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We describe a fluctuating volume–current formulation of electromagnetic fluctuations that extends our recent

work on heat exchange and Casimir interactions between arbitrarily shaped homogeneous bodies [Phys. Rev.

B. 88, 054305] to situations involving incandescence and luminescence problems, including thermal radiation,

heat transfer, Casimir forces, spontaneous emission, fluorescence, and Raman scattering, in inhomogeneous

media. Unlike previous scattering formulations based on field and/or surface unknowns, our work exploits

powerful techniques from the volume–integral equation (VIE) method, in which electromagnetic scattering is

described in terms of volumetric, current unknowns throughout the bodies. The resulting trace formulas (boxed

equations) involve products of well-studied VIE matrices and describe power and momentum transfer between

objects with spatially varying material properties and fluctuation characteristics. We demonstrate that thanks

to the low-rank properties of the associated matrices, these formulas are susceptible to fast-trace computations

based on iterative methods, making practical calculations tractable. We apply our techniques to study thermal

radiation, heat transfer, and fluorescence in complicated geometries, checking our method against established

techniques best suited for homogeneous bodies as well as applying it to obtain predictions of radiation from

complex bodies with spatially varying permittivities and/or temperature profiles.

I. INTRODUCTION

Quantum and thermal fluctuations of charges give rise to

a wide range of electromagnetic (EM) phenomena; these in-

clude luminescence from active media, e.g. fluorescence and

spontaneous emission,1–3 the finite linewidth of lasers near

threshold,4,5 thermal radiation and heat transfer from hot ob-

jects,6–14 and dispersive interactions (Casimir forces) between

nearby surfaces.15–21 Fluctuation-driven effects are not only

responsible for many naturally occurring processes but are

also poised to take an increasingly active role in emerging

nanotechnologies,12,13 spurring interest in the study and engi-

neering of complex shapes that could dramatically alter their

behavior.14,21 Although rooted in similar principles, the phys-

ical mechanisms behind each of these processes vary consid-

erably, leading to theoretical descriptions that differ both in

their formulation and implementation. Ultimately, however,

all such calculations reduce to a series of classical scatter-

ing problems22,23 that until recently remained largely special-

ized to situations involving simple, high–symmetry geome-

tries, e.g. planar and spherical objects.

In this manuscript, we present a framework for the general-

purpose calculation of many different incandescence and lu-

minescence processes, including fluorescence, spontaneous

emission, thermal radiation, heat transfer, and Casimir forces

in arbitrary geometries. In particular, we derive a fluctuating

volume–current (FVC) formulation of EM fluctuations that

exploits techniques from the volume–integral equation (VIE)

formulation of EM scattering24,25 and which expands the

range and validity of current methods to situations involving

inhomogeneous media. Although FVC is similar in spirit to

our previous fluctuating surface–current (FSC) methods,26,27

unlike FSC our new approach is not limited to piecewise-

homogeneous objects. Here, the unknowns are volume cur-

rents within objects rather than surface currents as in FSC, and

can therefore easily handle more complex structures, includ-

ing inhomogeneous bodies with temperature gradients or spa-

tially varying permittivities. In contrast to recently developed

scattering-matrix methods,28–40 the FVC and FSC methods do

not require a separate basis of incoming/outgoing wave solu-

tions to be selected (a potentially difficult task in geometries

involving interleaved objects or complex structures favoring

nonuniform spatial resolution), although VIE can be used to

compute the scattering matrix if desired. We show that regard-

less of which quantity is computed, the final expressions for

power and momentum transfer are based on simple trace for-

mulas involving well-studied VIE and current–current corre-

lation matrices that encode the spectral properties of fluctuat-

ing sources. We find that while the number of VIE unknowns

is large compared to scattering or FSC formulations, the asso-

ciated VIE matrices admit low-rank approximations that turn

out to significantly reduce the complexity of trace evaluations,

making practical calculations tractable. We validate the FVC

method by checking its predictions against known solutions

for homogeneous objects and then apply it to calculate ther-

mal radiation, heat transfer, and fluorescence from compact

objects (spheres, ellipsoids, and cubes) with spatially varying

permittivities and temperature gradients. The same trace for-

mulas can be readily adapted to obtain the angular distribution

of far-field radiation, which we illustrate by providing new

predictions of directional emission from inhomogeneous ob-

jects. As explained below, while VIE methods can be applied

to arbitrary geometries, they are particularly advantageous in

situations where object sizes are on the order of (or smaller)

than the relevant wavelengths, providing a useful complement

to well-established techniques better suited for the study of

arbitrary geometries with lengthscales that are large or small

compared to the relevant EM wavelengths, e.g. proximity ap-
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proximations.19,41

Electromagnetic fluctuation phenomena can be roughly di-

vided into two categories: incandescence and luminescence

problems. Incandescence refers to EM radiation from ob-

jects generated by the quantum and thermal motion of charged

particles in matter, whereas luminescence refers to incoher-

ent emission of light from non-thermal sources. The old-

est and most well-studied manifestation of incandescence is

the familiar glow of objects—thermal radiation—that occurs

when an object is heated above the temperature of its sur-

rounding environment.42,43 Although Planck’s law was not

more than a century ago at the center of vigorous controversy

which helped establish the foundations of quantum mechan-

ics,44 much of our recent interest in this phenomenon spawns

from its profound impact on energy and related nanotechnolo-

gies. Interest in complex designs is also fueled by our in-

creasing ability to engineer selective and even dynamically

tunable emitters and detectors at wavelengths for which there

is currently a lack of coherent sources,12,45–49 in addition to

solar-energy harvesting applications.50–55 In addition to radia-

tion, fluctuations can also mediate heat exchange6,8,56 and in-

teractions7,15,21,57,58 (known as Casimir forces) between ob-

jects. Unlike heat exchange, Casimir interactions persist even

at equilibrium and are known to arise primarily due to con-

tributions of quantum rather than finite-temperature fluctua-

tions. One fundamental distinction between “near-field” ef-

fects (between objects at wavelength-scale separations or less)

and the more familiar “far-field” phenomena (separations ≫
wavelength) is that the former can be significantly enhanced

by the contributions of evanescent waves,6,56,59,60 growing in

a power-law fashion with decreasing object separations. As a

result, the heat transfer between real materials can exceed the

predictions of the Stefan–Boltzmann law by orders of magni-

tude13 and quantum forces can reach atmospheric pressures at

nanometric lengthscales,21 motivating interest in complex de-

signs that can be tailored for various applications, including

thermophotovoltaic energy conversion,61–64 nanoscale cool-

ing,65,66 and MEMS design.67–69

Until very recently, however, calculations and experiments

remained focused on planar structures and simple approx-

imations thereof.7–14,70 Since all such thermal effects arise

due to the presence of fluctuating current sources, from the

perspective of calculations their descriptions reduce to a se-

ries of classical scattering calculations involving fields due

to currents,14,23 the spectral characteristics of which are re-

lated to the underlying physical means of excitations. In

the case of incandescence, they are determined by the ther-

mal and dissipative properties of materials via the well-

known fluctuation–dissipation theorem (FDT).71,72 Naively,

this involves repeated calculations of EM Green’s functions

throughout the bodies, which can prove prohibitive for com-

plex objects where the latter must be computed numerically,

especially due to the broad bandwidth associated with thermal

fluctuations, but it turns out that more sophisticated formu-

lations exist.14,21 These include time- and frequency-domain

methods where the power transfer or force on an object is

obtained via integrals of the flux or Maxwell stress ten-

sor, or equivalently EM Green’s functions, along some ar-

bitrary surface enclosing the body.36,73–80 Recent techniques

forgo surface integrations altogether in favor of unfamiliar but

more efficient expressions involving traces of either scatter-

ing31,33,34,37–39,81,82 or boundary-element26,27,83 matrices. Re-

gardless of the choice of unknowns, in practical implemen-

tations the latter are expanded in terms of either delocalized

spectral bases (e.g. Fourier or Mie series) best suited for

high–symmetry geometries, or geometry-agnostic localized

bases (piecewise polynomial “element” functions) defined on

meshes or grids and applicable to arbitrary objects.23 While

there has been much progress so far, these methods have yet

to be generalized to handle structures with temperature gradi-

ents or varying permittivities.

