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A local interaction between photons can be engineered by coupling a nonlinear system to a transmission
line. The required transmission line can be conveniently formed from a chain of Josephson junctions. The
nonlinearity is generated by side-coupling this chain to a Cooper pair box. We propose to probe the resulting
photon-photon interactions via their effect on the current-voltage characteristic of a voltage-biased Josephson
junction connected to the transmission line. Considering the Cooper pair box to be in the weakly anharmonic
regime, we find that the dc current through the probe junction yields features around the voltages 2eV = nh̄ωs,
where ωs is the plasma frequency of the superconducting circuit. The features at n≥ 2 are a direct signature of
the photon-photon interaction in the system.

PACS numbers: 74.50+r, 74.81.Fa, 85.25.-j

I. INTRODUCTION

Creating strong light-matter interaction attracts increasing
attention due to both fundamental reasons [1–4] and its poten-
tial application in quantum communication science [1, 5, 6].
A prototypical system for studying that interaction consists of
a quantum system inside a photonic cavity [7]. However, re-
cent rapid experimental advances in several areas [8–13] have
focused attention on one-dimensional systems in which the
quantum system is embedded in a waveguide or transmission
line. In the absence of coupling, photons propagate freely
down the line. A coupling between the quantum system and
the line generates an effective photon-photon interaction that
causes correlations among the photons. This has lead to, for
instance, the prediction of Kondo physics [14], anti-bunching
resulting from a photon-blockade effect [15, 16], inelastic
photon scattering [15, 17, 18], giant Kerr nonlinearities [19],
and entanglement among photons of different frequencies in
the line [20].

The strength of the coupling between the local quantum
system and the transmission line has been studied theoreti-
cally in detail in the ohmic spin-boson model, which consists
of a single two-level system (the spin) bilinearly coupled to
the photons in the line (the bosons). It was shown [21, 22]
that the coupling parameter is set by the ratio of the line
impedance, Z, to the quantum of resistance, RQ = h/(2e)2 ≈
6.45kΩ. The impedance of typical transmission lines is of
order the vacuum impedance, Zvac ≈ 377Ω, thereby allowing
only weak coupling.

Superconducting circuits are a promising platform for ex-
ploring strong coupling phenomena, and, indeed, the first ex-
periments observing such phenomena have appeared [23, 24].
One benefit of using superconducting circuits is that a chain
of Josephson-coupled superconducting islands acts as a trans-
mission line with a large tunable impedance Z . RQ, which is
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only limited by the superconductor/insulator transition [25].
Recent experiments have studied the microwave properties of
such Josephson junction chains [26–29]. Moreover, supercon-
ducting circuits allow the realization of a variety of quantum
systems that behave like artificial atoms [1, 30].

In our work, we take the quantum system coupled to the
transmission line to be a Cooper pair box [31, 32]. Then, we
propose to detect the photon-photon interaction generated by
that system by measuring the dc current-voltage characteristic
of an additional Josephson junction connected to the transmis-
sion line. According to dynamical Coulomb blockade theory
[also called P(E)-theory] [33], Cooper pairs can tunnel inco-
herently through that probe junction provided that they can
release their energy 2eV into the environment, which in our
case consists of the transmission line with the side-coupled
circuit. Therefore, the dc current reflects both the elastic and
inelastic scattering properties of photons.

Let us consider the current-voltage characteristic in more
detail: In the harmonic regime, the effective impedance of
the environment is almost flat, except at frequencies near the
plasma frequency ωs of the superconducting side circuit (the
Cooper pair box). This results in a feature at 2eV = h̄ωs in the
current-voltage characteristic. Anharmonic corrections cause
additional features near the voltages 2eV = nh̄ωs (n ≥ 2 in-
teger) through inelastic photon scattering. These additional
features are most pronounced in the strong coupling regime
when Z approaches RQ (Z . RQ).

The paper is organized as follows. In Sec. II, we intro-
duce the Hamiltonian that describes the circuit studied. The
current-voltage characteristic of the probe junction in the har-
monic regime is calculated in Sec. III. In Sec. IV, we include
a weak anharmonic correction and study the effect of the re-
sulting photon-photon interaction on the current. Finally, we
conclude in Sec.V.
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FIG. 1. The system consists of a transmission line that is capaci-
tively coupled (capacitor Cc) to a Josephson junction, shown inside
the dashed box. The transmission line is realized using a chain of
Josephson junctions with Josephson energy EJ much larger than the
charging energy EC. The system is probed at node m using another
Josephson junction (outside the dashed box) whose current-voltage
characteristic is sensitive to the properties of the system.

II. THE CIRCUIT STUDIED

We are interested in the interactions of photons propagating
in a non-linear electromagnetic environment. In particular, we
study a transmission line, consisting of a chain of Josephson
junctions, to which an additional Josephson junction acting as
the non-linear element is side-coupled at node n = 0 as shown
in Fig. 1 (dashed box). We assume weak coupling, namely the
coupling capacitance, Cc, is much smaller than the character-
istic capacitances of the chain and the non-linear element.

