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We find the admittance of a topological Josephson junction Y (ω, ϕ0, T ) as a function of frequency
ω, the static phase bias ϕ0 applied to the superconducting leads, and temperature T . The dissipative
part of Y allows for spectroscopy of the sub-gap states in the junction. The resonant frequencies
ωM,n(ϕ0) for transitions involving the Majorana (M) doublet exhibit characteristic kinks in the
ϕ0-dependence at ϕ0 = π. The kinks – associated with decoupled Majorana states – remain sharp
and the corresponding spectroscopic lines are bright at any temperature, as long as the leads are su-
perconducting. The developed theory may help extracting quantitative information about Majorana
states from microwave spectroscopy.

The interest in the condensed matter realizations of
Majorana states is fueled by the promise of topologically-
protected quantum computing [1–4]. While the latter
requires the ability to braid the states, the current ex-
perimental effort [5–12] focuses on indications of the
Majorana states’ presence in various implementations of
topologically-nontrivial superconductors. The majority
of experiments use the dc electron transport spectroscopy
and aim at detecting a zero-bias conductance peak asso-
ciated with tunneling into a Majorana state [13–15] or
the 4π-periodic phase dependence of the two “Majorana
branches” formed by an occupied and unoccupied Majo-
rana doublet [6, 16, 17]. In the former case, some addi-
tional checks are necessary [5] to exclude other sources
(e.g., Kondo effect) of the zero-bias anomaly [8, 18, 19].
Attempts to observe the unusual phase dependence rely
on the absence of inter-branch relaxation; this is hard to
enforce, especially over an extended time period required
in the interference experiments [10–12, 20], or at higher
bias voltage needed for observation of multiple Shapiro
steps [6].

Limitations of the techniques implemented to-date give
an incentive to search for alternatives. Our theory eluci-
dates the manifestations of the Majorana states in the
microwave spectrum of a topological Josephson junc-
tion. Spectroscopy of the Andreev (i.e., sub-gap) states
was performed recently in experiments with conventional
metallic break junctions [21, 22]. The experiments did
detect the transitions from an Andreev level to the con-
tinuum of quasiparticle states [22], and the transitions
between the two discrete Andreev levels [21]. The latter
result in a narrow bright line in the spectrum, especially
attractive for spectroscopy. This is why we also aim at
a setup allowing for discrete lines in the spectrum of a
topological Josephson junction. The junction hybridizes
the two Majorana states to form two levels differing by
the parity of electron number. Therefore, the particle
number-preserving interaction with microwaves does not
cause transitions within this doublet. That prompts us
to consider junctions of length L & ξ allowing for higher-

energy Andreev states, along with the Majorana doublet
(here ξ is the coherence length in the topological super-
conductor).

We focus on the contribution of the discrete, sub-
gap states to the admittance Y (ω, ϕ0, T ) of a topolog-
ical Josephson junction [23]. The setup for the junc-
tion is sketched in Fig. 1 and is based on a two-
dimensional topological insulator [17] or a semiconductor
nanowire [24, 25] with strong spin-orbit (SO) interaction
in proximity with a conventional superconductor. The
junction is controlled by the static order parameter phase
difference ϕ0 between the leads and is probed by apply-
ing a small voltage V (t) induced by microwaves [26]. It
creates a weak time-dependent perturbation δϕ(t) of the
phase difference, d(δϕ)/dt = (2e/~)V (t), which drives
the transitions between the sub-gap levels. The lowest
doublet is formed by the hybridized Majorana states.
Their crossing at ϕ0 = π is protected by conservation
of electron number parity. (At the crossing, the number
parity of the ground state switches between even and odd,
see Fig. 2a.) The crossings of the higher-energy Andreev
levels are not protected by the parity. In a generic junc-
tion, these crossings are avoided, resulting in a smooth
dependence of the corresponding energies En(ϕ0) on ϕ0,
see Fig. 2a.