Temperature gradients can arise for instance due to the in-

terplay of phonon and photon transport,84,85 such as in hetero-

geneous structures with disparate thermal conductivities, in-

cluding chalcogenide/metal interfaces86,87 or quartz-platium-

polymer structures,88 or in graphene-based devices.89 Tem-

perature gradients have also been observed in atomic force

microscopes90,91 and nanowires,92 as well as in situations in-

volving irradiated particles immersed in fluids,93–102 magnetic

nanocontacts,103 or microcavities subject to strong photother-

mal effects.104 Material inhomogeneities also arise in mi-

crocavity lasers stemming from nonlinear effects.105 Surpris-

ingly, there are only a handful of calculations involving non-

isothermal particles, including calculation of radiation from

atomic gases in shock-layer structures with linear tempera-

ture gradients106 or calculations of large-radii spheres based

on Mie series or related semi-analytical expansions.107,108 As

we show in a separate publication, temperature gradients in

inhomogeneous bodies can lead to a number of interesting ef-

fects, including highly directional thermal emission.109

Luminescence, like incandescence, involves incoherent

emission of light due to quantum and thermal fluctuations

of charges, but differs in that excitations are driven by non-

thermal sources. Examples include spontaneous emission,

Raman scattering, and fluorescence from optically pumped

media.3,110,111 Although the spectral properties of fluctuating

currents depend on complicated, nonlinear light–matter inter-

actions, the resulting incoherent radiation can be modeled by

exploiting scattering techniques similar to those employed in

incandescence problems.111 There are however many impor-

tant differences between these two classes of problems. For

instance, the Raman spectrum of many emitters is relatively

narrow (involving wavelengths close to material resonances)

and this has implications for calculations that favor frequency

as opposed to time-domain techniques (the latter being best

suited for broad-bandwidth processes). Furthermore, while

many thermal-radiation problems involve objects with uni-

form temperature distributions, the properties of current fluc-

tuations excited by external pumps depend sensitively on the

inputs and can change dramatically and continuously through-

out the bodies, which is problematic for SIE/FSC formula-

tions based on piecewise homogeneity. Such a situation arises

for instance in the fluorescence from objects with features ∼
incident wavelengths, where resonant absorption can lead to

significant spatial variations in the amplitudes of the fluctuat-

ing currents.3
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Until recently, the fluorescence or Raman emission pat-

tern of small particles was obtained by analytical methods

based on Mie series or related basis expansions.112,113 Calcu-

lations of luminescence from arbitrarily shaped particles in-

stead rely on general-purpose numerical techniques,114 most

commonly time-domain methods,115–120 and include stud-

ies of bowtie antennas,121 nanostars,122 conical tips,123–125

dimers,126 and thin films.127 Frequency domain methods in-

clude finite-element,128,129 boundary-element,130 and discrete

dipole approximation (DDA)131–134 methods. These tools

have been exploited for instance to demonstrate that both

shape and material degrees of freedom can be used to tailor

particle emission, making it possible to enhance fluorescence

and Raman processes3,110,111 as well as obtain unusual angular

emission patterns;135–137 even more recently, there has been

interest in studying effects related to active (non-Hermitian)

systems.138–141 In most cases (with a few exceptions114), the

total radiated power in a given direction is computed by di-

rectly summing the contribution of individual emitters inside

the objects, requiring repeated evaluation of Green’s functions

over both volumes and surfaces. In addition, many calcula-

tions rely on approximations in which the effect of the incident

drive is either approximated or entirely neglected142 or where

only the radiation from a partial set of emitters inside the

objects is obtained.143 Our FVC approach not only removes

such limitations by fully accounting for both the emission and

excitation-dependent properties of all fluctuating sources, but

introduces new trace-formulas that offer compactness, sim-

plicity and a unified framework for computing a wide range

of fluctuation phenomena, allowing techniques and ideas from

one area to be more easily applied to another.

A technique that in principle shares many similarities with

the VIE method is the so-called discrete-dipole approximation

(DDA),144 which models objects as finite arrays of polariz-

able dipoles whose response and interactions due to incident

EM fields can be obtained via the solution of a correspond-

ing integral equation.145 DDA has been recently employed

and suggested as an efficient approach for computing radia-

tive heat transfer146 as well as fluorescence3,145 from arbitrary

geometries, but unfortunately suffers from a number of im-

portant limitations. Technically, DDA belongs to the general

class of volume integral equations traditionally solved numer-

ically via the method of weighted residuals147 (or method of

moments as it is conventionally known when applied to com-

putational electromagnetics148), by which integral equations

are converted into a solvable and finite set of linear systems

of equations. Specifically, system unknowns (fields or equiv-

alent currents) are approximated by expanding them in a fi-

nite set of basis functions, often determined by discretizations

of objects into meshes or grids, and then forcing the result-

ing semi-discrete equations to be equal in a weak sense, i.e.

by integrating them against a set of testing functions.149 The

actual choice and combination of basis and testing functions

gives rise to a plethora of practical variants.149

DDA can be considered to be a particular implementation

of the VIE method known as a collocation method,150 involv-

ing constant or dipole basis functions and Dirac-delta distribu-

tions for testing, with solutions forced to be accurate only at

a finite set of points (known as point matching).150 However,

it is now known that methods of weighted residuals are only

guaranteed to converge in norm under special circumstances,

the lack of which can lead to numerous convergence and ef-

ficiency issues.151 Specifically, basis functions must span the

function space of the unknowns and testing functions must

span the dual space of the range of the corresponding VIE

operator.152,153 DDA respects neither of these, and as a con-

sequence its applicability is largely limited to situations in-

volving scattering in structures with small index contrasts and

weakly polarizable media,145 beyond which it can lead to

a number of severe convergence and accuracy problems.134

(Note that DDA also makes a number of other approxima-

tions that break down in geometries involving wavelength-

scale objects, cf. Eq. 14 in Ref. 145.) In contrast, our

FVC formulation is based on a recently developed VIE frame-

work (dubbed JM-VIE) that is numerically solved by means

of a Galerkin method of moments.25 JM-VIE exploits basis

and testing functions spanning the function space of inter-

nal volume currents,25 the stability and superior convergence

of which have been demonstrated in geometries involving

highly inhomogeneous objects and large dielectric contrasts.25

While the associated JM-VIE matrix elements involve com-

plicated, expensive, and highly singular volume–volume in-

tegrals of homogeneous Green’s functions integrated against

pairs of basis functions, these were recently shown to reduce

to surface–surface integrals over smoother kernels that can be

readily handled using specialized integration techniques orig-

inally developed for SIE methods.154,155

In the following sections, we derive our FVC formulation of

fluctuating currents and demonstrate that it can be employed

to study a wide class of EM fluctuation effects in general ge-

ometries, with no uncontrolled approximations except for the

finite discretization (basis). We begin in Sec. II with a brief

review of the VIE formulation of EM scattering, followed

by derivations of formulas involving power and momentum

transfer, as well as far-field radiation patterns from radiating

objects. The final boxed expressions involve traces of prod-

ucts of VIE and current–current correlation matrices that en-

code the spatial and spectral characteristics of the fluctuating

sources. In Sec. III, we show that important algebraic proper-

ties of the associated VIE and correlation matrices allow effi-

cient evaluation of the trace expressions; specifically, a num-

ber of the VIE matrices admit low-rank approximations, en-

abling us to exploit sophisticated and fast iterative techniques

for their evaluation. Finally, in Sec. IV the FVC framework

is validated against known results and also applied to obtain

predictions in new geometries that currently lie outside the

scope of state-of-the-art techniques, such as objects subject to

spatially varying temperatures and dielectric properties.