The Hamiltonian of the system is, thus, assembled from
three parts,

H = HT +HJ +Hc, (1)

where HT is the Hamiltonian of the transmission line, HJ is
the Hamiltonian of the side-coupled Josephson junction, and
Hc is the coupling Hamiltonian.

A transmission line with large impedance can be realized
using a chain of Josephson junctions in the limit where the
Josephson energy EJ is much larger than the charging energy
EC [26, 27]. The chain is described by the charge and phase
operators at each node n, denoted Qn and φn, respectively.
They are conjugate variables satisfying the commutation rela-
tion [Qn,φm] = −2ieδnm. As EJ � EC, phase fluctuations are
small and we may approximate the Josephson coupling by a
quadratic term. We further consider the case where the capac-
itance to the ground C0 is much larger than the mutual capac-
itance C. Then, for frequencies much smaller than the plasma
frequency of Josephson junctions in the chain, the Hamilto-
nian takes the simple form [25]

HT = ∑
n

[
Q2

n

2C0
+

1
(2e)2

(φn−φn+1)
2

2L

]
, (2)

where the inductance is L= 1/(4e2EJ). Note that we use units
where h̄ = 1. At frequencies ω � ω0, where ω0 ≡ 1/

√
LC0,

the transmission line has a linear spectrum.
The side-coupled Josephson junction with Josephson en-

ergy Es
J is described by the Hamiltonian

HJ =
(Qδ +CgVg)

2

2CΣ

−Es
J cosφδ , (3)

where Qδ and φδ are the conjugate charge and phase operators
at node δ (see Fig. 1). Furthermore, Cg and Vg are the gate ca-
pacitance and gate voltage, respectively, and CΣ =Cs +Cg is
the total capacitance of the side-coupled Josephson junction.

Finally, we turn to the coupling Hamiltonian Hc. When
the coupling capacitance is small, Cc � C0,CΣ, the coupling
Hamiltonian reads

Hc =
Cc

C0CΣ

Q0(Qδ +CgVg), (4)

where we used the fact that for C�C0 the coupling is local,
i.e., the side-coupled Josephson junction couples only to the
charge Q0 at n = 0. The Hamiltonian H fully describes our
non-linear system.

As a next step, we introduce the probe circuit used to
characterize the photon-photon interactions generated by the
non-linear system. The probe circuit consists of yet another
Josephson junction, with Josephson energy Ep

J and in series
with a voltage source as shown in Fig. 1, coupled to the trans-
mission line at node m [34, 35]. The current-voltage charac-
teristic of the probe Josephson junction is influenced by the
correlations of the phase φm(t) at node m, correlations that de-
pend on the fluctuations in the non-linear environment. The I-
V characteristic may, thus, be used to characterize the photon-
photon interactions in the non-linear system.

In particular, using P(E)-theory, it can be shown that at zero
temperature the current flowing through the probe Josephson
junction takes the form [33]

I(V ) = πe
(
Ep

J

)2 P(2eV ), (5)

for voltages eV < 2∆, where ∆ is the superconducting gap, and

P(E) =
1

2π

∞∫
−∞

dt eiEt〈eiφm(t)e−iφm(0)〉Henv (6)

is the probability of the probe Josephson junction to emit en-
ergy E to its environment, described by the Hamiltonian Henv.
Though P(E)-theory is usually presented in the context of a
linear environment (Henv is assumed to be quadratic) [33, 36–
38], Eqs. (5)-(6) hold more generally for a non-linear environ-
ment [34]. If the capacitance of the probe Josephson junction
is sufficiently small, Cp�C0, the Hamiltonian of the environ-
ment in Eq. (6) may be replaced by the Hamiltonian H of the
non-linear system we want to characterize. Our task is then to
compute the phase correlator 〈eiφm(t)e−iφm(0)〉H .

III. THE LINEAR REGIME

As a first step, we will consider the system in the linear
regime, where photons do not interact. That is, we assume
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Es
J� e2/(2CΣ) and approximate the junction Hamiltonian HJ

in Eq. (3) by

H(0)
J =

(Qδ +CgVg)
2

2CΣ

+
Es

J
2

φ
2
δ
. (7)

In this section, we study the behavior of this simplified system
described by H(0) = HT +H(0)

J +Hc to set the basis for in-
vestigating interaction effects, the main focus of our work, in
the following section. In this regime, the gate voltage Vg can
be gauged out of the Hamiltonian, and the side-coupled cir-
cuit behaves as an harmonic oscillator with plasma frequency
ωs ≡ 2e

√
Es

J/CΣ. We will assume that ωs� ω0.