We find the discrete lines in the microwave absorption
spectrum originating from the transitions in the sub-gap
energy domain. The transitions involving the states of
the Majorana doublet, see Fig. 2a, result in a series of
lines with a characteristic kink at ϕ0 = π in the depen-
dence of the transition frequencies on ϕ0,

~ω∓M,n(ϕ0) = En(π)∓E′M|ϕ0−π|+O[(ϕ0−π)2] . (1)

Here ∓E′M = ∓dEM/dϕ0 are the slopes at ϕ0 = π of the
energies of the two Andreev levels formed by the occupied
and unoccupied Majorana doublet at the level crossing
point, En(π) is the energy of the higher Andreev level,
and the last term in Eq. (1) represents the smooth part of
its ϕ0-dependence. The intensity of these lines is quanti-
fied by ReY (ω, ϕ0, T ), for which in the vicinity of ϕ0 = π
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FIG. 1. (Color online) Right: A typical junction setup host-
ing Majorana states. The arrowed lines mark the gapless he-
lical edge modes of the 2D topological insulator (2D TI, light
grey area), proximity coupled (dashed lines) to the left and
right superconducting leads (grey area). The junction and the
leads are wider than the coherence length ξ of superconduc-
tivity induced in the TI; ξ sets the scale for the bound states’
decay length into the leads. A weak time-dependent voltage
V (t) applied between the leads gives rise to a small com-
ponent, δϕ(t) � 1, modulating the superconducting phase
difference across the junction (in the figure, the left lead is
grounded). The resulting current response contains signa-
tures of Majorana bound states. Upper left inset: The
full setup; the outer junction can be ignored since it is much
longer then the inner one and gives a signal weaker by a fac-
tor (L/Louter)

2, see Eq. (12). Lower inset: The Majorana
detection scheme is also applicable to a junction formed by a
topological semiconductor nanowire (light grey).

we find the following estimate:

ReY (ω, ϕ0, T ) ≈ 2πe2

~
(E′M)2

~ω
∑

En>EM

∑
σ=±

×
[
tanh

En(π)

2T
−tanh

En(π)− ~ω
2T

]
δ(~ωσM,n(ϕ0)− ~ω).

(2)

Note that unlike the zero-bias anomalies in dc transport,
the spectroscopic feature associated with the kink in the
ϕ0-dependence of ω∓M,n(ϕ0) is not broadened by tem-
perature. The brightness of lines depends weakly on tem-
perature, with the scale provided by the higher-energy
levels En. The admittance we find is a linear-response
property of the junction; unlike the Shapiro-steps man-
ifestation of the Majoranas, their effect on Y does not
set any stringent requirement on the relaxation time of
the system to its equilibrium state. Our main results,
Eqs. (1) and (2), are illustrated in Fig. 2b. In the follow-
ing, we outline their derivation and application to con-
crete junction models.

A microwave field induces voltage bias V (t) between
the leads of a device built on a basis of a two-dimensional
topological insulator (TI) or a nanowire (NW), see Fig. 1.
The bias excites current 〈Î(t)〉 between the leads, con-
nected by the NW or the edge states of a TI. The ad-
mittance Y (ω) of the device is defined as a response
function, 〈Î(ω)〉 = Y (ω)V (ω), at frequency ω. For the
current operator, we may take the current through the

FIG. 2. (Color online) The low-lying excitations spectrum
(a) and the absorption spectrum (b) of a topological Joseph-
son junction. (a) The dependence of the first three Andreev
levels in the junction on the phase ϕ0. The lowest level has
zero energy EM at ϕ0 = π, corresponding to two decoupled
Majorana bound states. At ϕ0 = π the electron number par-
ity of the ground state (GS) changes. Energy EM has a dis-
continuous ϕ0-derivative (a kink) at the GS switching point.
The lines E1,2(ϕ0) for higher levels are smooth, as the de-
generacies are lifted by backscattering (δϕ1 characterizes the
avoided crossing). The kink in the EM(ϕ0) function can be
probed by microwave spectroscopy. The transitions conserv-
ing the electron number parity are shown by arrows 1 through
4 and give rise to spectroscopic lines. (Transitions 1 and 3 cre-
ate a pair of quasiparticles above the GS.) (b) The absorption
lines near ϕ0 = π, see Eq. (1). At T = 0, transitions [arrows 1
and 3 in panel (a)] start from the GS resulting in lines 1 and
3 (solid blue) each displaying a kink at ϕ0 = π. Populated
level EM enables transitions 2 and 4 (dashed red), which also
show a kink, c.f. Eq. (2). At finite temperature this results in
a crossing of spectral lines at ϕ0 = π. For the ϕ0 dependence
of the transitions’ oscillator strengths, see Eq. (12).

junction between the TI (or NW) and the right lead,
Î(t) = e · dN̂R/dt. Here N̂R is the number of electrons of
the edge state in TI (or of NW) which tunneled into the
right superconducting lead.

