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Time-resolved terahertz time-domain spectroscopy (THz-TDS) is an ideal tool for probing photoinduced

nonequilibrium metallic and superconducting states. Here, we focus on the interpretation of the two-dimensional

response function Σ(ω;t) that it measures, examining whether it provides an accurate snapshot of the instan-

taneous optical conductivity, σ(ω;t). For the Drude model with a time-dependent carrier density, we show

that Σ(ω;t) is not simply related to σ(ω;t). The difference in the two response functions is most pronounced

when the momentum relaxation rate of photocarriers is small, as would be the case in a system that becomes

superconducting following pulsed photoexcitation. From the analysis of our model, we identify signatures of

photoinduced superconductivity that could be seen by time-resolved THz-TDS.

PACS numbers: 78.47.-p, 78.56.-a, 42.65.-k, 74.25.N-

I. INTRODUCTION

Time-domain terahertz spectroscopy (THz-TDS) probes

the optical conductivity of metals and superconductors by

measuring the current transient induced by a subpicosecond

electric field pulse. Time-resolved THz-TDS exploits the

short duration of the THz probe to detect how the conductiv-

ity changes in response to pulsed photoexcitation after a con-

trolled delay—providing a way to take snapshots of the optical

conductivity with picosecond time resolution. This scheme

has been used effectively to measure transient photoconduc-

tivity in a wide variety of bulk and nanostructured semicon-

ductor systems,1 and its range of application is growing.2–4

Recently, THz-TDS spectra of the photoexcited normal state

of high-Tc cuprates and K3C60 have been presented as evi-

dence of transient photoinduced superconductivity, because

they resemble the equilibrium conductivity spectra obtained

well below the superconducting transition temperature.5–8

However, the straightforward interpretation of THz-TDS as

a snapshot of the optical conductivity spectrum breaks down

when the characteristic relaxation times are comparable to the

photoexcitation delay, because the Fourier transform involves

times that precede photoexcitation.1,9–16

In order to assess the importance of this issue for in-

terpreting measurements on transient metallic and super-

conducting states, we analyze a simple model of tran-

sient photoconductivity.12–15 For photoexcitation at t = 0,

we compare the time-dependent instantaneous conductivity

change, δσ(ω ;t), with the response function Σ(ω ;t) mea-

sured in time-resolved THz-TDS. We find that Σ shows large-

amplitude deviations from δσ when the photocarrier Drude

scattering time is longer than t,14 a regime that may be acces-

sible in a transient photoinduced superconductor. Our analy-

sis offers improved guidance on how and when time-resolved

THz-TDS spectra can be interpreted as a conductivity snap-

shot of a transient state.

We consider a pump-probe experiment in which a material

is photoexcited by a strong pump pulse with intensity profile

I(t) ≈ I0δ (t), and the current induced by a THz-frequency

probe field is measured at time t. The photoinduced change

in the current is then

δJ(t) =

∫∫ ∞

−∞
E(t − τ)I(t − τe)σ

(3)(τ,τe)dτ dτe, (1)

where E(t − τ) is the electric field of the THz probe at the

moment τ before the observation time, and σ (3)(τ,τe) is a

third-order susceptibility, in sense that its associated current

is proportional to both the THz probe field and the pump in-

tensity (two powers of field). By defining

Σ(τ, t) =

∫ ∞

−∞
I(t − τe)σ

(3)(τ,τe)dτe, (2)

we can rewrite Eq. (1) as

δJ(t) =

∫ ∞

−∞
E(t − τ)Σ(τ, t)dτ, (3)

which has the usual linear response form—except, crucially,

that the two-dimensional response function Σ(τ, t) has an im-

plicit dependence on I(t) and lacks time invarance.9–11 Kindt

and Schmuttenmaer (KS) pointed out that Σ(τ, t) could be

readily obtained with time-resolved THz-TDS by indepen-

dently controlling the delay of the THz probe field with re-

spect to photoexcitation, as illustrated in Fig. 1 and described

more thoroughly in Sec. III.17

With a measurement of Σ(τ, t), it is straighforward to com-

pute the Fourier transform Σ(ω ;t). The question that arises

then is the following: whether, or in what limit, can Σ(ω ;t)
be considered equivalent to the pump-induced change in the