A. Phase-phase correlator

As the system is non-interacting, the phase-phase correla-
tion function in Eq. (6) can be simplified by exploiting Wick’s
theorem [33]:

〈eiφm(t)e−iφm(0)〉H(0) = eJ(t), (8)

where

J(t)≡ 〈[φm(t)−φm(0)]φm(0)〉H(0) . (9)

To evaluate the correlator, we use the retarded Green func-
tion G(0)

R (φn,φm; t) = iΘ(t)〈[φn(t),φm(0)]〉H(0) , where Θ(t) is
the Heaviside step function. The relation between the two is
most easily written in frequency space. At zero temperature,
it reads

〈φn(t)φn(0)〉H(0) = 2
∞∫

0

dω

2π
e−iωt

ℑ

[
G(0)

R (φn,φn;ω)
]
. (10)

The local Green function G(0)
R (φm,φm;ω) needed to com-

pute J(t) is obtained by deriving its equation of motion and
using scattering theory (see Appendix A). Photons propagate
freely in the transmission line and are scattered by the side-
coupled harmonic oscillator at node n = 0, yielding the reflec-
tion coefficient

r(ω) =−
[

1−2i
ω0

ω

(
1+

C0CΣ

C2
c

ω2−ωs
2

ω2

)]−1

. (11)

In terms of this reflection coefficient, the Green function is

G(0)
R (φm,φm;ω) = i

π

ω

Z0

RQ

[
1+ r(ω)e2i ω

ω0
m
]
, (12)

where Z0 =
√

L/C0 is the impedance of the chain. Under the
conditions specified above, C0CΣ/C2

c � 1 and ωs � ω0, the
reflection coefficient has a narrow resonance at ω = ωs with
width

Γ =
1
4

C2
c

C0CΣ

ωs

ω0
ωs. (13)

Close to the resonance, we can approximate Eq. (11) as
r(ω) =−1/[1− i(ω−ωs)/Γ].

FIG. 2. (Color online) The linear regime: Current-voltage char-
acteristic of the probe Josephson junction when placed at m = 0.
The parameters are Γ/ωs = 0.02, Ecut-off/ωs = 20, and different
Z0 (Z0/RQ = 0.01, 0.1, 0.2). The side-coupled Josephson junction
causes a resonance at 2eV = ωs. In the limit Z0/RQ→ 0, the current
vanishes at the resonance.

Substituting Eq. (10) into Eq. (9) and using the Green func-
tion (12), one obtains

J(t) =
2

RQ

∞∫
0

dω

ω
ℜ [Z(ω)] (e−iωt −1), (14)

as expected from P(E)-theory [33], with the impedance

Z(ω) =
Z0

2

[
1+ r(ω)e2i ω

ω0
m
]
. (15)

The prefactor 1/2 corresponds to the fact that the probe junc-
tion ‘sees’ an environment consisting of two half-infinite
transmission lines. Far from the resonance at ωs, the
impedance is unaffected by the side-coupled Josephson junc-
tion as r(ω)→ 0. In contrast, at the resonance, photons are
strongly scattered. In particular when the probe and the scat-
terer are coupled to the same node (m = 0), r(ωs) = −1 so
that transport is completely blocked due to destructive inter-
ference. Changing the distance between the probe and the
scatterer modulates the phase difference between incoming
and reflected photons and, thus, creates an interference pat-
tern.

B. Current-voltage characteristic

To compute the current-voltage characteristic, we need to
determine P(E). This can be done numerically using the inte-
gral equation [33]

EP(E) = 2
E∫

0

dE ′
ℜ [Z(E−E ′)]

RQ
P(E ′). (16)

The result can be obtained by starting with an arbitrary
value P(0) and then using the normalization condition∫ Ecut-off

0 P(E)dE = 1, where Ecut-off� ωs.
The current-voltage characteristic is plotted in Fig. 2 for

several values of the impedance of the transmission line. The
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FIG. 3. (Color online) The resonance in the current-voltage charac-
teristic for different values of the distance between the side-coupled
Josephson junction and the probe Josephson junction, α = 2mωs/ω0.
Results in the single-photon, linear regime are plotted [Eq. (18)] with
Γ/ωs = 0.02. Note the effect of interference on the shape of the res-
onance.

characteristic current is given by

I0 =
πe(Ep

J )
2

ωs

Z0

RQ
. (17)

The background current decreases with increasing voltage. In
addition, there is a clear resonance feature at 2eV = ωs.

This result can be understood as follows. The starting point
is to recognize that when a bias voltage V is applied, Cooper
pairs can flow through the probe junction provided that they
can release their energy by emitting one or several photons
into the environment.

First, let us concentrate on the regime Z0/RQ� 1. In that
case, multi-photon processes are suppressed, and we can ex-
pand eJ(t) ' 1+ J(t). Thus, the current is proportional to the
Fourier transform of J(t) at frequency 2eV . It is straightfor-
ward to show that for a constant impedance this yields a cur-
rent that decays with increasing voltage as I(V ) ∝ 1/V . On
top of this, the resonance in the impedance at ωs due to the
side-coupled Josephson junction leads to a resonance in the
current-voltage characteristic at 2eV = ωs. Namely, the cor-
rection to the current δ I1(δV ) at voltages V = ωs/(2e)+ δV
takes the form

δ I1(δV )

I0
=

−Γ2

(2eδV )2 +Γ2

(
cosα− 2eδV

Γ
sinα

)
, (18)

where α = 2mωs/ω0. This leads to a complete extinction of
the current at δV = 0 (at the one photon level) when the probe
is coupled to the same node as the side-coupled Josephson
junction (m = 0). The shape of the resonance for different
α is shown in Fig. 3; note the sensitivity to the placement of
the probe produced by interference effects. The width of the
resonance is given by W1 = Γ/e where Γ is given in Eq. (13).