We are interested in transitions between the states with
energies below the proximity-induced gap ∆0; the lat-
ter inevitably is smaller than the superconducting gap
in the leads which are the sources of proximity. That
allows us to use the effective Hamiltonian of a proxi-
mized TI (or NW) instead of the full Hamiltonian in
the evaluation of dN̂R/dt [27]. The effective Hamilto-
nian Ĥ(0) =

∫
dxΨ†H(0)Ψ/2 in Nambu representation

(parametrized by matrices τ) takes the form

H(0)(x) = −i~vτzσz∂x − µτz + V (x)τz +M(x)σx

+ ∆0(x)[τx cosϕ(x)− τy sinϕ(x)] . (3)

The first term here is the electron kinetic energy, µ is the
chemical potential, V (x) is the scalar potential (induced,
e.g., by disorder), and M(x) is the Zeeman splitting in
the junction; the 4×4 matrix Hamiltonian H(0) describes
here a helical edge state in a TI [17]. (We show below that
the effective Hamiltonian of a NW in a sufficiently large
magnetic field takes the same form, see the paragraph
preceding Eq. (13).) We assume the leads to be wide
compared to the proximity-induced coherence length ξ =
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~v/∆0 [28]. That allows us to replace the leads depicted
in Fig. 1 by semi-infinite pads,

∆0(x) = ∆0[Θ(−x) + Θ(x− L)] , ϕ(x) = ϕ0Θ(x− L) ,
(4)

where L is the length of the junction. We set the order
parameter of the left lead to be real so that ϕ0 is the
phase difference across the junction. Using Eq. (3) to
evaluate dNR/dt, we find

Î = (2e/~)(∂Ĥ(0)/∂ϕ0) . (5)

for the current operator projected on the manifold of
states with energy below the gap in the superconducting
leads. It will be used below to derive the contribution
to admittance coming from the transitions between the
discrete sub-gap states.

Application of a bias V (t) to the junction results
in a time-dependent addition δϕ(t) to the static phase
bias ϕ0. According to the Josephson relation, δϕ̇(t) =
2eV (t)/~. For a monochromatic bias voltage V (t) =
V (ω) cosωt, we can treat δϕ(t) perturbatively as long
as |eV (ω)/~ω| � 1. (Hereinafter, we set ~ = 1.) In this
weak bias limit, the Hamiltonian H can be split into a
time-independent part H(0), and a time-dependent per-
turbation

H(1)(t) = δϕ(t)(∂H(0)/∂ϕ0) . (6)

To evaluate the admittance Y (ω), we apply the standard
linear response theory to the problem set by Eqs. (3)-(6).
The result may be expressed in terms of the spectrum En
of H(0) and the matrix elements

H(1)
m;n =

∫
dxΦ∗m(x)[∂ϕ0H(0)(x)]Φn(x) (7)

of the operator defining the perturbation, see Eq. (6).
Here Φn(x) are the eigenfunctions of H(0), and energies
En are measured from the Fermi level. We are inter-
ested in the transitions between the sub-gap states, so
the corresponding wave functions decay exponentially at
|x| → ∞. As the result of using the Nambu spinor
notation, the energy spectrum is particle-hole symmet-
ric (PHS), meaning that the eigenvalues come in pairs
(En, −En). We will label by −n the state with en-
ergy −En for all n ≥ 0; the lowest (n = 0) doublet is
(EM, −EM). We concentrate on the absorption lines
which originate from transitions involving a state of this
doublet. Using the Kubo formula [29] and PHS, we ob-
tain for the corresponding part of the admittance:

ReY (ω) =
4πe2

ω

∑
En>EM

[
tanh

En
2T
− tanh

ω − En
2T

]
×
{
|H(1)
M;n|

2δ(ω − ω−M,n) + |H(1)
−M;n|

2δ(~ω − ω+M,n)
}
.

(8)

Here ω∓M,n = En ∓ EM, see Eq. (1). Note that there

are no terms with En = EM since H(1)
M;−M = 0 by Pauli

exclusion principle. The eigenvalues En with n 6= 0 are
in general not degenerate, contrary to the case of a con-
ventional time-reversal symmetric (TRS) S-N-S junction,
where the states are doubly degenerate (Kramers dou-
blets). The “degeneracy” and zero value of the energy
EM at ϕ0 = π are protected by symmetries, and will
be discussed below. Equation (8) was derived in linear
response theory. It assumes that the perturbation (6)
is weak enough to allow the system to relax to equilib-
rium between the acts of the microwave photon absorp-
tion. Relaxation may happen through recombination of
the excited quasiparticles by emission of phonons or pho-
tons into the environment [30]. A finite recombination
rate would result in Lorentzian broadening of the spec-
tral lines in Fig. 2b.

