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We study a proximity junction between a conventional s-wave superconductor and a conductor
with Rashba spin-orbit coupling, with a specific focus on the spin structure of the induced pairing
amplitude. We find that spin-triplet pairing correlations are induced by spin-orbit coupling in both
one- and two-dimensional systems due to the lifted spin degeneracy. Additionally, this induced
triplet pairing has a component with an odd frequency dependence that is robust to disorder.
Our predictions are based on the solutions of the exact Gor’kov equations and are beyond the
quasiclassical approximation.

I. INTRODUCTION

The generation of triplet superconducting correlations
via proximity to a conventional superconductor (S) is a
topic that has attracted a lot of attention recently in
the context of superconducting spintronics,1–6 whereby
triplet Cooper pairs with spin projection ±1 play the
same role as electron spins in conventional spintronics.7,8

Most of the research in this area, both experimental and
theoretical, has focused on proximity junctions involv-
ing ferromagnets (F), which induce triplet correlations
by lifting the spin degeneracy (for a comprehensive re-
view, see Refs. 9 and 10). The induced triplet correlations
are also of fundamental interest because they have an
odd frequency dependence; by the Pauli principle, these
triplet states must be isotropic in momentum and there-
fore robust to disorder.11–13

Because spin-orbit coupling (SOC) also lifts the spin
degeneracy, one might expect odd-frequency triplet pair-
ing to emerge when a ferromagnet is replaced by a spin-
orbit material as well. That the pairing symmetry of a
bulk spin-orbit-coupled superconductor is known to be a
mixture of singlet and triplet14–16 only enhances these
expectations. However, Liu et al. (Ref. 17) showed,
by solving the exact Bogoliubov-de Gennes (BdG) equa-
tions, that the proximity-induced pairing amplitude in
a 1D metal with Rashba-type18 SOC (R) has no triplet
component. Previous studies of proximity junctions in-
volving both SOC and ferromagnetism that were carried
out to leading order in the quasiclassical approximation
also did not find any triplet pairing induced by SOC.19

Only very recently has the singlet-triplet mixing effect
of SOC in such structures been noted by working be-
yond leading quasiclassical order.20,21 However, because
the induced triplet pairing only shows up to second or-
der, this is expected to be a very weak effect in any
materials for which the quasiclassical methods are ap-
plicable. Spin-orbit scattering confined to the interface
has been shown to generate triplet pairing in 3D bal-
listic superconductor/normal-metal junctions; however,
this triplet component is anisotropic in momentum and
therefore sensitive to disorder.22 To date, odd-frequency
triplet pairing induced by SOC in the proximity effect
has not been explicitly investigated.

In this paper, we show by directly solving the fully
quantum-mechanical Gor’kov equations that spin-triplet
superconducting correlations are induced by Rashba SOC
in both 1D and 2D proximity junctions. However, we find
that the induced triplet component in 1D vanishes when
integrated over the momentum; this result is in agree-
ment with Ref. 17. In 2D, we show that the induced
triplet amplitude has an odd-frequency component that
is isotropic in momentum. In agreement with Ref. 19,
we also find that the triplet pairing induced by SOC
vanishes to leading order in the quasiclassical approxi-
mation. For this reason, our results are most relevant to
materials that have a spin-orbit energy scale comparable
to the Fermi energy,23 when no quasiclassical expansion
can be made. Examples include the surface states of no-
ble metals24 and semi-metallic bismuth,25 InSb quantum
wires,26 as well as the bulk27 and surface28 states of the
bismuth tellurohalides. The proximity effect in materials
with strong SOC is also relevant to recent experiments
probing the existence of Majorana fermions in semicon-
ductor quantum wires.29

The remainder of the paper is organized as follows. In
Sec. II, we demonstrate that the presence of triplet pair-
ing and the spatial dependence of the induced pairing
amplitude can be deduced by considering Andreev re-
flection processes. We review the well-known S/F prox-
imity effect from this point of view in Sec. II A before
discussing the qualitative similarities and differences of
the S/R proximity effect in Sec. II B. In Sec. III, we
solve the Gor’kov equations in the S/R geometry to show
that triplet pairing is induced via the proximity effect.
Our explicit model is described is Sec. III A and de-
tails of the calculation are given in Sec. III B. Solution
details for the superconductor and Rashba regions are
given in Sec. III B.1 and Sec. III B.2, respectively, while
the enforcement of boundary conditions is discussed in
Sec. III B.3. Results in 1D and 2D are discussed in
Secs. III C and III D. In Sec. III E, we show that the in-
duced triplet pairing amplitude vanishes to leading order
in the quasiclassical limit. Our conclusions are given in
Sec. IV.
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II. TRIPLET PAIRING FROM ANDREEV
REFLECTION

The proximity effect can be understood qualitatively
through Andreev reflection, whereby an electron (hole)
with excitation energy ε below the superconducting gap
∆ is retroreflected as a hole (electron) with opposite
spin, thus injecting a spin-singlet Cooper pair into the
superconductor.30 While typically studied in the context
of transport,31–34 Andreev reflection can also give insight
into the type of pairing that is induced by the proximity
effect. Due to the coherence between electrons and holes,
it is these processes which allow the pairing amplitude to
penetrate into the nonsuperconducting material.

By examining the eigenstates of the BdG equation,35

we will show that SOC on its own is sufficient to induce
triplet pairing in the proximity effect. For the sake of
completeness, we will first review the case of triplet pair-
ing in S/F junctions before extending the discussion to
S/R junctions.