Let us now turn to multi-photon processes corresponding to
higher order terms in J(t). These processes modify the reso-
nance at 2eV = ωs. In particular, while the scattering from the
side-coupled Josephson junction may completely block the
single-photon process at that voltage, this is not the case for
the multi-photon processes: at most one photon can be on res-
onance, whereas the other photons will be off resonance and
therefore propagate freely. Thus, the multi-photon processes
lead to a finite current at the resonance. As an n-photon pro-
cess yields a current contribution proportional to (Z0/RQ)

n,
the resonant structure weakens with increasing Z0/RQ due to
the increasing importance of multi-photon processes.

In addition, one might expect that multi-photon processes
lead to higher order resonances at voltages 2eV = nωs (n≥ 2).
We find, however, that this is not the case. While 2eV = nωs
is indeed a resonance condition for an n-photon process, the
non-resonant background from the entire frequency range is
large enough to completely overwhelm that contribution.

Thus, in the linear regime where photons do not interact, the
side-coupled Josephson junction leads to a single resonance
in the current voltage characteristic at 2eV = ωs. As we will
show below, additional features at 2eV = nωs with n ≥ 2 are
a signature of photon-photon interactions.

IV. THE NON-LINEAR REGIME

To investigate photon-photon interactions, we now take into
account the non-linearity of the side-coupled Josephson junc-
tion. In particular, we concentrate on the case of weak non-
linearity in the regime Es

J � e2/(2CΣ). To do so, we expand
Eq. (3) up to fourth order in φδ ,

HJ ≈ H(0)
J +V, (19)

where

V =−
Es

J
24

φ
4
δ
. (20)

In the following, we treat V as a perturbation.

A. Phase-phase correlator

As the Hamiltonian Hnl
.
= H(0) +V describes an interact-

ing system, we can no longer write a closed form expression
for the phase-phase correlator (6) in terms of 〈φn(t)φm(0)〉.
Instead we expand (6) in powers of φm as follows,

〈eiφm(t)e−iφm(0)〉Hnl = 1+ 〈[φm(t)−φm(0)]φm(0)〉Hnl +
1
4
〈[φ 2

m(t)−φ
2
m(0)]φ

2
m(0)〉Hnl (21)

−1
6
{
〈[φ 3

m(t)−φ
3
m(0)]φm(0)〉Hnl + 〈[φm(t)−φm(0)]φ 3

m(0)〉Hnl

}
+O

(
φ

6
m

)
.
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FIG. 4. Dyson equation for the two-point Green function. The non-
linearity results in a self energy, Σ = Es

J〈φ 2
δ
〉H(0)/2.

Here the two-point phase-phase correlator represents single
photon processes, whereas the four-point phase-phase corre-
lators represent two photon processes. As before, we will use
Green functions to evaluate the correlators. In addition to the
two-point Green function GR(φm,φm;ω), we now also need
the four-point Green functions GR(φ

2
m,φ

2
m;ω), GR(φ

3
m,φm;ω),

and GR(φm,φ
3
m;ω). In order to facilitate doing perturbation

theory in the interaction V , we switch to imaginary-time-
ordered or Matsubara Green functions, G .

Let us first evaluate the two-point Green function
G [φn(τ)φm(0)], corresponding to single photon processes. As
shown in Appendix B, using the Dyson equation, we can
sum up the perturbation series to all orders in the interac-
tions. The representation in terms of Feynman diagrams is
shown in Fig. 4. For the corresponding retarded Green func-
tion GR(φn,φm;ω), we finally obtain

GR (φn,φm;ω) = G(0)
R (φn,φm;ω) (22)

+
G(0)

R (φn,φδ ;ω)
Es

J
2 〈φ

2
δ
〉H(0)G

(0)
R (φδ ,φm;ω)

1− Es
J

2 〈φ
2
δ
〉H(0)G

(0)
R (φδ ,φδ ;ω)

,

where G(0)
R is the Green function in the absence of interac-

tions.
Using the Green functions G(0)

R and 〈φ 2
δ
〉H(0) derived in Ap-

pendix A, we find that the local Green function preserves its
form though with a shifted resonance frequency ω ′s. Namely,

GR (φm,φm;ω) = i
π

ω

Z0

RQ

[
1+ r′(ω)e2i ω

ω0
m
]
, (23)

where

r′(ω) =−

[
1−2i

ω0

ω

(
1+

C0CΣ

C2
c

ω2−ω ′s
2

ω2

)]−1

(24)

with ω ′s ≈ ωs[1−ωs/(8Es
J)]. In the same way, we can show

that this is true for all two-point Green functions. Note that
δωs = ω2

s /(8Es
J)� ωs coincides with the shift of the excita-

tion energy between the ground and first excited states of the
Hamiltonian (19).