The junction sub-gap excitation spectrum is found
from Eqs. (3) and (4) by using the standard scattering
matrix method [31]. We find that there is always a state
with vanishing energy EM at ϕ0 = π [26]. The EM = 0
state is protected by fermion number parity conserva-
tion. (We assume the junction is well separated from
other junctions or interfaces with bound states, allowing
us to ignore hybridization of those states with EM, see
Fig. 1 and footnote [27].) Near ϕ0 = π the dispersion
EM(ϕ0) is linear. For a reflectionless junction [M = 0 in
Eq. (3)] we find

EM(ϕ0) =
1

2

v

L+ ξ
|ϕ0 − π| . (9)

Breaking of TRS in the junction, M 6= 0, results in
backscattering. This does not lead to qualitative changes
to Eq. (9) but merely modifies the prefactor in it [32].

The situation is different for the higher Andreev levels.
In a reflectionless junction they have degeneracies [33] at
ϕ0 = π: in our notation, for odd n the levels n and n+ 1

are degenerate, E
(0)
n (π) = E

(0)
n+1(π) = (n+1)πv/2L. (We

take now L � ξ.) Backscattering lifts these degenera-
cies and thus leads to qualitative changes in the spec-
trum at ϕ0 = π (see Fig. 2a). The resulting avoided
crossing makes the ϕ0-dependence of the levels’ energies
smooth [34]

En(ϕ0) = E(0)
n (π) + (−1)n

v

2L

√
(ϕ0 − π)2 + (δϕn)2 .

(10)
(We ignore here corrections to the prefactor v/2L due
to weak backscattering.) The smoothness in (10) is
characterized by the width of the avoided-crossing re-

gion δϕn =
∣∣r+ + r∗−

∣∣
E=E

(0)
n (π)

. We denote by r
(′)
+/−(E)

the reflection amplitudes for electrons/holes entering the
junction from the left (right) at energy E. In a sim-
ple model with V (x) = 0, M(x) = MΘ(x)Θ(L− x),
and M � v/L, the junction is symmetric and r±(E)=
M(1−e2i(E±µ)L/v)/2(E ± µ). In this model, for small
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chemical potential, µ � v/L, the width of the avoided
crossing is [35]

δϕn =
|M |
v/2L

|µ|
E

(0)
n (π)

. (11)

The sub-gap spectrum determines the resonance fre-
quencies ω∓M,n(ϕ0): combining Eqs. (9) and (10) yields
Eq. (1). The brightness of the spectral lines is set by
the matrix elements in Eq. (8). They are calculated from
Eq. (7) where, according to Eq. (4), the integration over
x is restricted to the right superconducting region x > L
where ∂ϕ0H(0)(x) is non-zero. There, the sub-gap wave
functions decay exponentially, Φn(x) = e−(x−L)/ξΦn(L).
We assume here En � ∆0 so that the decay length is
approximated by ξ. In the limit of weak reflection, we
find [26]

|H(1)
±M;n|

2 =
v2

8L2

[
1±(−1)n

|ϕ0 − π| ± 2ReδΦ∗Mδϕne
iϑn√

(δϕn)2 + (ϕ0 − π)2

]
.

(12)

Importantly, |H(1)
±M;n|2 ∝ 1/L2; likewise, the contribu-

tion in the admittance from the long outer junction in
Fig. 1 is proportional to 1/L2

outer and can be ignored
since the corresponding length Louter � L. In Eq. (12)
ϑn = arg(r′+ +r′∗−)

E=E
(0)
n (π)

and δΦM = v
2L [d2+∂Er

∗
+]E=0

is the small correction (due to backscattering) to the wave
function of level EM; here d± is the transmission am-
plitude. In the simple model used to derive Eq. (11),
δΦM = M

v/L ( 1
2 + i

3
µ
v/L ).

Since Eq. (12) was derived assuming L � ξ, we can
express its prefactor as (E′M)2/2 by using Eq. (9) in that
limit; the replacement is valid if the levels resolved in the
transitions are far below ∆0. Furthermore, close to ϕ0 =
π we can neglect the second term in the square brackets
in (12) as long as |ϕ0 − π| � δϕn, since |δΦM| � 1.
Using the approximate matrix elements in Eq. (8) leads
to Eq. (2).