A. Triplet pairing in S/F junctions

We first present a brief review of the proximity effect in
ferromagnetic materials, following qualitative arguments
similar to those given in Ref. 36. In a ferromagnet, the
BdG equation reads(

Ĥ0 − Jσ̂z 0

0 −Ĥ0 + Jσ̂z

)
ψ(x, ε) = εψ(x, ε), (1)

where Ĥ0 = (−∂2x + k2‖)/2m − EF , with k‖ being the

conserved momentum along the S/F interface, J is the
ferromagnetic exchange field, σ̂z is a Pauli matrix (we
denote 2×2 matrices in spin space by a hat), and ψ(x, ε)
is a spinor wave function in Nambu ⊗ spin space. The
1D BdG excitation spectrum, containing spin-split bands
with distinct Fermi momenta kF↑(↓) =

√
2m(EF ± J) ≈

kF ± J/vF , is shown in Fig. 1(a).
Because an incident electron [denoted by e↑ or e↓ in

Fig. 1(a)] must be Andreev reflected as a hole of oppo-
site spin (h↓ or h↑, respectively), the resulting Cooper
pairs in a 1D ferromagnet acquire a finite center-of-mass
momentum Q = kF↑ − kF↓ ≈ 2h/vF , thus causing the
Cooper pairing amplitude to oscillate in space with a
period πvF /h. [For arbitrary incidence, as is possible
in higher dimensions, the center-of-mass momentum is
modified to Q = 2J/vF cos θ, where θ is the angle the
momentum makes with the interface normal.] The oscil-
lations of the pairing amplitude are a direct consequence
of the broken time-reversal symmetry, which implies that
Ek↑ 6= E−k↓. As a result, paired states with opposite
spins must have a finite total momentum. These oscilla-
tions are responsible for several interesting phenomena,
including the possibility of a π phase shift of the current-
phase relation in S/F/S Josephson junctions, as well as
nonmonotonic variations, as a function of the thickness of

the ferromagnetic layer, of both the density of states and
the superconducting critical temperature of S/F multi-
layers (see Refs. 9 and 10 and the references therein for
more detail).

As is more relevant to the current work, the lifting of
the spin degeneracy (in this case by the exchange field)
also results in the generation of a triplet pairing com-
ponent that has zero spin projection. This is true for
any material in which spin is an eigenstate of the Hamil-
tonian and can be seen particularly easily in 1D junc-
tions by considering the contributions of the e↑ → h↓
and e↓ → h↑ Andreev reflection processes to the pairing
amplitude. In terms of the BdG wave functions uα(x, ε)
(electrons) and vα(x, ε) (holes), the triplet component of
the pairing amplitude with zero spin projection is

F†t (x, x′, ε) =
1

2

[
F†↑↓(x, x

′, ε) + F†↓↑(x, x
′, ε)
]

∼ v↑(x, ε)u∗↓(x′, ε) + v↓(x, ε)u
∗
↑(x
′, ε).

(2)

The first term results from the e↓ → h↑ process, while
the second term results from the e↑ → h↓ process. While
the most general case is treated in Appendix A, we can
express the triplet pairing amplitude in the case where
the electrons are perfectly Andreev reflected by

F†t (x, x′, ε) ∼ a↑(ε)eik
L
↑hxe−ik

R
↓ex
′
+ a↓(ε)e

ikL↓hxe−ik
R
↑ex
′
,

(3)

where k
R(L)
↑(↓)e(h) is the momentum of a right-moving (left-

moving) spin-up (spin-down) electron (hole) and a↑(↓)(ε)
is the amplitude for Andreev reflection from a spin-down
(spin-up) electron to a spin-up (spin-down) hole. As
shown in Appendix A, the Andreev reflection amplitudes
are related by a↑(ε) = −a↓(ε). Therefore,

F†t (x, x′, ε) ∼ a↑(ε)
(
eik

L
↑hxe−ik

R
↓ex
′
− eik

L
↓hxe−ik

R
↑ex
′
)
.

(4)
Because this quantity can only vanish when k↑ = k↓,
any lifting of the spin degeneracy will result in a nonzero
triplet pairing amplitude.

B. Triplet pairing in S/R junctions

While the proximity effect in S/R junctions is very
similar to that in S/F junctions, there are several impor-
tant qualitative differences we will now discuss. In the
presence of SOC, the BdG equation is given by(
Ĥ0 − iλg · σ̂ 0

0 −Ĥ0 − iλg · σ̂∗
)
ψ(x, ε) = εψ(x, ε),

(5)
where λ is the SOC constant and g is the spin-orbit vec-
tor, which satisfies g(k) = −g(−k).

In a strictly 1D system, where there is no well-defined
spin quantization axis, the two representations of the
Rashba vector g = (0,−ikx, 0) and g = (0, 0,−ikx)
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FIG. 1. (Color online) Bogoliubov-de Gennes excitation spectra of (a) a 1D ferromagnet and (b) a 1D Rashba metal with
Rashba vector g = (0, 0,−ikx). Colors denote different spin states, while solid (dashed) lines represent electron (hole) bands.
An incident electron (e↑ or e↓) with energy ε < ∆ is Andreev reflected as a hole of opposite spin (h↓ or h↑, respectively). The
presence of a triplet pairing component with zero spin projection results from the lifted spin degeneracy. (c) Fermi surfaces
of a 2D Rashba metal, with Rashba vector g = (iky,−ikx, 0), taking EF > 0. Because the two Rashba subbands are not
associated with a definite spin, an incident electron (e1 or e2) with momentum |ky| < kF1 can be Andreev reflected into either
subband (h1 or h2). The total pairing amplitude is a sum of oscillatory and nonoscillatory terms, resulting from interband and
intraband Andreev reflection, respectively. Note: though they appear different, the 1D picture displayed in (b) and the ky = 0
limit of the 2D picture displayed in (c) are physically equivalent.

are physically equivalent. To discuss Andreev reflec-
tion in the 1D case, we choose the latter representation,
so that spin remains an eigenstate of the BdG Hamil-
tonian. The BdG excitation spectrum, which contains
two Rashba subbands with Fermi momenta kF1(2) =√

(mλ)2 + 2mEF ∓ mλ, is shown in Fig. 1(b). While
we take EF > 0 in Fig. 1(b), so that the Fermi en-
ergy lies above the Dirac point, the following physical
arguments are equally valid if EF < 0. Because each
Rashba subband can be associated with a definite spin,
an electron incident on the S/R interface must be An-
dreev reflected as a hole with nearly equal momentum
[close to kF1 for the e↓ → h↑ process and to kF2 for
the e↑ → h↓ process, as labeled in Fig. 1(b)]. Due to
the momentum matching between the incident electron
and reflected hole, only zero-momentum Cooper pairs are
formed within R and the induced pairing amplitude does
not oscillate as a function of the center-of-mass coordi-
nate of the Cooper pair. The spatial dependence of the
pairing amplitude can also be inferred from the preser-
vation of time-reversal symmetry; because Ek↑ = E−k↓,
paired states of opposite spin have zero total momentum.
As shown in Sec. II A, the presence of a triplet pairing
component again follows from the lifted spin degeneracy.