Next we turn to the four-point Green functions, correspond-
ing to two-photon processes. Using perturbation theory, we
may express them in terms of the two-point Green functions.
As we saw above, it is essential to sum up the perturbation
series to all orders in V to obtain these two-point Green func-
tions. By contrast, we will keep only the lowest order term in
V accounting for interactions between the two photons. Then,
the four-point Green function GR

(
φ 2

n ,φ
2
m;ω

)
has two contri-

butions: the first one describes the independent propagation of
the two photons, whereas the second one describes the interac-
tion effects. More precisely, the imaginary-time-ordered four-
point Green function may be written as G

[
φ 2

n (τ)φ
2
m(0)

]
=

G 2 [φn(τ)φm(0)]+δG int
[
φ 2

n (τ)φ
2
m(0)

]
with

δG int [
φ

2
n (τ)φ

2
m(0)

]
' Es

J

∞∫
0

dτ
′ G 2 [

φn(τ)φδ (τ
′)
]
G 2 [

φδ (τ
′)φm(0)

]
. (25)

The corresponding Feynman diagram is shown in Fig. 5(a). The expression for the local retarded Green function at zero temper-
ature reads (see Appendix C)

δGint
R
(
φ

2
m,φ

2
m;ω

)
'

Es
J

π2

∑
±

∞∫
0

dω1 ℑ [GR(φm,φδ ;ω1)]GR(φm,φδ ;ω±ω1)

2

. (26)

The leading order term for the other four-point Green functions GR
(
φ 3

n ,φm;ω
)

and GR
(
φn,φ

3
m;ω

)
is linear in Es

J . In particular,
we find the local Green functions

GR(φ
3
m,φm;ω)'

Es
J

π2 GR(φδ ,φm;ω)

∞∫
0

dω1

∞∫
0

dω2 ℑ [GR(φm,φδ ;ω1)]ℑ [GR(φm,φδ ;ω2)] ∑
s1,s2=±

GR(φm,φδ ;ω + s1ω1 + s2ω2) (27)

and GR(φm,φ
3
m;ω) = GR(φ

3
m,φm;ω). The Feynman diagrams

for the corresponding time-ordered Green functions are shown
in Fig. 5(b).

With the above results we can now write the phase-phase
correlator needed to compute P(E) in the following form

〈eiφm(t)eφm(0)〉Hnl ' eJ′(t)+δJint(t) (28)
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with

J′(t) =
1
π

∞∫
0

dω ℑ [GR(φm,φm;ω)] (e−iωt −1) (29)

δJint(t)' 1
π

∞∫
0

dω

{1
4

ℑ

[
δGint

R (φ 2
m,φ

2
m;ω)

]
(30)

−1
3

ℑ
[
GR(φ

3
m,φm;ω)

]}
(e−iωt −1).

B. Current-voltage characteristic

Using Eq. (28) to compute P(E), we obtain the current

I(V )' e
(
Ep

J

)2
{1

2

∞∫
−∞

dt exp
[
i2eVt + J′(t)

]
(31)

+
1
4

ℑ

[
δGint

R (φ 2
m,φ

2
m;2eV )

]
− 1

3
ℑ
[
GR(φ

3
m,φm;2eV )

]}
.

The first line describes the resonant structure discussed in
Sec. III. Here the only effect of the non-linearity is to shift
the resonance from ωs to ω ′s. The second line describes inter-
action effects between two photons. The current-voltage char-
acteristic including these effects is shown in Fig. 6: it displays
additional structure at 2eV = 2ω ′s.

The new peak at 2eV = 2ω ′s comes from the contribution
∼ δGint

R (φ 2
m,φ

2
m;2eV ). This contribution describes a process

in which a Cooper pair tunnels through the probe Josephson
junction emitting two photons. When both photons are on res-
onance with the side-coupled Josephson junction, they inter-
act strongly. This happens when each photon takes away half
of the energy of the Cooper pair, ω = eV ' ω ′s. The resulting
correction to the current is obtained using Eq. (26). As shown
in Appendix C, for voltages V = ω ′s/e+δV , it takes the form

δ I2(δV ) =−I0
π

32
Z0

RQ

ω ′s
Es

J

Γ2

[(eδV )2 +Γ2]2
(32)

×
{

ΓeδV cos(2α
′)− 1

2
[(eδV )2−Γ

2]sin(2α
′)

}
,

where α ′ = 2mω ′s/ω0.

FIG. 5. The Feynman diagrams for the interaction correc-
tion to the four-point Green functions. (a) δG int [φ 2

n (τ)φ
2
m(0)

]
.