instantaneous optical conductivity, δσ(ω ;t)? 1,9–16 Indeed,

whether a response function δσ(ω ;t) exists at all for an ar-

bitrary nonequilibrium system is itself a problem, one we do

not consider here. Instead, we consider a specific example of

a class of optically pumped systems for which the concept of

an instantaneous linear response function should be applica-

ble. Following photoexcitation, this class of systems passes

through a continuous sequence of quasi-equilibrium states,

in which the distribution functions of electrons, phonons,

magnons, etc. can be described by quasi temperatures and

chemical potentials. For such systems it should be possi-

ble to define the response function δσ(ω ;t) as the change in
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FIG. 1. (Color online) (a) Schematic illustration of the pulse se-

quence and time delays in a time-resolved THz-TDS measurement

performed on the model system described in the text. The red lines

represent the photoexcited carrier density that is generated by a pump

pulse at t = 0, then decays on a timescale 1/Γ = 20 ps. The black

lines represent the electric field of the THz probe pulse, shown for

increasing time delay, tp (marked by ×), in the three panels. Blue

lines depict the corresponding nonequilibrium current, and blue dots

mark its value at ts = 2 ps. The dotted line shows the impulse re-

sponse function σ(ts − t) for a Drude metal. The truncation of the

impulse response at t = 0 differentiates Σ(τ, ts) from δσ(τ, ts). (b)

Nonequilibrum current as a function of ts − tp for fixed ts =2 ps and

1/Γ = 20 ps. With increasing momentum relaxation time, τs, a pulse

of nonequilibrium current centered on tp = 0 grows in amplitude.

the equilibrium σ(ω) that would be measured if the quasi-

equilibrium state at time t were entirely metastable. Below

we show by example that although δσ(ω ;t) can be well de-

fined, it is not, in general, equivalent to the function Σ(ω ;t)
measured by time-resolved THz-TDS.

II. EXAMPLE OF PHOTOCARRIERS WITH DRUDE

RESPONSE

We treat the Drude model for nonequilibrium photocarriers,

but it is helpful to start with elementary equilibrium relation-

ships. For a system of n carriers with Drude scattering rate γ ,

the current is given by

J(t) =
∫ ∞

−∞
E(t − τ)σ(τ)dτ, (4)

with impulse response

σ(τ) =
ne2

m
Θ(τ)exp(−γτ). (5)

The Drude conductivity spectrum is then just the Fourier

transform of Eq. (5):

σ(ω) =
ne2

m

1

γ − iω
. (6)

We turn now to the nonequilibrium case. If photoexcitation

creates δn(0) carriers that recombine at a rate Γ, then the in-

stantaneous conductivity is given by the Drude formula with

n(t) = δn(0)Θ(t)exp(−Γ t),

δσ(ω ;t) = Θ(t)
δn(0)e2

m
exp(−Γ t)

1

γ − iω
, (7)

or, in the time domain,

δσ(τ, t) = Θ(t)
δn(0)e2

m
exp(−Γ t)Θ(τ)exp(−γτ). (8)

We emphasize here that in both δσ(τ, t) and δσ(ω ;t), the de-

pendence on t is entirely through the state variable n(t), which

is then assumed constant when we consider the dependence of

δσ on the dynamical variables τ and ω .

By contrast, Σ(τ, t) has an explicit dynamical dependence

on t. Because of the relative simplicity of our model, we can

determine Σ(τ, t) directly by integrating the classical equation

of motion for the photocarriers. As shown in Appendix A, we

obtain12

Σ(τ, t) = Θ(t − τ)Θ(t)
δn(0)e2

m
exp(−Γ t)Θ(τ)exp(−γτ).

(9)

Eq. (9) is identical to Eq. (8) except for the additional Heav-

iside function, Θ(t − τ), which prevents carriers from con-

tributing to the integrand in Eq. (3) before they are created at

t = 0 (or τ = t).

Substituting this form for Σ(τ, t) into Eq. (3) yields,

δJ(t) = Θ(t)
δn(0)e2

m
exp(−Γ t)

×

∫ ∞

−∞
E(t − τ)Θ(t − τ)Θ(τ)exp(−γτ). (10)

In the following section we show how time-resolved THz-

TDS is applied to measure Σ(τ, t), and compare Σ(ω ;t) with

δσ(ω ;t).
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III. TIME-RESOLVED TERAHERTZ SPECTROSCOPY

As a preliminary step we review the methodology of THz-

TDS as applied to the equilibrium optical conductivity.1 THz-

TDS effectively measures the current at a time ts that is in-

duced by a THz electric field pulse, E(t) = Ep(t − tp), cen-

tered on a time tp:

Ĵ(ts, tp) =

∫ ∞

−∞
Ep(ts − tp − τ)σ(τ)dτ. (11)

The induced current Ĵ(ts, tp) is inferred from a time-resolved

measurement of the electric field reflected from, or transmit-

ted through, a medium under test. It depends only on the dif-

ference ts − tp between the sampling and probe arrival times,

so it can be measured by scanning either ts or tp. Using the

convolution theorem, σ(ω) can be obtained by Fourier trans-

forming Ĵ(ts, tp) along the ∆ t = ts − tp direction.