Unlike in the ferromagnetic case, the proximity effect
in 2D S/R junctions is qualitatively different than in 1D.
In 2D, the Rashba spin-orbit vector lies in the plane:
g = (iky,−ikx, 0). Spin-orbit coupling again splits the
Fermi surface into two Rashba subbands, see Fig. 1(c),
but the crucial difference compared to 1D is that these
subbands can no longer be associated with a definite spin.
Therefore, for the case where EF > 0 and |ky| < kF1, as
illustrated in Fig. 1(c), interband reflections (e1 → h2 or
e2 → h1) are allowed. Because the momentum of an An-

dreev reflected hole within the opposite band differs from
that of the incident electron, the Cooper pairs that are
formed by processes of this type have a finite center-of-
mass momentum. The induced pairing amplitude in two
dimensions is thus a sum of oscillatory (from interband
processes) and nonoscillatory (from intraband processes)
terms. The proximity effect is qualitatively similar when
EF < 0; even though only a single Rashba subband is
occupied, the inner and outer radii of the annular Fermi
surface play the same role as the two distinct Fermi mo-
menta in Fig. 1(c).

III. SOLUTIONS OF GOR’KOV EQUATIONS

A. Model and Equations

We will now show how the physics described in Sec. II B
follows from the microscopic theory. We consider a two-
dimensional model of a S/R proximity junction (Fig. 2)
and allow the mass m(x), the SOC constant λ(x), the
Fermi energy EF (x), and the pairing potential ∆(x)
to vary in a stepwise manner across the S/R inter-
face. Specifically, we take m(x) = mRθ(x) + mSθ(−x),
EF (x) = EFRθ(x) + EFSθ(−x), λ(x) = λθ(x), and

∆̂(x) = ∆θ(−x)iσ̂y. The model can be represented by
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an explicitly Hermitian Hamiltonian,

H =

∫
d2x

{
ψ†(x)

[
−1

2
∂x

(
1

m(x)
∂x

)
+

k2y
2m(x)

− EF (x)

− i

2
σ̂y
{
λ(x)∂x + ∂x[λ(x)]

}
− σ̂xλ(x)ky

]
ψ(x)

+
1

2

(
ψ†(x)∆̂(x)[ψ†(x)]T + [ψ(x)]T ∆̂†(x)ψ(x)

)}
.

(6)

Interfacial scattering is incorporated through a mismatch
in Fermi velocities/momenta across the S/R interface.
The Gor’kov equations in this model are given by37

[
iω +

1

2
∂x

(
1

m(x)
∂x

)
−

k2y
2m(x)

+ EF (x)− i

2
σ̂y
{
λ(x)∂x + ∂x[λ(x)]

}
− σ̂xλ(x)ky

]
Ĝω,ky (x, x′) + ∆̂(x)F̂†ω,ky (x, x′) = δ(x− x′),

(7a)[
−iω +

1

2
∂x

(
1

m(x)
∂x

)
−

k2y
2m(x)

+ EF (x)− i

2
σ̂y
{
λ(x)∂x + ∂x[λ(x)]

}
+ σ̂xλ(x)ky

]
F̂†ω,ky (x, x′)− ∆̂†(x)Ĝω,ky (x, x′) = 0.

(7b)

We solve the fully quantum-mechanical Gor’kov equa-
tions rather than the quasiclassical Eilenberger equations
so that we can treat the limit of strong SOC, where the
splitting of Rashba subbands must be taken into account.

Even without performing a detailed calculation, it is
evident from Eq. (7b) that SOC generates triplet pairing
in the proximity region. If we parameterize the pairing
amplitude by

F̂† = (s+ d · σ̂)iσ̂y, (8)

then the four coupled Gor’kov equations describing the
pairing induced in R can be written out explicitly as(

a∗2R + ∂2x
)
s+ 2mRλ(kydx − i∂xdy) = 0,(

a∗2R + ∂2x
)
dx + 2mRλ(kys+ ∂xdz) = 0,(

a∗2R + ∂2x
)
dy − 2mRiλ(kydz − ∂xs) = 0,(

a∗2R + ∂2x
)
dz + 2mRλ(ikydy − ∂xdx) = 0,

(9)

where we define a2R(S) = 2mR(S)[iω + EFR(S)] − k2y. In

2D (ky 6= 0), all three triplet components are coupled to
the singlet component through SOC, whereas only the
component dy is coupled to s in 1D (ky = 0).

B. Calculation Details

We now proceed with detailed solutions of Eq. (7) in
both the superconductor and Rashba metal. Because
we are ultimately interested in the pairing amplitude in-
duced in R, we fix x′ > 0. In the context of Eq. (7),
this choice for x′ simply ensures that the delta-function
source term on the right-hand side appears only when
solving for the Green’s functions in R.

B.1. Solutions in superconductor

We begin by solving the Gor’kov equations within S,
which can be expressed as

(
a2S + ∂2x

)
ĜSω,ky (x, x′) + 2mS∆iσ̂yF̂†Sω,ky (x, x′) = 0,

(10a)(
a∗2S + ∂2x

)
F̂†Sω,ky (x, x′) + 2mS∆iσ̂yĜSω,ky (x, x′) = 0.