II. FVC FORMULATION

In this section, we begin by reviewing the VIE method

of EM scattering and apply it to derive an FVC formulation

of fluctuation-induced phenomena in inhomogeneous media.

Our approach relies on the JM-VIE formulation and associ-
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Figure 1. Schematic of a many-body geometry in which fluctuating

current sources give rise to radiation as well as flux and momentum

transfer between the bodies. Also illustrated are the incident field

φinc due to a single dipole source σ within a body V1 along with the

induced polarization–currents ξ throughout V1 and two nearby bod-

ies, V2 and V3, resulting in scattered fields φscat. The characteristics

of the dipole sources σ (fluctuation statistics) and the permittivities

of the bodies χ (material properties) both vary within each object.

ated Galerkin method of moments presented in Ref. 25, also

briefly discussed. As noted above, a strategy based on SIE for-

mulations is unavailable for modeling inhomogeneous objects

since finding the radiation of a point source (the Green’s func-

tion) in inhomogeneous media is nearly impossible with only

surface unknowns.156 Matters are further complicated for fluc-

tuation phenomena involving power or momentum transfer, in

which case inhomogeneities in the properties of the fluctuat-

ing sources (e.g. spatial variations throughout the bodies due

to temperature or dielectric changes) must also be accurately

accounted for. Starting with the recently developed power for-

mulas,157 we derive compact trace expressions for the power

and momentum transfer and far-field radiation pattern of com-

plicated objects with inhomogeneous properties. Finally, we

elaborate on special algebraic properties of the associated VIE

and correlation matrices that allow fast computations of the

matrix-trace formulas, making large and complicated calcula-

tions tractable.

A. Volume integral equations

The derivations of VIEs often rely on the volume equiva-

lence principle, which shares many similarities with—but is

significantly simpler and more easily derived than—the more

well-known surface equivalence principle.158–160 Consider the

system of arbitrarily shaped, inhomogeneous bodies described

by the relative permittivity ǫ and permeability µ functions,

depicted schematically in Fig. 1. Let φ and σ denote 6-

component EM fields and volume currents,

φ =

(

E

H

)

, σ =

(

J

M

)

.

and consider the scattering problem involving incident fields

φinc due to σ (in the absence of bodies) and scattered fields

φscat due to reflections and scattering from objects and

sources. Defining the 6-component volume currents

ξ =

(

Jb

Mb

)

= −iωχφ (1)

associated with bound polarization Jb and magnetization Mb

currents inside the objects, described by the 6× 6 susceptibil-

ity tensor χ (which for convenience also includes the permit-

tivity and permeability of the ambient medium), it follows that

the scattered field can be be written as a convolution of ξ with

the homogeneous Green’s function of the ambient medium.24

(Note that there is no assumption on χ, which can describe

both anisotropic and/or chiral media, changing only the form

of the homogeneous Green’s function.161) In particular, the

unknown scattered fields can be shown to be related to the

free and bound currents, respectively, via convolutions (⋆)
with the 6 × 6 homogeneous Green’s tensor of the ambient

medium (typically free space) Γ(x,y) = Γ(x−y,0), written

explicitly in Ref. 26. This is the core idea behind the volume

equivalence principle, which we review below.

We begin by writing the total field φ = Γ ⋆ (σ + ξ) via

the volume equivalence principle24 in terms of the incident

φinc = Γ ⋆ σ and scattered φscat = Γ ⋆ ξ fields, or more

explicitly:

φ(x) =

ˆ

d3y Γ(x,y) [σ(y) + ξ(y)] (2)

where it is clear that all of the scattering information (includ-

ing material inhomogeneities) is “encoded” in the convolu-

tion of the homogeneous Green’s function with the polariza-

tion/magnetization current. Multiplying both sides of Eq. 2

with −iωχ and using the definition of ξ in Eq. 1, one arrives

at the following VIE for the induced currents ξ:

ξ + iωχ(Γ ⋆ ξ) = −iωχ(Γ ⋆ σ), (3)

which can be solved to obtain ξ from the incident sources σ.

This is the so-called JM-VIE formulation of EM scattering in

which the unknowns are induced currents rather than fields or

field densities. Compared to other formulations based on field

unknowns, JM-VIE exhibits superior performance in terms of

accuracy and convergence, especially for objects with high

refractive index.25,162

The operator equation above is customarily solved by re-

ducing it to an approximate, finite-dimensional linear system.

Let {bα} be some convenient set of N vector-valued basis

functions. We can then approximate our unknowns ξ (and, for

convenience below, the source currents σ) in this basis:

ξ(x) ≈

N
∑

α=1

xαbα(x), σ(x) ≈

N
∑

α=1

sαbα(x). (4)

There are two main categories of basis functions that are used

in the numerical solution of the JM-VIE above, known as

spectral and MoM sub-domain bases. A spectral basis consists

of non-localized Fourier-like basis functions whereas MoM

sub-domain bases are localized functions obtained by dis-

cretizing objects into meshes or grids of volumetric elements,
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e.g. cubes, tetrahedra, and hexahedra,163 and defining func-

tions by low-order polynomials with local support in one or

a few elements. In this work, we resort to the second cate-

gory and exploit piecewise constant basis functions defined in

cubes, due to the flexibility they offer for modeling geome-

tries of arbitrary shape.25 We note however that the proposed

framework and the resulting matrix-trace formulas can also be

evaluated using spectral bases as well.

Finally, the semi-discrete equation is “tested” with another

set of functions (called testing functions) to produce a linear

system. In the Galerkin approach, the set of testing functions

is the same with the one of the basis functions. The resulting

Galerkin JM-VIE linear system reads

W−1 x = (V −W−1) s, (5)

where

W−1
α,β = 〈bα, bβ + iωχ(Γ ⋆ bβ)〉

Vα,β = 〈bα, bβ〉
(6)

and α, β = 1 : N . Also, 〈, 〉 denotes the standard inner prod-

uct of functions 〈φ, ψ〉 =
´

φ∗ψ, with the ∗ superscripts de-

noting the conjugate transpose (adjoint) operation. Without

loss of generality, we can choose the basis functions to sat-

isfy an orthogonality relation, so that 〈bα, bβ〉 = δαβ . In this

case the matrix V (often called Gram matrix) is equal to the

identity matrix, i.e., V ≡ I , and it follows that

x+ s =WV s =W s. (7)

Note that our simplifying assumption of orthogonal basis

functions can be easily relaxed, leading to slightly modified

W →WV and C → CV matrices (below).