(b) G
[
φ 3

n (τ)φm(0)
]

and G
[
φ 3

n (τ)φm(0)
]
.

The characteristic amplitude A2 of the change in current
is, thus, much smaller than I0 or the single-photon resonant
structure δ I1,

A2 =
π

64
Z0

RQ

ω ′s
Es

J
I0� I0. (33)

Here, the suppression factor Z0/RQ is due to the fact that it is
a two-photon process, whereas the suppression factor ω ′s/Es

J
is due to the fact that it is an interaction effect. Notice that
the widths of the resonances at 2eV = ω ′s and 2eV = 2ω ′s are
the same. The dependence of the shape of the second reso-
nance on the distance ∝ α ′ between the side-coupled Joseph-
son junction and the probe Josephson junction is shown in
Fig. 7.

We finally consider the current contribution stemming from
GR(φ

3
m,φm;ω). While it is in principle of the same order as

the current contribution from δGint
R (φ 2

m,φ
2
m;ω), i.e., it is pro-

portional to (Z0/RQ)(ω
′
s/Es

J)I0, in this case it is impossible to
fulfill the resonance condition simultaneously for all the pho-
tons involved. Therefore, this contribution acquires an addi-
tional suppression factor Γ/ω ′s, and we can neglect it.

The main interaction effect is, thus, the appearance of a res-
onance at 2eV = 2ω ′s due to two-photon processes. Higher
order processes are expected to lead to additional features
at 2eV = nω ′s (n ≥ 3). However, their amplitude decreases
rapidly with increasing n and may be estimated as An ∼
[(Z0/RQ)(ω

′
s/Es

J)]
n−1I0� A2.

Taking typical parameters for realistic systems, we may
estimate the amplitude A2. While the Josephson energy EJ
and the mutual capacitance C of a junction depend mainly on
the junction area and, thus, cannot be varied independently,
the capacitance to ground C0 depends on the geometry and
is therefore tunable. In the regime C0 � C, the requirement
Z . RQ limits the critical current and, by consequence, also
the signal. We estimate that A2 would be on the order of pA,
making the effect accessible experimentally. A larger signal is
expected in the opposite regime C�C0, where one could use
junctions with a much larger critical current. In this regime,
the interaction between the side-coupled Josephson junction

FIG. 6. The non-linear regime: Current-voltage characteristic of
the probe Josephson junction when placed at m = 0. The parame-
ters are ω ′s/Es

J = 0.9, Γ/ω ′s = 0.02, Ecut-off/ω ′s = 20, and Z0/RQ =
0.2. Photon-photon interactions lead to a second resonant feature
at 2eV = 2ω ′s. A zoom on that feature with amplitude δ I2/I0 ∝

(Z0/RQ)(ω
′
s/Es

J) is shown in the inset.
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FIG. 7. The second resonance in the current-voltage characteristic
for different values of the distance between the side-coupled Joseph-
son junction and the probe Josephson junction, α ′ = 2mω ′s/ω0. Re-
sults are plotted near 2eV = 2ω ′s in the two-photon, non-linear regime
[Eq. (32)] with Γ/ω ′s = 0.02.

and the chain becomes non-local. This would make the the-
oretical analysis somewhat more complicated, but we expect
that the results would not change qualitatively.

V. CONCLUSION

We have shown that the dc current-voltage characteristic
of a Josephson junction provides a sensitive probe to study
photon-photon interactions in a non-linear environment. In
particular, we investigated the case of a transmission line side-
coupled to another Josephson junction whose non-linearity
leads to local photon-photon interactions. Scattering of in-
dividual photons by the side-coupled Josephson junction re-
sults in a resonance feature in the current-voltage character-

istic of the probe Josephson junction at 2eV = ω ′s, where ω ′s
is the plasma frequency of the side-coupled Josephson junc-
tion. By contrast, the interactions due to the non-linearity
yield an additional resonance feature at 2eV = 2ω ′s due to two-
photon processes. Such a feature is thus a clear indication of
photon-photon interactions. While we concentrated here on
the regime of a weak non-linearity, it will be interesting to
see how these features are modified in the strongly non-linear
regime.
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Appendix A: Two point retarded Green functions

In this appendix, we derive the two-point retarded Green
functions G(0)

R of the linear system using equations of motion
and scattering theory.