(10b)

x

y

S" R"

FIG. 2. Geometry of the S/R proximity effect, together with
the band structure of each material. System is taken to be
infinite in the y direction in 2D, while 1D corresponds to the
single-channel limit ky = 0.
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We denote Green’s functions in the superconductor by

ĜSω,ky (x, x′) = Ĝω,ky (x < 0, x′), (11a)

F̂†Sω,ky (x, x′) = F̂†ω,ky (x < 0, x′). (11b)

Solving Eq. (10b) for Ĝ, we obtain

ĜSω,ky (x, x′) = iσ̂y

(
a∗2S + ∂2x
2mS∆

)
F̂†Sω,ky (x, x′). (12)

Substituting this expression for Ĝ into Eq. (10a), we ob-

tain a fourth-order equation describing F̂†,[
(a2S + ∂2x)(a∗2S + ∂2x) + 4m2

S∆2
]
F̂†Sω,ky (x, x′) = 0. (13)

Solving Eq. (13) and keeping only those solutions that
decay in the limit x→ −∞, we obtain

F̂†Sω,ky (x, x′) = ĉ1(x′)e−ipx + ĉ5(x′)eip
∗x, (14)

where p2 = 2mS(iΩ+EFS)−k2y and Ω2 = ω2+∆2. Here
and throughout the rest of the calculation, we choose the
branch cut of the square root function to lie along the
negative real axis. Note that each coefficient ĉi is a 2× 2
matrix in spin space and thus contains four unknown
quantities,

ĉ1(x′) =

(
c1(x′) c2(x′)
c3(x′) c4(x′)

)
. (15)

Substituting solution (14) into Eq. (12) gives the normal
Green’s function,

ĜSω,ky (x, x′) = −iσ̂y
[
ĉ1(x′)e−ipxeiη + ĉ5(x′)eip

∗xe−iη
]
,

(16)
where we define η = cos−1(iω/∆).

B.2. Solutions in Rashba metal

The Gor’kov equation describing the normal Green’s
function in R is given by[
a2R + ∂2x− 2mRλ(iσ̂y∂x + σ̂xky)

]
ĜRω,ky (x, x′) = δ(x−x′).

(17)

(Note that ĜR denotes the Matsubara Green’s function
in the Rashba metal,

ĜRω,ky (x, x′) = Ĝω,ky (x > 0, x′), (18)

and should not be confused for a retarded Green’s func-
tion.) Equation (17) consists of four equations describing

the four spin components of the matrix Ĝ. This system
can be easily solved by considering two equations at a
time; for example (we suppress explicit reference to the
dependence of the Green’s function on ω and ky here),

(a2R + ∂2x)GR↑↑(x, x′)− 2mRλ(ky + ∂x)GR↓↑(x, x′) = δ(x− x′),
(19a)

(a2R + ∂2x)GR↓↑(x, x′)− 2mRλ(ky − ∂x)GR↑↑(x, x′) = 0.

(19b)

The Green’s functions can be uniquely expressed as the
sum of a particular solution to Eq. (19) and the gen-
eral solution to the corresponding homogeneous system
of equations.

The particular solution to Eq. (19) is equal to the
Green’s function of a bulk Rashba metal, which we de-

note by G(0)Rαβ (x − x′), and is a function of only the dif-

ference x− x′. This function can be obtained by Fourier
transforming to momentum space,

(a2R − k2x)G(0)R↑↑ (kx)− 2mRλ(ky + ikx)G(0)R↓↑ (kx) = 1,

(20a)

(a2R − k2x)G(0)R↓↑ (kx)− 2mRλ(ky − ikx)G(0)R↑↑ (kx) = 0.

(20b)

Solving the algebraic system (20), we find

G(0)R↑↑ (kx) =
2mR(a2R − k2x)

(a2R − k2x)2 − 4m2
Rλ

2(k2x + k2y)
, (21a)

G(0)R↓↑ (kx) =
4m2

Rλ(ky − ikx)

(a2R − k2x)2 − 4m2
Rλ

2(k2x + k2y)
. (21b)

To obtain the Green’s function in coordinate space, we
perform an inverse Fourier transform,

G(0)Rαβ (x− x′) =

∫
dkx
2π
G(0)Rαβ (kx)eikx(x−x

′). (22)

The integrals evaluate to

G(0)R↑↑ (x− x′) = − imR

k1D1 + k1D2

[
s1k

1D
1

k1
eik1s1|x−x

′| (23a)

+
s2k

1D
2

k2
eik2s2|x−x

′|
]
,

G(0)R↓↑ (x− x′) =
imR

k1D1 + k1D2

{[
i sgn(x− x′)− s1ky

k1

]
× eik1s1|x−x

′| −
[
i sgn(x− x′)− s2ky

k2

]
× eik2s2|x−x

′|
}
. (23b)

Whereas the states in the superconductor are character-
ized by a single momentum p, in the Rashba metal we
must define two different momenta due to the band split-
ting by SOC,

k21(2) =
[
k1D1(2)

]2 − k2y, (24)

where

k1D1(2) =
√
m2
Rλ

2 + 2mR(iω + EFR)∓mRλ (25)

are the corresponding momenta in 1D. We also denote
sα = sgn[Im(kα)], which evaluates to

s1 =

 sgn(ω) if EFR > 0,
−sgn(ω) if EFR < 0, ω2 < −4EsoEFR,

sgn(ω) if EFR < 0, ω2 > −4EsoEFR,
(26a)

s2 = sgn(ω). (26b)
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In Eq. (26a), we define the spin-orbit energy Eso =
mRλ

2/2 (see also Fig. 2). Based on the symmetry of
Eq. (17), the remaining spin components of the bulk
Rashba solution can be obtained directly from Eq. (23)

by noting that G↑↑ → G↓↓ and G↓↑ → G↑↓ upon flipping
the signs of both λ and ky. The full bulk solution is given
by

Ĝ(0)Rω,ky
(x− x′) = − imRs1

k1D1 + k1D2

[
k1D1
k1
− s1 sgn(x− x′)σ̂y +

ky
k1
σ̂x

]
eik1s1|x−x

′|

− imRs2
k1D1 + k1D2

[
k1D2
k2

+ s2 sgn(x− x′)σ̂y −
ky
k2
σ̂x

]
eik2s2|x−x

′|.