The numerical evaluation of Galerkin inner products in

Eq. 6 involves multidimensional integrals over the support

of both basis and testing functions. This integration can be

quite cumbersome due to singularities (when the support of

the basis and the testing functions overlap) and the highly di-

mensional aspect of the problem. However, previous work164

demonstrated that these challenging volumetric integrals can

be reduced to surface integrals (of lower singularity), allow-

ing us to benefit from decades of work dedicated to the ac-

curate and efficient evaluation of the associated surface inte-

grals. Here, we make use of the free-software DEMCEM154

and DIRECTFN,155 which leverage the techniques described

in Refs. 164 and 165 . Furthermore, MoM JM-VIE formu-

lations with local basis/testing functions typically result in

very large linear systems, which can be solved with iterative

algorithms for non-symmetric dense systems. In each itera-

tion, the associated matrix-vector products take O(N2) time.

Moreover, it is practically impossible to explicitly store the

(dense) matrix W−1 requiring O(N2) memory. In fact, there

are now well-established, fast algorithms to reduce the costs

of such integral equation solvers.25,166,167 However, the abil-

ity to exploit fast solvers in fluctuation EM problems is not

a priori guaranteed since as we show below the final formu-

las involve complicated traces of products of JM-VIE and re-

lated matrices. In Sec. III, we describe a fast procedure for

the computation of the proposed matrix-trace, which relies on

a straightforward and easily implemented FFT-based fast al-

gorithm presented in Ref. 25 that scales as O(N logN) for

each matrix-vector product and requires O(N) memory.

Before concluding this section, we introduce some addi-

tional definitions and notation. In particular, further below we

exploit the so-called Green matrix G, defined as

Gα,β = 〈bα,Γ ⋆ bβ〉, (8)

which involves interactions among basis functions mediated

by the Green’s function. For n objects, the associated matrices

and vectors can be conveniently written as:

G→

















G11 G12 · · · G1n

G21 G22 . . .
...

...
...

. . .
...

Gn1 Gn2 · · · Gnn

















; ξ →















ξ1

ξ2

...

ξn















(9)

where the superscripts denote blocks associated with the vari-

ous objects, with diagonal components corresponding to self-

interactions and off-diagonal blocks involving interactions be-

tween different objects. Finally, we define the projection,

P p
α,β =

{

1, if α = β = p

0, otherwise,
(10)

which selects specific blocks of vectors x̂p = P px or diagonal

blocks of matrices Âp = P pAP p corresponding to object p.

B. Power transfer

We now derive a compact matrix-trace formula for the

computation of the ensemble-averaged flux into body Bp (or

equivalently the absorbed power) due to fluctuating current

sources in body Bq, integrated over all possible positions and

orientations. The first step consists of the evaluation of the

flux from Bp due to a single dipole source σ immersed in Bq,

which we denote as Φq→p
σ . Direct application of Poynting’s

theorem implies that the flux on the objects is given by:168,169

Φq→p
σ =

1

2
Re

ˆ

Bp

d3x ξ∗ · φ (11)

which amounts to the work done by the total field on the po-

larization currents in Bq. Expressing the induced currents and

fields in the basis of JM-VIE currents and using the relation

φ = Γ ∗ (ξ + σ) yields the following discrete approximation
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(see Ref. 157 for a complete analysis):

Φq→p
σ =

1

2
Rexp∗φp =

1

2
Rex∗P pφ

=
1

2
Re (x+ ŝq)∗P pG(x + ŝq)

=
1

2
(x+ ŝq)∗ sym (P pG)(x+ ŝq)

=
1

2
(WP qs)

∗
sym (P pG) (WP qs)

=
1

2
Tr [(ss∗)(WP q)∗ sym (P pG)(WP q)]

(12)

where symG = G+G∗

2 denotes the Hermitian part of G. It

is then straightforward to obtain the ensemble-averaged flux

Φq→p ≡ 〈Φq→p
σ 〉, which yields:

Φq→p =
1

2
Tr [〈ss∗〉(WP q)∗ sym (P pG)(WP q)]

=
1

2
Tr [P qCP qW ∗ sym(P pG)W ]

(13)

where C = 〈ss∗〉 is a current–current correlation matrix

that captures a statistical, ensemble average over sources,

described in more detail in Sec. II E. Defining the matrix

Ĉq = P qCP q , which is simply a projection of the correla-

tion matrix unto the space of basis functions in q, we find that

the ensemble-averaged flux is given by:

Φq→p =
1

2
Tr

[

ĈqW ∗ sym(P pG)W
]

. (14)

C. Momentum transfer

In addition to carrying energy, the radiation emitted by fluc-

tuating sources also carries linear and angular momentum,

which can also be described using similar expressions. The

starting point consists of the evaluation of the force (or torque)

imparted on an object Bp due to a single dipole source im-

mersed in Bq. Although EM forces are often computed via

surface-integrals of the Maxwell stress tensor, it is also possi-

ble and in our case more convenient to express the force as a

volume integral by considering the Lorentz force acting on the

internal currents ξ induced on Bp.170 In particular, the force on

the object is given by:

Fq→p
σ =

1

2ω
Im

ˆ

Bp

d3x ξ∗ · ∇φ (15)

where ∇ denotes the usual partial derivative with respect to

infinitesimal displacements. The derivation of the above ex-

pression follows from application of the time-average Lorentz

force dF = 1
2Re (ρ∗E + J∗ × B)d3x on the electric charge

and current densities (ρ,J) in an infinitesimal volume element

d3x, together with a similar expression for the force on the

magnetic sources. Integrating over the volume of the body and

employing Stokes’ theorem along with Maxwell’s equations

immediately yields Eq. 15. In a similar fashion, the torque

about some origin x0 can be obtained by integrating the dif-

ferential torque dτ = (x− x0)× dF on a volume element.

Expressing the induced currents and fields in the basis of

JM-VIE currents and following a similar procedure as that of

Sec. II B, one finds that the ensemble-averaged force on the

object can be written in the compact and convenient form:

Fq→p =
1

2ω
Tr

[

ĈqW ∗ asym
(

P pGF
)

W
]

, (16)

where in this case and in contrast to power transfer, the rele-

vant quantity is the matrix representation GF of the gradient

of the Green’s function operator G, whose matrix elements

GF
α,β = 〈bα,∇Γ ⋆ bβ〉. Also, asymG = G−G∗

2 denotes the

skew-Hermitian part of G. The torque on the object can be

obtained similarly by computing angular derivatives ofG. We

note however that the calculation of these matrix elements re-

quires evaluation of multidimensional integrals whose singu-

larities are more severe than those of G. A key distinction

between fluctuation-induced power and momentum transfer is

that, in the latter, the force or torque on a body can be nonzero

even at thermal equilibrium and/or zero temperature; these are

the usual equilibrium Casimir forces.58 Equation 16, which

computes only the non-equilibrium contribution to the force,

must generally be augmented by these equilibrium contribu-

tions to yield the total force. Connections between Eq. 16 and

expressions for equilibrium forces, techniques for evaluating

the above-mentioned integrals, and results of VIE computa-

tions of non-equilibrium Casimir forces and torques are ad-

dressed in a separate manuscript.171

D. Far-field radiation intensity

In addition to power and momentum transfer, another use-

ful quantity is the far-field radiation intensity of our system,

which can also be expressed as a simple trace formula. The re-

sult which follows trivially from Eq. 13, is that the ensemble-

averaged flux radiated by an isolated body Bq to the back-

ground medium is given by:

Φq→0 = −
1

2
Tr [CW ∗ symGW ] (17)

where the minus sign corresponds to the direction of the power

flux and stems from Poynting’s theorem. Also, it follows nat-

urally in the case of an isolated body that Ĉq = C and P p is

the identity matrix. However, in addition to the overall radia-

tion, it is also useful to obtain the radiation intensity over spe-

cific directions, or equivalently the power radiated per solid

angle. The angle-resolved radiation intensity U q→0
σ from a

single source σ immersed in Bq can be obtained by expressing

the radiation field at infinity E∞ (where only far field contri-

butions remain) in terms of the free and bound current sources,

as follows:

U q→0
σ =

k2Z

2(4π)2
|QE∞(x)|2 =

k2Z

2(4π)2
|Q

[

ΓE
∞ ⋆ (σ + ξ)

]

|2

(18)
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where k is the wavenumber and Z =
√

µ0/ǫ0 is the wave

impedance, both in vacuum. Also, ΓE
∞(x,y) is the 3 × 6

Green’s tensor of the ambient medium which maps currents

to far-field electric fields, and Q is a 3× 3 transformation ten-

sor that maps vectors from Cartesian to spherical coordinates

and projects their radial component to zero:172

Q =







0 0 0

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0






(19)

where θ and φ are the inclination and azimuthal angles, re-

spectively. Given the solution of the VIE scattering prob-

lem and following the same procedure described above, it is

straightforward to write the radiation intensity as a matrix-

trace formula of the form:

U q→0
σ =

k2Z

2(4π)2
(s+ x)∗GE∗

∞GE
∞(s+ x)

=
k2Z

2(4π)2
Tr

[

(ss∗)(W )∗(GE∗
∞GE

∞)(W )
]

(20)

where the matrix GE
∞ is the discretized form of the operator

QΓE
∞, obtained in a similar fashion asG. Ensemble averaging

over all sources, we find that the final formula for the angle-

resolved radiation intensity U q→0 ≡ 〈U q→0
σ 〉 is given by:

U q→0 =
k2Z

2(4π)2
Tr

[

C W ∗(GE∗
∞GE

∞)W
]

. (21)

Equation 21 can be integrated over all solid angles Ω to yield

the total radiation rate Φq→0 =
´

dΩU q→0(Ω), which as ex-

pected agrees with results obtained by direct application of

Eq. 17, as discussed in Sec. III.

E. Current–current correlation matrices

The boxed formulas above are very general in that they

apply to many different kinds of fluctuation processes, the

physical properties and origins of which are described by

the correlation matrices C = 〈ss∗〉, which involve a sta-

tistical, ensemble-average over all sources σ and polariza-

tions throughout the bodies. In particular, the matrix elements

of the correlation matrices describe interactions among basis

functions and are given by

Cα,β = 〈sαs
∗
β〉 =

ˆ ˆ

d3xd3y b∗α(x)〈σ(x)σ
∗(y)〉bβ(y),

(22)

which follows trivially from the fact that the current expansion

σ(x) =
∑

α sαbα(x) involves orthogonal basis functions. Al-

though in general the calculation of each matrix element is

given by volume–volume integrals against pairs of basis func-

tions, current fluctuations are spatially uncorrelated in local

media and therefore satisfy2,5,71

〈σi(x, ω)σ
∗
j (y, ω)〉 = Jij(x, ω)δ(x − y) (23)

where the subscripts denote polarization degrees of freedom

and J ≥ 0 is a position-dependent current–current corre-

lation tensor whose form depends on the physical origins of

the fluctuations. It follows that C is Hermitian and positive-

semidefinite and thus admits a Cholesky factorization C =
LCL

∗
C , which we exploit in Sec. III to demonstrate that our

radiation, power, and momentum formulas are susceptible to

fast-trace calculations.

When the sources of fluctuations involve only quantum and

thermal vibrations (heat), the correlation tensor J is deter-

mined by thermodynamic considerations such as the well-

known FDT,71,173 relating current fluctuations to dissipation

in materials. Specifically, the elements of the correlation ten-

sor are given by:173

Jij(x, ω) =
4

π
Imχij(x, ω)Θ(x, ω), (24)

where the Imχ tensor describes losses in the medium and

Θ(x, ω) = ~ω/(e~ω/kBT (x) − 1) is the Planck distribution,

or the average energy of an oscillator with local tempera-

ture T (x). (Note that in defining the local temperature and

FDT above, we are assuming that gradients in the temper-

ature ∇T are small compared to some material-dependent

current–current correlation lengthscale ξ (on the order of the

atomic scale or phonon mean-free path), so that Eq. 24 can be

thought of as the zeroth-order term of an expansion in pow-

ers of ξ|∇T |/T .) Equation 24 in conjunction with the power

transfer and radiation formulas above are exploited below to

evaluate thermal radiation and heat transfer between inhomo-

geneous bodies with spatially varying temperature and dielec-

tric properties, and also in an upcoming paper that focuses on

non-equilibrium Casimir forces.171

In situations involving active media driven by external

pumps, the characteristics of the fluctuating currents (J ) de-

pend on the details of the input drive and physical mechanisms

responsible for emission. For a broad range of processes, the

spectral function can be written in the simple form:

Jij(x, ω) = χinc(x)χemm,ij(x, ω), (25)

where χinc describes the response of the medium due to the

pump and χemm describes the emission spectrum of the ex-

cited medium, which depends on the distribution of active

molecules in the medium and on complicated electronic tran-

sitions involving quantum/thermal processes mediated by the

pump.3 For example, in the case of one-photon fluorescence

from a medium with high quantum yield and excited by in-

cident light, the pump spectrum is proportional to the locally

absorbed power and hence can be computed by direct appli-

cation of the VIE power formulas. Such a relationship in

conjunction with Eq. 21 is exploited below to compute the

fluorescence flux spectrum of an irradiated sphere. A simi-

lar dependence on the local field intensity arises in the case

of Raman scattering, except that χinc is proportional to the

Raman polarizability tensor rather than the susceptibility of

the medium.3 Similar descriptions apply in more complicated

systems, including fluorophores with low quantum yields or

active media subject to highly nonlinear (e.g. two-photon)
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processes. In the case of spontaneous emission from a struc-

ture with gain, the emission spectrum is given by the spatially

dependent effective permittivity and temperature profiles of

the structure, as determined by the steady-state atomic popu-

lations of the system, both of which can be obtained by appli-

cation of steady-state ab-initio laser theory (SALT).5,174

III. FAST TRACE COMPUTATIONS

The matrix-trace formulas derived in the previous sections

require products of inverses of the JM-VIE matrix W with

dense matrices sym (P pG), asym (P p∇G), andGE∗
∞GE

∞. As

mentioned above, due to their large size and correspondingly

severe CPU and memory limitations, it is practically impos-

sible to form explicitly either the Green matrix or its inverse.

There are however fast FFT-based procedures for evaluating

matrix-vector products of the JM-VIE system matrix and the

Green matrix.25 Here we describe a framework based on iter-

ative methods for the fast computation of the associated trace

formulas above.