Time-resolved THz-TDS focuses on the change in the re-

sponse to the THz probe that is induced by a pump pulse.

The sequencing of pump and THz probe pulses is illustrated

in Fig. 1(a). Using Eq. (10), the nonequilibrium current for

Drude photocarriers is

δ Ĵ(ts, tp) = Θ(ts)
δn(0)e2

m
exp(−Γ ts)

×

∫ ∞

−∞
Ep(ts − tp − τ)Θ(ts − τ)Θ(τ)exp(−γ τ)dτ. (12)

Note that δ Ĵ(ts, tp) is now a function of both the sampling

and probe arrival times, rather than just their difference, as

in equilibrium THz-TDS; this reflects the breaking of time-

invariance by the pump. An example of the transient nonequi-

librium current calculated from Eq. (12) is illustrated in

Fig. 1(b), which shows δ Ĵ(ts, tp) as a function of ts − tp with

ts = 2 ps, for several values of τs ≡ 1/γ . For τs = 0.3 ps, the

current follows the electric field pulse, with a lag and slight

distortion caused by convolution with the Drude impulse re-

sponse. As τs increases, a feature emerges near tp = 0 that has

a completely different origin, illustrated in the tp = 0 panel of

Fig. 1(a): here, only part of the THz field can induce current,

creating an unbalanced current impulse that persists until the

measurement time ts. When τs → ∞, as in a superconductor,

these two features have equal and opposite magnitude; how-

ever, their separation in time will vary with the observation

time ts.

The procedure introduced by KS is to scan tp at fixed ts,

such that the integral expression for the current retains the

form of Eq. (11), but with the two-dimensional nonequilib-

rium response function Σ(τ, ts) in place of σ(τ), as in Eq. (3).

If we now Fourier transform Σ(τ, ts) with respect to τ , we get

Σ(ω ;ts) = Θ(ts)
δn(0)e2

m
exp(−Γ ts)

1

γ − iω

× [1− exp(−γ ts)exp(iωts)] , (13)

which differs from the instantaneous conductivity δσ(ω ;ts) in

Eq. (8) by the term in square brackets. This result is consistent

with earlier results on the nonequilibrium Drude model,11–15

expressed in a way that allows more immediate comparison

with experiment.

While we have focused on the nonequilibrium current

δ Ĵ(ts, tp) for generality, experimental methods to determine

it vary.1 For transmission through a weakly absorbing, thin

medium, the current density and probe fields are essentially

independent of depth, in which case δ Ĵ(ts, tp) can be inferred

directly from the transmitted field. For reflection from a thick

absorbing material, the depth scale of the photoexcited and

probed regions of the sample may differ; typically the decay

length of the probe is greater. Taking into account the spa-

tially varying conductivity of the probed region requires care-

ful consideration (see, for example, the supplementary section

of Ref. 8). In both cases, the electrooptic detection process

filters the reflected or transmitted field, which also distorts

δ Ĵ(ts, tp); but since Ep(ts − tp) is measured in the same way,

deconvolution yields an undistorted Σ(ω ;ts).
18–20

We have also assumed impulsive excitation, I(t) ≈ I0δ (t),
that causes the conductivity to change abruptly. When the ex-

citation pulse width τw cannot be neglected, we expect the os-

cillations in Σ(ω ;ts) to become damped as ωτw & 1. Another

factor that can lead to damping occurs if the photoinduced

change in conductivity has a finite risetime. This would be

reflected in the dependence of the third-order susceptibility

σ (3)(τ,τe) on τe in Eq. (2). In the presence of either form

of broadening of the step-function change in conductivity, the

deviation of Σ from σ will be most pronounced at low fre-

quencies, which is indeed observed.9,21

IV. DISCUSSION

Eq. (13) greatly clarifies the conditions under which the

time-resolved THz-TDS spectrum Σ(ω ;ts) approximates the

instantaneous linear response, δσ(ω ;ts). First, it shows that

photocarrier recombination simply rescales the overall spec-

trum by exp(−Γts), so the measurement fidelity is not fun-

damentally limited by the recombination time. The critical

parameter is γ ts, the product of the momentum relaxation rate

and the sampling time.