(27)

We now seek solutions to the homogeneous system of
equations

(a2R + ∂2x)GR↑↑(x, x′)− 2mRλ(ky + ∂x)GR↓↑(x, x′) = 0,

(28a)

(a2R + ∂2x)GR↓↑(x, x′)− 2mRλ(ky − ∂x)GR↑↑(x, x′) = 0.

(28b)

Because this is a linear system, it can easily be solved by
matrix methods. We transform the system (28) into a
first-order matrix equation,

∂xX =

 0 0 1 0
0 0 0 1
−a2R −2mRλky 0 −2mRλ

−2mRλky −a2R 2mRλ 0

X,

(29)

describing the vector X = [GR↑↑,GR↓↑, ∂xGR↑↑, ∂xGR↓↑]T . The

four eigenvalues of the matrix in Eq. (29) are ±ik1 and
±ik2, but we choose only the solutions that decay in the
limit x → ∞. The prefactors of the exponentials in the
solution are determined by the eigenvectors. Thus, a full
solution to the Gor’kov equations in the Rashba metal is
given by

ĜRω,ky (x, x′) =

( ik1s1+ky
k1D1

c9(x′) c10(x′)

c9(x′) − ik1s1−ky
k1D1

c10(x′)

)
eik1s1x +

(
− ik2s2+ky

k1D2
c11(x′) c12(x′)

c11(x′)
ik2s2−ky
k1D2

c12(x′)

)
eik2s2x + Ĝ(0)Rω,ky

(x− x′).

(30)

Turning now to the solution for the pairing amplitude
in the Rashba metal, the Gor’kov equations that we must

solve are given by[
a∗2R + ∂2x − 2mRλ(iσ̂y∂x − σ̂xky)

]
F̂†Rω,ky (x, x′) = 0. (31)

Noting that Eq. (31) becomes Eq. (17) upon flipping the
signs of both ω and ky (save for the delta-function term),
we obtain the pairing amplitude directly from Eq. (30)
by making these changes,

F̂†Rω,ky (x, x′) =

(
− ik

∗
1s1+ky
k∗1D1

c13(x′) c14(x′)

c13(x′)
ik∗1s1−ky
k∗1D1

c14(x′)

)
e−ik

∗
1s1x+

( ik∗2s2+ky
k∗1D2

c15(x′) c16(x′)

c15(x′) − ik
∗
2s2−ky
k∗1D2

c16(x′)

)
e−ik

∗
2s2x. (32)

B.3. Enforcing boundary conditions

Now that we have obtained general solutions to
the Gor’kov equations in both the superconductor and

Rashba metal, the sixteen unknown coefficients must be
determined by boundary conditions. The boundary con-
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ditions can be obtained by direct integration of Eq. (7)
over a narrow region near x = 0; they are

ĜRω,ky (0, x′) = ĜSω,ky (0, x′), (33a)(
∂x
mR
− iσ̂yλ

)
ĜRω,ky (0, x′) =

∂x
mS
ĜSω,ky (0, x′), (33b)

with the same boundary conditions applying for F̂† as
well.

Because the bulk solution (27) contains two linearly

independent terms, we can separate the dependence of
the coefficients on x′ by writing

ci(x
′) = ci,1e

ik1s1x
′
+ ci,2e

ik2s2x
′
. (34)

Each of the sixteen boundary conditions then separates
into two linearly independent parts, thus giving a total of
32 boundary conditions that must be solved. The pairing
amplitude in Eq. (32) becomes

F̂†Rω,ky (x, x′) =

(
− ik

∗
1s1+ky
k∗1D1

c13,1 c14,1

c13,1
ik∗1s1−ky
k∗1D1

c14,1

)
e−ik

∗
1s1xeik1s1x

′
+

(
− ik

∗
1s1+ky
k∗1D1

c13,2 c14,2

c13,2
ik∗1s1−ky
k∗1D1

c14,2

)
e−ik

∗
1s1xeik2s2x

′

+

( ik∗2s2+ky
k∗1D2

c15,1 c16,1

c15,1 − ik
∗
2s2−ky
k∗1D2

c16,1

)
e−ik

∗
2s2xeik1s1x

′
+

( ik∗2s2+ky
k∗1D2

c15,2 c16,2

c15,2 − ik
∗
2s2−ky
k∗1D2

c16,2

)
e−ik

∗
2s2xeik2s2x

′
.

(35)

Due to the matched momenta in the exponentials of the
first and last terms of Eq. (35), these terms correspond
to Cooper pairs with zero net momentum; these terms
do not oscillate as a function of the center-of-mass coor-
dinate of the pair (x+ x′)/2. Conversely, the terms with
mismatched momenta correspond to Cooper pairs with a
finite momentum; these terms are oscillatory.

To compactify our notation, we can express the singlet
and triplet parts of the induced pairing amplitude, as
defined in Eq. (8), as

(s,d) =

2∑
α,β=1

[f0αβ(ω, ky), fαβ(ω, ky)]e−ik
∗
αsαxeikβsβx

′
.

(36)
The sums in Eq. (36) run over the two Rashba subbands
and (f0, f) describes a four-vector of 2× 2 matrices that
can be directly related to the spatial dependence of the
induced pairing amplitude. The four elements of the
newly defined f i matrices correspond to the four terms
of Eq. (35); for example, the upper diagonal element of
f0 is given by the singlet component of the matrix in
the first term of Eq. (35), (c14,1 − c13,1)/2. For this rea-
son, we associate the diagonal elements of the f i matrices
with nonoscillatory terms of the pairing amplitude and
off-diagonal elements with oscillatory terms.