We begin with the matrix-trace formula Φq→p in the pres-

ence of n bodies (including Bp and Bq), which after some

algebraic manipulations can be written as follows (ignoring

pre-factors):

Φq→p = Tr [CqqW pq∗(symGpp)W pq]

+

n
∑

m=1
m 6=p

Tr [Cqq sym(W pq∗GpmWmq)]

= Sq→p + Cq→p

(26)

where Cqq is the qq block of the matrix C. Due to the dif-

ferent characteristics of Sq→p and Cq→p, we need to address

them separately. As discussed in Sec. II E, the matrix Cqq can

be assumed to be Hermitian and positive semidefinite, hence

it admits a Cholesky factorization,Cqq = LCqqL∗
Cqq . In addi-

tion, symGpp is a Hermitian, negative semidefinite matrix175

and it also admits a low-rank approximation since it is asso-

ciated with the smooth, imaginary part of the Green’s func-

tions. Hence, it can be approximated to any desired accuracy

by a truncated singular value decomposition (SVD) factoriza-

tion, symGpp ≈ −UppSppUpp∗, where Spp ∈ Cr×r, with

r ≪ N . The norm of the error in the aforementioned trunca-

tion is bounded by the norm of the vector of discarded singu-

lar values. The classical SVD algorithm requires the complete

matrix, hence we resort here to a class of modern randomized

matrix approximation techniques, and more specifically to the

randomized SVD method (rSVD).176,177 rSVD is effective for

matrices with fast drop of the singular values and it requires

only a fast matrix-vector procedure, which we have developed

as described above. The matrix with the singular values can be

further decomposed so that Spp = LSppL∗
Spp . Finally, it fol-

lows that the self-term in Eq. 26 can be written as the square

of a Frobenius norm,

Sq→p = −Tr [LCqqL∗
Cqq (W pq∗Upp)LSppL∗

Spp(Upp∗W pq)]

= −‖L∗
Cqq(W pq∗Upp)LSpp‖2F.

(27)

For the most time consuming part of the norm, we need to

solve the adjoint JM-VIE system r times (for each of the lead-

ing singular vectors of symGpp). Note however that we can

solve for each vector of Upp independently and thus the entire

procedure is embarrassingly parallelizable. Also, L∗
Cqq and

LSpp are either sparse or diagonal, while W pq∗Upp is a “tall-

and-skinny” matrix (the number of columns is much smaller

than the number of rows) and hence the matrix product ap-

pearing in the norm can be computed efficiently.

The trace formula for Cq→p is not symmetrical and there-

fore cannot be reduced to a norm. In this case, one can ex-

ploit the fact that Gpm admits a low-rank approximation due

to the smoothing properties of the Green’s function for dis-

joint objects. The final dimensions of the low-rank approx-

imation of Cq→p (for a prescribed accuracy) depend on the

electric distance between objects p and m,178 i.e., Gpm ≈
UpmSpmV pm∗, where Spm ∈ C

l×l, with l ≪ N . The fi-

nal formula for Cq→p after the Cholesky factorization of the

singular values matrix (Spm) is given by

Cq→p = Re

n
∑

m=1
m 6=p

Tr [XUpmX∗
V pm ] (28)

where

XUpm = L∗
Cqq (W pq∗Upm)LSpm

XV pm = L∗
Cqq (Wmq∗V pm)LSpm .

Both XUpm and XV pm are “tall-and-skinny”, and we can not

compute the trace by forming explicitly their product, due to

memory limitations. Alternatively, we can use the standard

vectorization of a matrix vec(), which converts the matrix

into a column vector, together with the identity, Tr [XY ∗] =

vec(X)T · vec(Y ), and write Eq. 28 in the following compu-

tationally friendly form:

Cq→p = Re

n
∑

m=1
m 6=p

vec(XUpm)T · vec(XV pm). (29)

The overall computational complexity for the evaluation of

Cq→p consists of a single run of the Randomized-SVD for a

non-symmetric matrix,176 and 2 × l solves of the adjoint JM-

VIE system. In the case of the matrix-trace formulas for the

force and the torque, the procedure is similar with the one

described above. The only difference stems from the replace-

ment of G with GF and sym with asym .

Finally, the case of far-field radiation is somewhat simpler.

According to Eq. 21, we just need to solve 2 times the adjoint

JM-VIE system, since GE∗
∞ ∈ CN×2. Hence, the radiation

intensity for a specific direction or solid angle Ω, is given by

the following square of the Frobenius norm:

U q→p(Ω) =
k2Z

2(4π)2
‖L∗

C(W
∗GE∗

∞ )‖2F. (30)

This is a very useful formula, especially when directional

information of the radiated power is of interest. In addi-

tion, the total radiated power can be evaluated by integrat-

ing Eq. 30 over all solid angles, as mentioned in Sec. II D,
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which would amount to employing a numerical integration

scheme over the unit sphere (e.g. Lebedev quadrature179). Al-

ternatively, one could exploit Eq. 17 and the associated norm

‖L∗
C(W

∗U)LS‖
2
F to compute the total radiated power from

an isolated body. The latter is expected to be more efficient for

total-radiation computations with prescribed accuracy, con-

trolled by the SVD factorization of the Green matrix, in which

case the minimum number of JM-VIE solves needed for a pre-

scribed accuracy is estimated in advance. In contrast, the for-

mer approach required adaptive quadrature schemes where the

accuracy is controlled by the comparison of results between

different orders of integration, with no a priori control.

IV. VALIDATION AND APPLICATIONS

In this section, we apply the FVC method to obtain new re-

sults in complex geometries. To begin with, we show that

the Green matrices appearing in our trace formulas admit

low-rank decompositions (as discussed in Sec. III) by com-

puting their ranks to within some tolerance in a representa-

tive structure involving two vacuum-separated, homogeneous

cubes. We validate the FVC method by checking its pre-

dictions against known results of thermal radiation and near-

field heat transfer between homogeneous bodies, including

spheres, cubes, and ellipsoids, obtained using a boundary-

element implementation of our recent FSC formulation.26

We show that when subject to temperature gradients or con-

tinuously varying permittivities, complex bodies can exhibit

highly modified thermal radiation and heat transfer spectra,

leading to directional emission at selective wavelengths. Fi-

nally, we demonstrate that the same formalism can be ex-

ploited to study luminescence from excited media by com-

puting the fluorescence spectrum of a sphere irradiated by

monochromatic incident light. We show that the impact of the

resulting inhomogeneous current fluctuations cannot be eas-

ily obtained by exploiting simple homogenization or effective-

medium approximations. For convenience and simplicity, we

consider dielectric media with no material dispersion (con-

stant Re ǫ ≈ 12 and large dissipation Im ǫ ≈ 1), though our

approach is general in that it can readily handle other kinds of

materials such as metals with Re ǫ < 0 and even gain media.

A. Low-rank approximations

Low-rank approximations of the associated (free-space)

Green matrices are instrumental to the practical and effi-

cient evaluation of our trace formulas. In this section, we

present some representative results obtained from computing

the ranks of both symGpp and Gpm, to within some toler-

ance, for the particular problem of two vacuum-separated, ho-

mogeneous cubes of edge-length L = 2R and separated by a

surface–surface distance d, shown schematically in Fig. 5.

Table I shows the singular values of symG11, correspond-

ing to one of the two cubes, as a function of the normalized

frequency ωR/c and tolerance tol; that is, we obtain the sin-

gular values that produce SVD factorizations bounded in norm

Figure 2. Flux spectrum Φ(ω) of a cube of edge-length 2R held at

temperature T , normalized by the corresponding black-body spec-

trum ΦBB(ω) =
A

4π2 (ω/c)
2Θ(ω,T ), for different (a) discretization

mesh densities and (b) rSVD truncation tolerances.

Table I. Ranks of symG11 for various frequencies (ωR
c

) and toler-

ances (tol) in truncated SVD. The ranks correspond to the case of a

cube of edge-length 2R. In addition, results for a sphere of radius R
are included in brackets.