We start with the coupled equations of motion for
G(0)

R (φn,φm;ω) and G(0)
R (φδ ,φm;ω),

ω
2G(0)

R (φn,φm;ω)−ω
2
0

(
1+

C2
c

C0CΣ

δn0

)[
2G(0)

R (φn,φm;ω)−G(0)
R (φn+1,φm;ω)−G(0)

R (φn−1,φm;ω)
]

(A1)

−Cc

C0
ω

2
s G(0)

R (φδ ,φm;ω)δn0 +
(2e)2

C0
δnm = 0,(

ω
2−ω

2
s
)

G(0)
R (φδ ,φm;ω)− Cc

CΣ

ω
2
0

[
2G(0)

R (φ0,φm;ω)−G(0)
R (φ1,φm;ω)−G(0)

R (φ−1,φm;ω)
]
= 0. (A2)

Combining Eqs. (A1) and (A2) then yields the following equation for G(0)
R (φn,φm;ω),

ω
2G(0)

R (φn,φm;ω)−ω
2
0

(
1+

C2
c

C0CΣ

ω2

ω2−ω2
s

δn0

)[
2G(0)

R (φn,φm;ω)−G(0)
R (φn+1,φm;ω)−G(0)

R (φn−1,φm;ω)
]
=− (2e)2

C0
δnm. (A3)

If there is no side-coupling, Cc = 0, Eq. (A3) describes pho-
tons propagating freely along the infinite transmission line. At
frequencies ω � ω0, the dispersion is linear, ω = ω0k with
wavevector k� 1, and the solution is

G(0)
R,chain (φn,φm;ω) = i

π

ω

Z0

RQ
eik|n−m|. (A4)

The side-coupling leads to scattering of photons at the node

n = 0. Then, for m > 0, the solution may be written in the
form

G(0)
R (φn,φm;ω) =


Aeikn n > m,

B
[
e−ikn + r(ω)eikn

]
0 < n < m,

Bt(ω)e−ikn n < 0,
(A5)

where the reflection and transmission coefficients, r(ω) and
t(ω), as well as the amplitudes A and B have to be determined
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using the boundary conditions at n = 0 and n = m. One finds
t(ω) = 1+ r(ω) with r(ω) given by Eq. (11) in the main text.
Furthermore,

B = i
π

ω

Z0

RQ
eikm, (A6)

A = B
[
e−2ikm + r(ω)

]
. (A7)

The result is obtained by substituting Eqs. (11), (A6), and
(A7) into Eq. (A5). Generalizing to arbitrary m, we find

G(0)
R (φn,φm;ω) = i

π

ω

Z0

RQ

[
eik|n−m|+ r(ω)eik(|n|+|m|)

]
. (A8)

The local Green function needed to evaluate P(E), thus, reads

G(0)
R (φm,φm;ω) = i

π

ω

Z0

RQ

[
1+ r(ω)e2ik|m|

]
. (A9)

While this is the only Green function needed in the linear
case, more Green functions are required in the non-linear case.
Using Eq. (A2), we obtain

G(0)
R (φδ ,φm;ω) =−2

π

ω

1
RQCcω

r(ω)eik|m|. (A10)

Similarly, the Green functions G(0)
R (φm,φδ ;ω) and

G(0)
R (φδ ,φδ ;ω) obey coupled equations of motion. One

may show that G(0)
R (φm,φδ ;ω) = G(0)

R (φδ ,φm;ω), whereas
the equation for G(0)

R (φδ ,φδ ;ω) is

(
ω

2−ω
2
s
)

G(0)
R (φδ ,φδ ;ω)− Cc

CΣ

ω
2
0

[
2G(0)

R (φ0,φδ ;ω)−G(0)
R (φ1,φδ ;ω)−G(0)

R (φ−1,φδ ;ω)
]
=− (2e)2

CΣ

. (A11)

Using Eq. (A10), one obtains

G(0)
R (φδ ,φδ ;ω) =−4i

π

ω

1
RQZ0(Ccω)2 r(ω). (A12)

Using the explicit expression for r(ω), Eq. (A12) may be
rewritten as

G(0)
R (φδ ,φδ ;ω) =− 2π

RQCΣ

1

ω2−ω2
s + i C2

c
2C0CΣ

ω2

ω0
(ω−2iω0)

.

(A13)

Finally, using the fact that C2
c/(C0CΣ)� 1, we approximate

G(0)
R (φδ ,φδ ;ω)'− 2π

RQCΣ

1
ω2− (ωs− iΓ)2 , (A14)

where

Γ =
1
4

C2
c

C0CΣ

ωs
2

ω0
.

This result also allows us to evaluate

〈φ 2
δ
〉H(0) =

1
π

∞∫
0

dω ℑ

[
G(0)

R (φδ ,φδ ;ω)
]
=

ωs

2Es
J
. (A15)

Appendix B: The Dyson equation

In the following, we present the derivation of Eq. (22).
The time-ordered two-point Green function is defined as

Gτ [φn(τ)φm(0)] = 〈Tτ φn(τ)φm(0)〉Hnl , (B1)

where Tτ is the time-ordering operator. Eq. (B1) can be rewrit-
ten as

Gτ [φn(τ)φm(0)] =
〈Tτ φn(τ)φm(0)S(∞)〉H(0)

〈S(∞)〉H(0)
, (B2)

where S(∞) = Tτ exp [−
∫

∞

0 dτ ′ V (τ ′)].
Expanding Eq. (B2) up to first order in the perturbation V =
−Es

Jφ 4
δ
/24 and using Wick’s theorem yields

Gτ [φn(τ)φm(0)]' G
(0)
τ [φn(τ)φm(0)]+

∞∫
0

dτ
′ G

(0)
τ

[
φn(τ)φδ (τ

′)
] Es

J
2
〈φ 2

δ
〉H(0)G

(0)
τ

[
φδ (τ

′)φm(0)
]
. (B3)

After Fourier transformation and analytical continuation, one
obtains the corresponding retarded Green function,

GR (φn,φm;ω)' G(0)
R (φn,φm;ω) (B4)

+G(0)
R (φn,φδ ;ω)

Es
J

2
〈φ 2

δ
〉H(0)G

(0)
R (φδ ,φm;ω).