C. Pairing Amplitude in 1D

Solving the boundary conditions in 1D, we obtain fx =
fz = 0, while fy ∝ σz and f0 ∝ σ0. Consistent with our
previous discussion of Andreev reflection, we find that
the pairing amplitude is a mixture of singlet and triplet
components and does not oscillate with (x + x′)/2. In
order to simplify the analytic result, we assume that the
Fermi energy and the spin-orbit energy are the largest

energy scales, so that ω,∆ � Eso, EFR(S). This allows
us to expand

p = pF + iΩ/vF , (37a)

k1 = (kF1 + iω/vR)sgn(EFR), (37b)

k2 = kF2 + iω/vR, (37c)

where vF =
√

2EFS/mS = pF /mS and vR =√
λ2 + 2EFR/mR are the Fermi velocities of the super-

conductor and Rashba metal, respectively. We also note
that, in this limit, s1 = sgn(ω)sgn(EFR). The sole
nonzero triplet component can then be expressed as

dy(x, x′) = − vF∆ sgn(ω)

2vF vR|ω|+ (v2F + v2R)Ω sgn(EFR)
e
− |ω|vR (x+x′)

×
(
e−ikF1 sgn(ω)(x−x′) − e−ikF2 sgn(ω)(x−x′)

)
.

(38)
As is customary, we can also express the nonlocal pair-
ing amplitude in terms of the center-of-mass coordinate
and the momentum of the relative motion. In this mixed
representation (x now denotes the center-of-mass coor-
dinate), the triplet pairing amplitude when EFR > 0 is
given by

dy(x, k) =
2πvF vR∆ sgn(k)

2vF vR|ω|+ (v2F + v2R)Ω
e−2|ω|x/vR

×
[
δ(ξ1)− δ(ξ2)

]
θ(−kω),

(39)

where ξ1(2) = vR(|k| − kF1(2)); a similar expression can
be written if EFR < 0. In both cases, the triplet compo-
nent in Eq. (39) consists of terms localized to each of the
two split Fermi surfaces. However, this triplet component
vanishes if integrated over the momentum, as the inte-
grated triplet amplitude is proportional to the difference
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FIG. 3. (Color online) Spatial dependence of proximity-induced (a) singlet and (b) triplet pairing amplitudes, as defined
in Eq. (43), in a 2D Rashba proximity junction for various strengths of SOC (ξS = vF /∆ is the coherence length of the
superconductor). Pairing amplitude is plotted in units of its value in the bulk of the superconductor. (c) Quantitative
comparison between induced singlet and triplet amplitudes for Eso/EFR = 2 [dotted curves from (a) and (b)], which is a
reasonable choice for BiTeI.38 All pairing amplitudes are plotted with ω/∆ = 0.8, mR/mS = 0.1, EFR/EFS = 0.05, and
EFS/∆ = 200. By the Pauli principle, the triplet component has an odd frequency dependence.

in the densities of states on the two Rashba subbands,

dy(x) =

∫
dk

2π
dy(x, k) ∝ N1(EFR)−N2(EFR). (40)

Since the subband densities of states in 1D are equal re-
gardless of the position of the Fermi level, N1(EFR) =
N2(EFR) = 1/πvR, dy(x) vanishes. This result is consis-
tent with that of Ref. 17, which found no induced local
(equivalently, momentum-integrated) triplet pairing am-
plitude in 1D. [Additional Rashba coupling arising from
a lateral confining potential in quasi-1D wires makes the
velocities of spin-split subbands, and thus the densities of
states, different,39 but this effect is expected to be small
and ignored here, as well as in Ref. 17.]

D. Pairing Amplitude in 2D

In 2D, all four components of the pairing amplitude are
nonzero. While the explicit analytic expressions are too
cumbersome to be included here, we find, again taking
ω,∆� Eso, EFR(S), that the coefficients of Eq. (34) are
interrelated as follows:

c14,1 = −c13,1, c16,2 = −c15,2, c14,1, c16,2 ∈ R,
c14,2 = −c∗13,2 = −c15,1 = c∗16,1, c14,2 ∈ C.

(41)

Given these relations, the matrices in Eq. (36) can be
expressed as

f0 =

(
c14,1 Re[c14,2]

Re[c14,2] c16,2

)
, (42a)

fx =

(
− sin θ1c14,1 −Im[sgn(ω)eiθ1 sgn(ω)c14,2]

−Im[sgn(ω)e−iθ2 sgn(ω)c14,2] sin θ2c16,2

)
, (42b)

fy =

(
cos θ1c14,1 Re[eiθ1 sgn(ω)c14,2]

−Re[e−iθ2 sgn(ω)c14,2] − cos θ2c16,2

)
sgn(ω), (42c)

fz =

(
0 i Im[c14,2]

−i Im[c14,2] 0

)
, (42d)

where we define θ1(2) = sin−1(ky/kF1(2)). We see that
fz ∝ σy, while the remaining components contain both
diagonal and off-diagonal terms. We therefore conclude
that intraband Andreev reflection processes contribute
to the singlet component and to only those triplet com-

ponents that have d ‖ g, while interband processes con-
tribute to all types of pairing. Additionally, each of the
pairing components has a definite symmetry with respect
to ky; s and dy are even functions of ky, while dx and
dz are odd. So, while a single trajectory parameterized
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by ky can produce all four pairing components, only the
components s and dy are nonzero when averaged over all
possible trajectories.

To facilitate a quantitative comparison of the induced
amplitudes of different symmetry in 2D junctions, we
define a dimensionless analog to the angular-averaged
quasiclassical Green’s function, whereby we integrate the
Gor’kov Green’s function over the momentum,

F̂†ω(x) =
1

mR

∫ ∞
−∞

dky
2π
F̂†ω,ky (x, x). (43)

Note that we explicitly integrate over ky, while the in-
tegration over kx is done implicitly by setting x = x′

in the nonlocal solution given in Eq. (35). In addition
to allowing a quantitative comparison between singlet
and triplet components, integrating over the momentum
has the added benefit of picking out the odd-frequency
triplet terms; this follows directly from the Pauli prin-
ciple, as any triplet pairing amplitude is a sum of an
even-frequency, odd-momentum component and an odd-
frequency, even-momentum component.