The crossover in the nature of the spectra at γ ts ∼ 1 is il-

lustrated Fig. 2(a), in which we plot Σ(ω ;ts) as a function of

ω for several values of τs, with ts fixed at 2 ps. The instan-

taneous Drude conductivity δσ(ω ;ts) for the same values of

τs is shown as dotted lines for comparison, and spectra with

different τs are normalized to δσ(ω ;ts = 0) to illustrate the

variation in frequency dependence.

When ts/τs is large, the component of the current sampled

at ts from carriers accelerated at t = 0 is exponentially small.

Consequently, Σ(ω ;ts) asymptotically approaches the instan-

taneous conductivity, which has the Drude form in our simple

example. On the other hand, if τs is comparable to or greater

than ts, a component of the current that would be present if

the state were metastable is cutoff at t = 0. The temporal cut-

off generates oscillations with period ∆ω = 2π/ts along the

frequency axis of Σ(ω ;ts), which is clearly no longer simply

related to δσ(ω ;ts).
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FIG. 2. (Color online) (a) Real and (b) imaginary part of Σ(ω;ts)
as a function of ω for several values of τs, with ts fixed at 1 ps and

Γ = 0. The Drude conductivity for same values of τs is shown as dot-

ted lines for comparison. Spectra with different τs are normalized to

σ0 = n(0)τse2/m to illustrate the variation in frequency dependence.

When ts/τs is large Σ(ω;ts) asymptotically approaches the instanta-

neous (Drude) conductivity. For τs ≥ ts the temporal cutoff at t = 0

generates oscillations, with period ∆ν = 1/ts along the frequency

axis of Σ(ω;ts).

Fig. 3 shows this behavior in more detail as it would appear

for photocarriers with τs = 1 ps and 1/Γ = 0.5 ps. The imag-

inary part of Σ(ω ;ts) has oscillations that appear as ridges

along constant values of ωts, with an amplitude that decays

exponentially with γ ts. Similar oscillations were observed

previously in both measurements21 and simulations,14 and

Eq. 13 clarifies their origin.

Finally, we consider what might be observed in a time-

resolved THz-TDS measurement in which a transient super-

conducting phase is generated at t = 0 by a laser pulse. De-

veloping a phenomenological description of transient super-

conductivity is clearly not as straightforward as modeling

a transient photoconductor. One approach that is directly

amenable to our analysis is based on the two-fluid model,

which describes the current response in terms of normal fluid

and superfluid components, with spectral weights nne2/m and

nse
2/m respectively. The normal fluid conductivity is de-

scribed by the Drude spectrum, while the superfluid compo-

nent is characterized by an infinite momentum relaxation time.

We can then formulate photoinduced superconductivity as the

generation of superfluid spectral weight ∆ne2/m by transfer

from the normal fluid. If we assume that the photoinduced

FIG. 3. (Color online) Simulation of time-resolved THz-TDS re-

sponse function for photocarriers whose dynamics are characterized

by a time-independent scattering rate. (a) Imaginary part of Σ(ω;ts),
with τs = 1 ps and 1/Γ = 0.5 ps, in both 3D and contour plot rep-

resentations. Contour levels indicate 0.01 steps from 0.01 to 0.1, in-

clusive. (b) Spectra of Σ2(ω;ts) (solid lines) for several values of ts,

with δσ2(ω;ts) (dotted lines) shown for comparison. The spectrum

for each ts is denoted by color in the legend; both Σ2 and σ2 decrease

with increasing ts, as the carriers decay. All spectra are normalized

to σ0 ≡ δn(0)e2τs/m.

superfluid has a lifetime 1/Γ, then

Σ(ω ;ts) = iΘ(ts)
∆ne2

m
exp(−Γ ts)

×

{

1

ω
[1− exp(iω ts)]−

1

ω̃
[1− exp(iω̃ ts)]

}

, (14)

with ω̃ ≡ ω + iγ . Fig. 4 illustrates the spectra predicted by

Eq. (14) for several values of ts, with τs =1 ps and τr =0.5 ps.