Approximating the matrix elements in Eq. (2) by a
constant (E′M)2/2 does not capture the brightness vari-
ations of the absorption lines with n and ϕ0. At ϕ0 = π
transitions to levels En with odd n (lines 3 and 4 in
Fig. 2b) are brighter than transitions to levels En+1 (lines
1 and 2), due to δΦM 6= 0. As a function of ϕ0, the
brightness is non-analytic at ϕ0 = π which is a maximum
(minimum) for lines 1 and 4 (2 and 3) in Fig. 2b. Far
from the avoided crossing, |ϕ0 − π| � δϕn, the spectral
lines 1 and 4 become dim. In general, the lines corre-
sponding to frequencies ω−M,n and ω+M,n+1 with n odd
become dim away from ϕ0 = π. This is because of an ap-

proximate selection rule for the matrix elements H(1)
±M;n:

we see from Eq. (12) that |H(1)
M;n|2 and |H(1)

−M;n+1|2 for

odd n are smaller by factor ∝ ReδΦ∗Mδϕne
iϑn/|ϕ0 − π|

compared to those with even n. [36] This analysis allows
us to extrapolate our theory to stronger backscattering,

δϕn ∼ 1. Due to the large width of the avoided crossing,
the above approximate selection rule becomes inapplica-
ble. On the other hand, at ϕ0 = π the alternation of
the lines’ intensities with n becomes more pronounced.
The main feature, the kink in the transition frequencies
ω∓M,n(ϕ0) at ϕ0 = π, persists.

We derived Eqs. (1) and (2) for a TI junction, but the
same low-energy model, Eqs. (3)-(10), is applicable to a
NW-based setup. For illustration, we concentrate here
on the limit of large Zeeman energy, B � mα2; the SO
energy scale here is determined by the electron effective
mass m and SO velocity α. At low-energies E � B,
linearization [37] of the spectrum near the Fermi points
k≈±kZ =±

√
2mB leads to an effective Hamiltonian of

the form (3) with v=kZ/m, and ∆0 = ∆2mα/kZ where
∆ is the induced s-wave gap in the nanowire. (We set
µ = 0 for simplicity.) The structure of spectrum of a
long NW junction is therefore identical to that of the TI
junction described above – only the microscopic forms of
the phenomenological parameters in (3) are different.

In the NW junction even TRS scalar disorder may lift
the degeneracies of high Andreev levels. We illustrate
this by considering a short-range impurity u0δ(x−L) in
the microscopic Hamiltonian. (For definiteness, we take
the impurity to be at the junction interface, as was done
in Ref. 24.) The low-energy projection of the impurity
Hamiltonian yields respective forward and backscattering
terms [26] V (x) ≈ u0δ(x−L) and M(x) ≈ u0δ(x−L) in
Eq. (3). (The prefactors here are given to lowest order
in mα2/B.) The width of the avoided crossing,

δϕn = 2
|u0|
v

ξ

L

E
(0)
n (π)

v/L
, (13)

is finite due to M 6= 0; here, as before, for n odd

E
(0)
n (π)=E

(0)
n+1(π)=(n+ 1)πv/2(L + ξ). The correction

to the lowest-level wave function is δΦM = (u0/v)(1 −
iu0/v) and the phase appearing in Eq. (12) is eiϑn =
(u0/|u0|)(1 − iu0/v). We see that the avoided crossings
and the transition matrix elements in a NW junction can
be quantified in the same way as in a TI junction.

Using Eq. (9), we may compare the strength of ab-
sorption, Eq. (2), with the corresponding strength [38] of
transition within the pair of Andreev levels in a conven-
tional short S-N-S junction [21, 22]. At equal frequencies
ω, the transition in the “Majorana” junction is stronger
than the one in a conventional junction if the transmis-
sion coefficient of the latter is < 0.4.

In summary, we have shown how Majorana bound
states manifest in the finite-frequency admittance of a
topological Josephson junction with multiple Andreev
levels. Our main finding is a kink in the ϕ0-dependence
of the resonant absorption frequency, and can be ob-
served in the dissipative (real) part of the admittance
Y (ω), see Eq. (1) and Fig. 2b. Alternatively, one may
employ the reflected microwaves’ phase shift, arg Y (ω),
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obtained from Eq. (8) and its Kramers-Kronig partner.
The frequency-dependent phase shift jumps by π across
a resonance, and the position of this jump as a func-
tion of ϕ0 shows a kink. The kink is a consequence of
the ground state parity switching in the junction, or de-
coupling of Majorana states. The admittance provides a
novel, linear-response signature of this decoupling.
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