We calculate the Green’s function defined in Eq. (43)
numerically without making any approximations. The
pairing amplitude at a given ω is determined by four pa-
rameters: mR/mS , EFR/EFS , Eso/EFR, and EFS/∆.
Figures 3(a) and 3(b) illustrate the effects of SOC on
the induced singlet and triplet amplitudes, respectively.
While the magnitude of the pairing amplitude is largely
determined by the Andreev reflection coefficient, which is
controlled by all four parameters, we find that Eso/EFR
is the only parameter that controls the singlet-to-triplet
ratio. Figure 3(c) compares the singlet and triplet pair-
ing amplitudes using parameters appropriate for a giant
Rashba semiconductor BiTeI, where Eso/EFR ≈ 2.38 As
is seen from the plot, the singlet and triplet amplitudes
can be comparable in magnitude in a real physical sys-
tem.

As discussed previously in Sec. II B, the generation of a
triplet pairing component does not require occupation of
both Rashba subbands. Figure 4 shows that the induced
triplet component is qualitatively similar when only a
single subband is occupied. This observation is also rele-
vant for BiTeI, as, in samples studied in Ref. 38, only the
lowest Rashba subband is occupied at ambient pressure.

E. Recovering the Quasiclassical Limit

We will now show that the induced triplet pairing am-
plitude vanishes to leading order in the quasiclassical
limit, where SOC is taken to be weak (λ � vF ) and
the splitting of the Fermi surfaces is neglected. If there
is no Fermi surface mismatch between superconductor
and Rashba metal (mR = mS and EFR = EFS), the
system can be described by a single Fermi momentum
kF and a single angle θ = sin−1(ky/kF ). Expanding the
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0.000
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0.015

0.020

d
y
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)/
s b
u
lk

Eso/EFR=2.0

Eso/EFR=−2.0

FIG. 4. (Color online) Quantitative comparison between
induced triplet pairing amplitude in two-subband (solid line)
and one-subband (dotted line) cases. Chosen parameters are
the same as those in Fig. 3, with only a change in the sign of
EFR/EFS for the one-subband case.

coefficients from Eq. (41) to linear order in λ/vF , we find

c14,1 = c16,2 = − ∆

2vF cos θ(Ω + |ω|)
+O(λ2/v2F ),

c14,2 = O(λ2/v2F ),

(44)

Because there is only one Fermi momentum, we can
rewrite Eq. (36) as

(s,d) = e−ik
∗sxeiksx

′
2∑

α,β=1

[
f0αβ(ky, ω), fαβ(ky, ω)

]
,

(45)
where k2 = 2m(iω+EF )−k2y and s = sgn(ω). We imme-
diately see from Eqs. (42) that all three triplet compo-
nents vanish to first order in λ/vF . The nonzero triplet
pairing amplitude occurs to order λ2/v2F (see also Refs.
20 and 21) and is very small in materials with weak SOC.
Therefore, in order to achieve a sizable singlet-triplet
mixing, one needs to study the S/R proximity effect be-
yond the quasiclassical limit.

IV. CONCLUSIONS

We provided a qualitative physical argument, based
on the consideration of possible Andreev reflection pro-
cesses, for the presence of triplet Cooper pairing in a
Rashba material placed in proximity to a conventional su-
perconductor. We also proved the existence of this triplet
state by solving the exact Gor’kov equations. Even
though the triplet state vanishes in 1D when integrated
over the momentum, it can be comparable in magnitude
to the singlet component in 2D when Eso ∼ EFR.

Because triplet pairing occurs only to order λ2/v2F in
the quasiclassical limit, where λ is the spin-orbit cou-
pling constant and vF is the Fermi velocity, this work
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is most relevant to materials with large λ. For exam-
ple, the spin-orbit constant in the bulk Rashba semicon-
ductor BiTeI has been reported as λ ∼ 1 eV·Å, corre-
sponding to a spin-orbit energy of Eso = m∗λ2/2~2 ∼
100 meV (m∗ ∼ 0.1me).

38 More conventional semi-
conductors provide a wide range of spin-orbit coupling
strengths. While GaAs/AlGaAs quantum wells are
weak spin-orbit materials with λ ∼ 1 meV·Å,40 other
semiconductor heterostructures, such as InAs/InAlAs41

and InSb/InAlSb42–44 quantum wells, have been re-
ported to have λ ∼ 0.1 eV·Å. Additionally, Ge/Si
core/shell,45 InAs,46 and InSb26 nanowires can reach
spin-orbit strengths of λ ∼ 0.1 − 1 eV·Å. With so many
materials belonging to the strong spin-orbit coupling
regime, it is imperative to understand the proximity ef-
fect in such materials beyond the quasiclassical approxi-
mation.

Even though we do not treat disorder here explicitly,
we can comment on its effect. In the presence of impurity
scattering, the triplet Cooper pairs in a spin-orbit system
are subjected to spin relaxation. Therefore, in the dif-
fusive limit, where ` � ξS and ` � `so (` is the mean
free path and `so ∼ ~2/m∗λ is the spin-orbit length), the
decay length of the odd-frequency triplet component is

∼
√
D/τso, where τso is the spin relaxation time and D

is the diffusion coefficient. In the diffusive limit of the
Dyakonov-Perel mechanism,47 the spin relaxation time
is given by τso ∼ D/`2so, so the wave function of the
triplet Cooper pairs is expected to decay on the scale set
by `so. However, in materials with strong spin-orbit cou-
pling for which the induced triplet pairing is relevant, the
spin-orbit length is comparable to the Fermi wavelength;
therefore, as long as these materials remain “good met-
als” (kF ` � 1), the results of this work should apply.
Recent experiments have measured an electron mobility
exceeding 200 000 cm2/V·s in an InSb/InAlSb quantum
well,48 thus demonstrating an ability to fabricate ultra-
clean materials with strong spin-orbit coupling.
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Appendix A: Triplet pairing amplitude as a consequence of lifted spin degeneracy

In this appendix, we prove that a nonzero triplet pairing amplitude is induced in any 1D proximity junction with
lifted spin degeneracy. For our purposes here, we assume that spin remains an eigenstate of the Hamiltonian, as is
the case for both a ferromagnet and a 1D Rashba material. By calculating the BdG wave functions describing the
Andreev reflection of an electron to a hole, we will be able to determine the pairing amplitude and show that the
triplet component is always nonzero when the spin degeneracy is lifted.