The spectral shape is dominated by underdamped oscillations

that originate from the sharp cutoff in the time-domain re-

sponse at t = 0, as discussed above. We note that in this de-

scription of transient superfluidity, Σ(ω ;ts) never approaches
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FIG. 4. (Color online) Simulation of time-resolved THz-TDS re-

sponse function for a model of transient photoinduced superconduc-

tivity. (a) Imaginary part of Σ(ω;ts), with τs = 1 ps and 1/Γ= 0.5 ps,

in both 3D and contour plot representations. Contour levels indicate

0.005 steps from -0.01 to 0.04, inclusive. (b) Spectra of Σ2(ω;ts)
(solid lines) for several values of ts, with δσ2(ω;ts) (dotted lines)

shown for comparison. The spectrum for each ts is denoted by color

in the legend; with increasing ts, σ2 decreases uniformly as the car-

riers decay, while Σ2 shows oscillations about Σ2 ≈ 0, with period

∆ν = 1/ts and an amplitude that decays with both ω and ts. All

spectra are normalized to ∆σ0 ≡ ∆ne2τs/m.

δσ(ω ;ts) because of the undamped contribution to Ĵ(ts, tp)
from super carriers generated at t = 0. With an overall sign

change, Eq. (14) should also describe Σ(ω ;ts) when photoex-

citation suppresses superconductivity, for example by trans-

ferring spectral weight from the superconducting carriers to

quasiparticles above the gap.9

We note that the oscillations that appear in our simulations

are distinct from oscillations in the time domain that appear

often in time-resolved spectroscopic probes, where their pres-

ence reflects a sharp feature in the frequency domain, like

a plasma reflectivity edge. Here, the domains are reversed:

the time-domain cutoff imposed by causality creates oscil-

lations in the frequency domain. Unlike time-domain oscil-

lations, whose frequency corresponds to excited state ener-

gies, the frequency-domain oscillations shown in Figs. 2–4

depend only the sampling time, ts, and are independent of the

plasma frequency. More closely related oscillations appear in

the pump-probe spectra of organic dyes and semiconductors

when the pump-probe delay is less than the polarization de-

phasing time.22–25 An important difference here, however, is

that the dephasing time of these systems must always be less

than the energy relaxation time, whereas the momentum re-

laxation time of a (super)conductor has no such bound.

As mentioned above, different phenomenological descrip-

tions of a transient superconducting state are possible. For ex-

ample, rather than generating a fully coherent superfluid com-

ponent, one could imagine that the effect of the pump pulse

is to suddenly increase the momentum relaxation time of the

entire electron fluid to some large but still finite value. The

system would subsequently return to equilibrium through the

decay of partial coherence and recovery of the normal state

τs. We describe the TD-THz response for the case of a time-

varying momentum relaxation rate in the Appendix, where we

obtain the response function Σ(τ, t) in terms of γ(t). Unlike

the models considered above, we believe that the instanta-

neous conductivity, σ(ω ;t), is not well-defined in a system

where γ depends explicitly on the time. Still, Σ(ω ;t) remains

a valid response function, and can exhibit features that are

similar to those predicted for the two-fluid model. In this

case, the deviations from a Drude spectrum will be smaller

than in the fully coherent superconductor, particularly if the

maximum τs reached by the partially coherent state does not

exceed the sampling time.

V. SUMMARY AND CONCLUSIONS

Time-domain terahertz spectroscopy provides an elegant

method for doing time-resolved photoconductivity measure-

ments. In this paper we focused on whether the response

function Σ(ω ;ts) that is typically measured in time-resolved

THz-TDS can be interpreted as the photoinduced change

δσ(ω ;ts) in the instantaneous optical conductivity. Within

a simple model, we showed that Σ(ω ;ts), is never equivalent

to δσ(ω ;ts), although we also found that Σ(ω ;ts) approaches

δσ(ω ;ts) asymptotically in the limit γ ts → ∞, where γ is the

Drude relaxation rate of the nonequilibrium carriers. In this

limit, the current measured at ts has an exponentially small de-

pendence on the field applied at t < 0; that is, before the pump

pulse arrives. In the opposite regime, γ ts . 1, we presented

an analytic expression that shows that Σ(ω ;ts) and δσ(ω ;ts)
are entirely distinct response functions for the nonequilibrium

Drude model. Here, the absence of nonequilibrium carriers

for t < 0 creates a current imbalance for fields applied near

t = 0 that persists until the measurement time. Neverthe-

less, we believe that even in this regime, information about

the number density and mobility of the photocarriers can be

obtained by comparing Σ(ω ;ts) with theoretical models.12–16

The effort to better understand the relationship of Σ(ω ;ts)
to δσ(ω ;ts) was largely motivated by experiments reporting
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photoinduced transient superconductivity in cuprates and in