Z
Z
Z
Z

ωR
c

tol
1e−1

1e−2
1e−3

1e−4
1e−5

1e−6

0.01 4 (4) 4 (4) 4 (4) 4 (4) 7 (7) 12 (12)

0.1 4 (4) 4 (4) 7 (7) 12 (12) 12 (12) 14 (12)

1.0 12 (7) 14 (12) 24 (24) 40 (24) 40 (40) 60 (40)

2.0 18 (12) 37 (24) 51 (40) 65 (60) 84 (60) 109 (84)

Table II. Ranks of G12 for various distances (d) and tolerances (tol)

in truncated SVD. The ranks correspond to the case of two cubes

of edge length L = 2R and frequency ωR
c

= 1. Each cube is

discretized into N = 403 voxels, resulting in 3N total degrees of

freedom, i.e., #DOFS = 3N.

b
b
b
b

d/L
tol

1e−1
1e−2

1e−3
1e−4

1e−5
1e−6

0.001 4075 4853 5253 6352 7240 8481

0.01 992 2611 3934 4800 5832 6894

0.1 50 196 447 804 1268 1849

1.0 6 14 27 42 66 89

10.0 4 7 9 14 19 23

by the tolerance tol, also known as a truncated SVD. Since the

associated matrix is very large and our trace formulations can

be cast in terms of fast matrix–vector products, our calcula-

tions exploit the rSVD method recently developed for big-data

problems.176 (Note that results for the second cube, involving

symG22, would be identical since both cubes have equal sizes

and number of unknowns.) Our results reveal at least two im-

portant features: First, the ranks scale linearly with ω at large

frequencies, and sub-linearly (roughly constant) at small fre-

quencies. Additional numerical experiments (not shown) con-

firm that the effect of mesh density on the ranks is negligible,

yet another manifestation of the favourable convergence prop-
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erties of the JM-VIE formulation.25 This also suggests a strat-

egy for obtaining the finite rank of symGpp with prescribed

accuracy: we begin by computing the rank of the operator for

a prescribed accuracy by using a coarse mesh and then run a

fixed-rank rSVD algorithm with finer mesh. Finally, Fig. 2

illustrates the rate of convergence of the radiation spectrum

Φ(ω) from an isolated cube at a fixed temperature T with

respect to different (a) discretization mesh densities and (b)

truncation tolerance, normalized to the spectrum of a corre-

sponding black body ΦBB(ω) = A
4π2 (ω/c)

2Θ(ω, T ), where

A denotes the surface area of the cube.

The situation changes in the case of the “coupling” Green

matrix G12, which encodes interactions between objects. Ta-

ble II shows the significant singular values associated with the

coupling matrix of the same cube–cube geometry at a fixed

frequency ω and for various separations d, obtained by lever-

aging the rSVD technique. As expected, the singular values

increase as d decreases, a consequence of the power-law drop-

off of the Green’s function with separation in the near field. It

follows that the computation complexity of the trace formu-

las increases as the two bodies come close together. (Note

that, as described in Sec. III, our trace formulas for power and

momentum transfer require us to solve two VIE systems for

every corresponding eigenvector, but fortunately each system

can be solved independently and the overall process is em-

barrassingly parallelizable.) Nevertheless, we find that G12

remains very low rank even for relatively close separations

d/L ≈ 0.1, below which constraints on the resolution make

the FVC approach less practical. However, it is precisely at

such small separations that approximate methods such as the

proximity approximation become accurate.41

B. Thermal radiation and heat transfer

We begin by validating our FVC approach by checking

its predictions of thermal radiation from homogeneous bod-

ies against results obtained using our recently developed FSC

formulation,26,27 which is well-suited for handling piece-wise

constant structures and fluctuations statistics. Figure 3(a)

shows the flux spectra Φ(ω) of multiple objects (of uniform

temperature T and permittivity ǫ = 12+ i, including a sphere

of radius R (blue line), a cube of edge-length 2R (green line),

and an prolate ellipsoid of long semi-axis R and short semi-

axes R
2 (red line). Note that in each case Φ(ω) is normalized

to the corresponding flux from a black body. As shown, there

is excellent agreement between the FVC (solid lines) and FSC

(circles) predictions, both of which illustrate the expected ra-

diation enhancement at geometric resonances.

The FVC method can also handle more complex structures,

including inhomogeneous bodies with spatially varying per-

mittivities. In particular, Fig. 3(b) shows Φ(ω) for the same

geometries of Fig. 3(a) but for objects with linearly varying

permittivity profiles ǫ(z) = ǫ−R + (ǫR − ǫ−R)
|z+R|
2R , with

ǫ−R = 2+i and ǫR = 12+i (solid lines) and axes chosen to lie

at the geometric center of each object. Compared to the spec-

trum of the homogeneous bodies of Fig. 3(a), one finds that

the resonances are shifted to larger frequencies and their peak

0 0.5 1 1.5 2
frequency ω (R/c)(a)

0

0.5

1

1.5

2

Φ
/Φ

B
B

1

0.65

Sphere

Cube

Ellipsoid

2.5

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2
0

Φ
/Φ

B
B

Sphere

Ellipsoid

1

0.8

frequency ω (R/c)

z

y

x

(b)

Cube

Figure 3. Flux spectrum Φ(ω) normalized by the corresponding

black-body spectrum ΦBB(ω) = A
4π2 (ω/c)

2Θ(ω,T ) of different

bodies of surface area A held at temperature T = 1000 K, including

a sphere of radius R (blue lines), cube of edge-length 2R (green line),

and ellipsoid of long semi-axis R and short semi-axis R
2

(red line).

The objects have either (a) uniform permittivities ǫ = 12 + i or (b)

spatially varying ǫ(z) = ǫ−R+(ǫR− ǫ−R)
|z+R|
2R

, with ǫR = 12+ i
and ǫ−R = 2 + i. For comparison, we also plot the radiation spec-

trum Φeff (dashed lines) of corresponding bodies with homogeneous

effective permittivities ǫeff = 7 + i. The insets depict the angular

distribution of far-field radiation U(Ω), normalized by the maximum

intensity over all directions maxΩ U , at selected frequencies.

amplitudes are significantly smaller, a consequence of the de-

creased effective permittivity of each object. For comparison,

we also show Φeff(ω) (dashed lines) from corresponding ho-

mogeneous objects with effective permittivities,

ǫeff =
1

V

ˆ

V

d3x ǫ(x), (31)

corresponding to uniform ǫeff = 7 + i. Our calculations re-

veal that in the illustrated frequency range and for our choice

of dielectric profiles, the homogeneous approximation is qual-

itatively accurate to within 10%. On the other hand, employ-

ing Eq. 21 to compute the angular radiation patterns at se-

lected frequencies, shown as insets in Fig. 3, reveals signif-

icant changes, e.g. significantly larger directional emission,
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that cannot be captured by the effective-medium approxima-

tion. In particular, the radiation patterns of the inhomoge-

neous objects break ẑ mirror symmetry. For example, the

flux from the cube at ω ≈ 0.65R/c is slightly larger in the

+ẑ than in the −ẑ direction, a situation that is reversed at

larger ω ≈ 0.9R/c (see insets). This can be explained as aris-

ing from near-field effects: at large wavelengths, the high-ε
regions redirect radiation through the near-field coupling of

dipoles in the low-ε regions [refs], leading to increased radi-

ation along the +ẑ direction, whereas at larger wavelengths

where ray-optial effects dominate, light is increasingly re-

flected from high to low ε regions. Generally, the transition

frequency of the favored radiation direction depends not only

on the wavelength but also shape of the objects, e.g. even at a

frequency as large as ω ≈ 1.5R/c, the ellipsoid continues to

radiate more along the +ẑ direction.

