the case in
which the intervortex distance does not remain constant
over any sizable domain but varies from vortex to vor-
tex, a more useful description may be a random-sign hop-
ping model, which can lead to a “Majorana metal” with
nonzero density of states throughout the bulk33. Along
similar lines, it has also been shown recently that ther-
mal motion of vortices can lead to filling in of the energy
gap34.

In conclusion, we have shown that the topological na-
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ture of the vortex state of a chiral p-wave superconduc-
tor at low energies is far from being obvious, generally
requiring a complete microscopic calculation to deter-
mine reliably. In particular, the result depends on the
constructive or destructive addition of Chern numbers
associated with the Majorana bands and the supercon-
ducting condensate. More broadly, our work illustrates a
way in which thermal conductivity can be a useful probe
for obtaining information about the quantum wavefunc-
tion describing an interacting many-body system. Such
a probe is especially useful in a superconductor, where

electrical transport measurements may not yield useful
information.
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