K3C60. The evidence presented for superconductivity is that

the instantaneous conductivity following photoexcitation in

the normal state, σ(ω ;t), has features characteristic of the

equilibrium σ(ω) measured at T ≪ Tc. To obtain the in-

stantaneous conductivity it is assumed that σ(ω ;t) = σ(ω)+
Σ(ω ;t), which is based on regarding Σ(ω ;t) and δσ(ω ;t) as

equivalent. However, we have shown that these response func-

tions are not equivalent, and differ most strongly when carrier

momentum relaxation rates become small. Superconductivity,

in which the condensate momentum relaxation time diverges,

is the most extreme example of the inequivalence of Σ(ω ;t)
and δσ(ω ;t).

We considered two perspectives in attempting to model the

response function Σ(ω ;t) appropriate to photoinduced tran-

sient superconductivity. For a two-fluid model with a tran-

sient, fully coherent superfluid component, we predict strong

oscillations along the frequency axis of Σ(ω ;t), with a pe-

riod inversely related to the sampling time. In the second per-

spective, the pump induces a partially coherent state, with an

enhanced, but still finite, momentum relaxation time. In this

model, deviations from a Drude spectrum are again expected,

though damped by the limited coherence time. In either case,

the instantaneous conductivity σ(ω ;t) is unobservable or ill-

defined in the most physically interesting regimes, while time-

resolved THz-TDS measures Σ(ω ;t) directly. To advance re-

search on photoinduced superconductivity and other collec-

tive states, we believe it important to distinguish them.
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Appendix A: Classical derivation of the nonequilibrium

response

To extend the classical Drude model to photoexcited mate-

rials, we let both the carrier density n and the damping rate

γ depend on time in the usual equation of motion. The cur-

rent is then related to the field through the linear, first-order

differential equation

dJ

dt
+

(

γ −
1

n

dn

dt

)

J =
ne2

m
E. (A1)

The extra damping term follows from the chain rule with

J = nev, and causes the current to decay more rapidly when

the carrier density decreases, as expected. Conversely, the

damping term decreases when the carrier density increases,

because our model incorrectly assumes that all carriers move

with the same velocity.14 Others have addressed this problem

by expressing the current in terms of a distribution function,

but their results reproduce Eq. (A1) in the usual case of carrier

decay.12,14

To solve Eq. (A1), we introduce the integrating factor

F(t, ti)≡
n(ti)

n(t)
exp [γ̄(ti, t)(t − ti)] , (A2)

with

γ̄(t1, t2)≡

∫ t2
t1

dt ′γ(t ′)

t2 − t1
(A3)

the average damping rate over the interval (t1, t2). Assuming

n ≥ 0 over (ti, t), we multiply Eq. (A1) by (A2) and integrate

to get

J(t)− J(ti) =
n(t)e2

m

∫ t

ti

dt ′ exp
[

−γ̄(t ′, t)(t − t ′)
]

E(t ′).

(A4)

When n and γ are constant, Eq. (A4) gives the conventional

Drude response. When n and γ vary with time, the current

J(t) includes contributions from impulses at earlier times t ′,

exponentially weighted by the average damping rate experi-

enced over its history. An impulse with carrier density n(t ′)
will decay by a factor n(t)/n(t ′) before it contributes to the

current J(t), so only the overall factor n(t) appears outside the

integral.

Referring now to Eq. (3), we let n = neq and γ = γeq at

equilibrium, and use Eq. (A4) to find the current change δJ(t)
following photoexcitation at t = 0:

Σ(τ, t) = Θ(t)Θ(t − τ)Θ(τ)
e2

m
{n(t)exp [−γ̄(t − τ, t)τ]

− neq exp(−γeqτ)
}

. (A5)

For the specific case of a photoinduced carrier density n(t) =
neq +Θ(t)δn(0)e−Γt with a constant Drude scattering rate γ ,

Σ(τ, t) = Θ(t − τ)Θ(t)
δn(0)e2

m
exp(−Γ t)Θ(τ)exp(−γτ).

(A6)

The second factor of Θ(t) in Eq. (A6) is missing in Eq. (31)

of Ref. 12, but this appears to be a typographical error, since

the factor is necessary to obtain their Eq. (32). Otherwise, the

expressions are equivalent.
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