While far from the resonance at ω = ωs the second term is
much smaller than the first one, this is no longer true close
to the resonance. Thus, this first order expansion is not suffi-
cient is to describe the modifications to the resonance due to
the perturbation. It is possible to go beyond the first order ex-
pansion by realizing that Es

J〈φ 2
δ
〉H(0)/2 is a local self-energy,
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Σ(φδ ,φδ ). Thus, one obtains the Dyson equation

GR (φn,φm;ω) = G(0)
R (φn,φm;ω) (B5)

+G(0)
R (φn,φδ ;ω)

Es
J

2
〈φ 2

δ
〉H(0)GR (φδ ,φm;ω) ,

A similar equation can be written for the Green function

GR (φδ ,φm;ω). Namely,

GR (φδ ,φm;ω) = G(0)
R (φδ ,φm;ω) (B6)

+G(0)
R (φδ ,φδ ;ω)

Es
J

2
〈φ 2

δ
〉H(0)GR (φδ ,φm;ω) .

Combining Eqs. (B5) and (B6), we obtain the result

GR (φn,φm;ω) = G(0)
R (φn,φm;ω)+

G(0)
R (φn,φδ ;ω)

Es
J

2 〈φ
2
δ
〉H(0)G

(0)
R (φδ ,φm;ω)

1− Es
J

2 〈φ
2
δ
〉H(0)G

(0)
R (φδ ,φδ ;ω)

. (B7)

Then, using the Green functions G(0)
R of the linear problem

derived in appendix A, we find that the full Green func-
tion GR (φn,φm;ω) has the same form as G(0)

R (φn,φm;ω)
though with a shift of the resonance frequency, ωs → ω ′s ≈
ωs
(
1−〈φ 2

δ
〉H(0)/4

)
. Similarly, we find that this frequency

shift appears in all two-point Green functions.

Appendix C: The contribution of photon-photon interaction

The four-point retarded Green function δGint
R
(
φ 2

m,φ
2
m;ω

)
,

needed to compute the interaction contribution to the current-
voltage characteristic, is obtained from Eq. (25) by taking the
Fourier transform and then performing the analytical contin-
uation from Matsubara to real frequencies, iων → ω + i0+,
and using standard methods of contour integration. One
obtains Eq. (26) which takes the form δGint

R
(
φ 2

m,φ
2
m;ω

)
'

(Es
J/π2) f 2(ω), where

f (ω) = ∑
±

∞∫
0

dω1 ℑ [GR(φm,φδ ;ω1)]GR(φm,φδ ;ω±ω1).

(C1)

The integral is dominated by frequencies where both Green
functions are close to resonance, ω1 ≈ ω ±ω1 ≈ ω ′s. This
requires ω ≈ 2ω ′s. We, thus, approximate ω = 2ω ′s +δω and
ω1 = ω ′s +δω1. The Green functions close to resonance take
the form

G(0)
R

(
φδ ,φm;ω

′
s +δω

)
' 2

π

ω ′s

1
RQCcω ′s

1

1− i δω

Γ

ei ω ′s
ω0
|m|
. (C2)

We then rewrite

f (ω)'
(

2π

RQCc(ω ′s)
2

)2

ei ω ′s
ω0
|m|

∞∫
−∞

dδω1
sin ω ′s|m|

ω0
+ δω1

Γ
cos ω ′s|m|

ω0

1+
(

δω1
Γ

)2
1

1− i δω−δω1
Γ

. (C3)

It is straightforward to evaluate the convolution integrals to obtain

ℜ [ f (ω)]' π

(
πCc

2RQC0CΣ

)2
δω cosα ′+2Γsinα ′

(δω)2 +4Γ2 , (C4)

ℑ [ f (ω)]'−π

(
πCc

2RQC0CΣ

)2 2Γcosα ′−δω sinα ′

(δω)2 +4Γ2 . (C5)

Finally, to compute the current-voltage characteristic, we need

ℑ

[
δGint

R
(
φ

2
m,φ

2
m;2ω

′
s +δω

)]
'

2Es
J

π2 ℜ
[

f (2ω
′
s +δω)

]
ℑ
[

f (2ω
′
s +δω)

]
(C6)

'−π2

8
1

Es
J

(
Z0

RQ

)2 4Γ2

[(δω)2 +4Γ2]2

{
2δωΓcos(2α

′)− 1
2
(
δω

2−4Γ
2)sin(2α

′)

}
.
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