In any nonsuperconducting material where spin is an eigenstate of the Hamiltonian, the scattering wave function
describing an electron incident on the superconducting interface can be expressed as

ψN (x, ε) = ψi(x, ε) + a↑(ε)

 0
0
1
0

 eik
L
↑hx + a↓(ε)

 0
0
0
1

 eik
L
↓hx + r↑(ε)

 1
0
0
0

 eik
L
↑ex + r↓(ε)

 0
1
0
0

 eik
L
↓ex, (A1)

where ψi(x, ε) is the wave function of the incident electron, k
R(L)
↑(↓)e(h) is the momentum of a right-moving (left-moving)

spin-up (spin-down) electron (hole), a↑(↓)(ε) are the Andreev reflection amplitudes, and r↑(↓)(ε) are the normal
reflection amplitudes. On the superconducting side, the wave function is given by

ψS(x, ε) = t1(ε)

 u0
0
0
v0

 eiq+x + t2(ε)

 0
u0
−v0

0

 eiq+x + t3(ε)

 v0
0
0
u0

 e−iq−x + t4(ε)

 0
−v0
u0
0

 e−iq−x, (A2)

where q2± = 2mS(EFS ± i
√

∆2 − ε2), u20 = (1 + i
√

∆2 − ε2/ε)/2 and v20 = (1 − i
√

∆2 − ε2/ε)/2 are the usual BCS
coherence factors, and the ti(ε) are transmission amplitudes. Boundary conditions to be imposed on the wave functions
are

ψN (0) = ψS(0), (A3a)

v̂NψN (0) = v̂SψS(0). (A3b)
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The velocity operator is a 4× 4 matrix given by v̂ = ∂H/∂(−i∂x), where H is the Hamiltonian of the BdG equation
[Hψ(x, ε) = εψ(x, ε)].

We first consider the scattering of an incident spin-up electron. In that case, [ψi(x, ε)]
T = (1, 0, 0, 0)eik

R
↑ex. Imposing

the boundary conditions gives us a set of four equations (a↑ = r↓ = 0 for this choice of incident wave function):

1 + r↑ = t1u0 + t3v0, vF↑(1− r↑) = vFS(t1u0 − t3v0),

a↓ = t1v0 + t3u0, vF↓a↓ = vFS(t1v0 − t3u0),
(A4)

where vF↑(↓) is the Fermi velocity of the spin-up (spin-down) band of the nonsuperconducting material and vFS is the
Fermi velocity of the superconductor. In obtaining Eq. (A4), we expanded in the limit ε,∆� EFN(S). We also must

consider the scattering of an incident spin-down electron, with wave function given by [ψi(x, ε)]
T = (0, 1, 0, 0)eik

R
↑ex.

The boundary conditions for this second case are

1 + r↓ = t2u0 − t4v0, vF↓(1− r↓) = vFS(t2u0 + t4v0),

a↑ = −t2v0 + t4u0, −vF↑a↑ = vFS(t2v0 + t4u0).
(A5)

By solving Eqs. (A4) and (A5), we find that the Andreev and normal reflection amplitudes are related by

a↓(ε) = −vF↑
vF↓

a↑(ε), (A6a)

r↑(ε) =
(u20 − v20)(vF↑vF↓ − v2FS) + vFS(vF↑ − vF↓)
(u20 − v20)(vF↑vF↓ − v2FS)− vFS(vF↑ − vF↓)

r↓(ε). (A6b)

The relations of Eq. (A6) will allow us to prove the existence of a triplet pairing component.
The pairing amplitude is given in terms of the BdG wave functions uα(x, ε) (electrons) and vα(x, ε) (holes) by

F†αβ(x, x′, ε) ∼ vα(x, ε)u∗β(x′, ε). (A7)

Therefore, the triplet component of the pairing amplitude with zero spin projection is

F†t (x, x′, ε) =
1

2

[
F†↑↓(x, x

′, ε) + F†↓↑(x, x
′, ε)
]
∼ v↑(x, ε)u∗↓(x′, ε) + v↓(x, ε)u

∗
↑(x
′, ε). (A8)

These two terms correspond to the two scattering processes considered above. Substituting the wave functions from
Eq. (A1), we find that

F†t (x, x′, ε) ∼ a↑(ε)
[
e−ik

R
↓ex
′
+ r∗↓(ε)e

−ikL↓ex
′
]
eik

L
↑hx + a↓(ε)

[
e−ik

R
↑ex
′
+ r∗↑(ε)e

−ikL↑ex
′
]
eik

L
↓hx. (A9)

Given the relations in Eq. (A6), we can reexpress Eq. (A9) as

F†t (x, x′, ε) ∼ a↑(ε)
(
eik

L
↑hxe−ik

R
↓ex
′
− vF↑
vF↓

eik
L
↓hxe−ik

R
↑ex
′
)

+ a↑(ε)r
∗
↓(ε)

(
eik

L
↑hxe−ik

L
↓ex
′
− vF↑
vF↓

sgn(ε−∆)(u20 − v20)(vF↑vF↓ − v2FS) + vFS(vF↑ − vF↓)
sgn(ε−∆)(u20 − v20)(vF↑vF↓ − v2FS)− vFS(vF↑ − vF↓)

eik
L
↓hxe−ik

L
↑ex
′
)
.

(A10)
Note that the triplet amplitude only vanishes when the two spin bands are degenerate, k↑ = k↓ and vF↑ = vF↓.
Therefore, triplet pairing is induced by the proximity effect any time the spin degeneracy is lifted.
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