More pronounced changes arise when objects are subject to

spatial temperature gradients. Figure 4 shows Φ(ω) from ho-

mogeneous (ǫ = 12+i) ellipsoids subject to either (a) radially

varying T (r) = T0 + (TR − T0)
r
R or (b) z-varying tempera-

ture profiles (see caption). In both cases, Φ is normalized by

the flux Φeff obtained from a naive approximation in which

the temperature variations are removed in favor of a uniform

effective temperature Teff determined by a simple average of

the Planck distribution over the volume V of the bodies,

Θ(ω, Teff) =
1

V

ˆ

V

d3xΘ(ω, T (x)). (32)

Such a simple approximation obviates the need for exact cal-

culations that explicitly incorporate inhomogeneities, but is

clearly inadequate for wavelength-scale objects. Specifically,

Fig. 4(a) shows Φ(ω) from spheres with radially varying tem-

peratures, illustrating that beyond the sub-wavelength regime

ω ≪ R/c and depending on the choice of T0 and TR, Φ
can be many times larger or smaller than that predicted by

Eq. 32, varying dramatically as a function of ω. The failure

of this naive approximation is especially apparent near Mie

resonances, in which case the coupling of fluctuating sources

(dipoles) to far-field radiation (the local density of states in

the absence of dissipation) is highly position-dependent. The

insets of Fig. 4(a) show cross-sections of the spatially varying

flux contribution from dipoles in the interior of the sphere at

two relatively close frequencies. At ωR/c ≈ 1.1, we find that

dipoles closer to the center can couple more efficiently to far-

field radiation than those near the edges, causing Eq. 32 to un-

derrestimate the flux (Φ/Φeff ≈ 3) in the case T0 = 1000 K,

TR = 0 (green line) and to overestimate it (Φ/Φeff ≈ 0.8)

when T0 = 0, TR = 1000 K (blue line). The converse is

true at ωR/c ≈ 0.85, in which case their coupling to radi-

ation is largest at the center and edges of the sphere. In the

long wavelength regime (ω → 0), the EM fields are approxi-

mately uniformly distributed throughout the sphere and Eq. 32

becomes increasingly accurate. Similar effects arise in situ-

ations involving z-varying temperature profiles, explored in

Fig. 4(b) for either spheres (blue line) or ellipsoids with either

their long-axes (green line) or short-axes (red line) aligned

with the ẑ direction. For instance, ellipsoids can exhibit highly

directional emission (almost a factor of 3 times larger) along

1
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Figure 4. Flux spectrum Φ(ω) of various bodies normalized by

the corresponding predictions of a simple approximation Φeff , de-

fined in Eq. 32, including (a) sphere of radius R and radially vary-

ing temperature profile T (r) = T0 + (TR − T0)
r
R

for both T0 =
0, TR = 1000 K (blue line) and T0 = 1000, TR = 0 (green

line), and (b) sphere of radius R (blue line) or ellipsoids with short

semi-axes R
2

and long semi-axis R along the ẑ (green line) or x̂
(red line) directions, subject to vertically varying temperature pro-

files T (z) = T−L + (TL − T−L)
|z+L/2|

L
, where L denotes the

z-dimension of the corresponding body. In all cases, objects have

uniform permittivity ǫ = 12 + i and are subject to temperature gra-

dients T−L = 0 and TL = 1000 K. The insets in (a) show the cross-

sections of the spatially varying flux contribution from dipoles in the

sphere at different frequencies while those in (b) show the angular

distribution of far-field radiation U(Ω) normalized by maxΩ U .

the direction of decreasing temperature. For metallic objects,

similar effects should arise in which case the dominant radi-

ation regions are determined by both skin-depth and surface-

wave effects [refs].

In addition to far-field radiation, the FVC method can be

employed to obtain radiative transfer between objects. Fig-

ure 5 shows the heat-transfer spectrum Φ(ω) (computed via

Eq. 16) normalized by ΦBB(ω) (same as above), between

two vacuum-separated cubes of edge-length 2R and surface–

surface separation d = R, of either uniform (dashed lines) or

vertically varying (solid lines) permittivities. We consider di-

electric profiles of the form ǫ(zi) = ǫ−R + (ǫR − ǫ−R)
|zi+R|
2R
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�� �

�� �

Figure 5. Heat-transfer spectrum Φ(ω), normalized by the corre-

sponding black-body spectrum ΦBB(ω) =
A

4π2 (ω/c)
2Θ(ω,T ), be-

tween two cubes of edge-length 2R and temperature T = 1000 K

separated by surface–surface distance d = R. The cubes are as-

sumed to have either uniform permittivities ǫ = 2 + i (red dashed

line), ǫ = ǫeff = 7 + i (black dashed line), or ǫ = 12 + i (blue

dashed line), or vertically varying permittivities ǫ(zi) = ǫ−R+(ǫR−

ǫ−R)
|zi+R|

2R
defined with respect to the local axis x1,2 at the center of

each cube (shown on the inset), chosen so that the system has mirror

symmetry about the x–y plane intersecting the origin O. The gradi-

ents are either increasing (black solid line) or decreasing (green solid

line) toward or away from the center, corresponding to the choice of

ǫR,−R = {12 + i, 2 + i} or ǫR ↔ ǫ−R, respectively.

defined with respect to the local axis located at the center

of each cube x1,2, chosen so that the entire system has mir-

ror symmetry about the origin (see inset). We consider two

different profiles, ǫ−R,R = {2 + i, 12 + i} (black line) or

ǫR ↔ ǫ−R (green line), corresponding to increasing gradi-

ents toward or away from the origin. For comparison, we

also plot the transfer between cubes of uniform permittivities

ǫ = 2+i (red dashed line), ǫ = 12+i (green dashed line), and

ǫ = ǫeff = 1
V

´

V d
3x ǫ(z), corresponding to the minimum,

maximum, or average of the spatially varying permittivities,

respectively. As shown, depending on the wavelength regime

(near versus far field) inhomogeneities can have a different ef-

fect on the heat transer. For instance, at low ωR/c≪ 1 where

near-field effects prevail, homogeneous bodies with smaller

dielectric constants tend to transfer more heat—the same de-

pendence is observed for planar objects separated by vacuum,

where the near-field contribution ∼ ( Im ǫ
|ǫ+1|2 )

2.13 Not surpris-

ingly, because nearby dipoles tend to contribute more flux

than far-away dipoles, one observes that despite having the

same average permittivities ǫeff (dashed blue line), the transfer

is sensitive to the local dielectric variation, exhibiting larger

enhancement in the case where the permittivity is increasing

away (green solid line) rather than toward (black solid line)

the origin. At larger ωR/c & 0.5, one observes the oppo-

site behavior, in which case the largest transfer is obtained for

increasing permittivities toward the origin.

Figure 6. Far-field fluorescence spectrum Φ(ω) (in arbitrary units)

of a homogeneous and non-dispersive dielectric sphere of radius R
and permittivity ǫ = 12 + i excited by an x̂-polarized planewave

propagating along the ẑ direction with frequency ωincR/c = 1.58.

The absorbed power χinc(x) inside the sphere, obtained by solving a

single scattering problem as described in Ref. 25, is shown in the top

contour plots along three sphere cross-sections. Φ is computed ex-

actly (blue line) or via a homogeneous approximation Φeff in which

the absorbed power is taken to be uniformly distributed inside the

sphere and given by χeff =
´

V
d3xχinc(x) (red line). The ratio of

the two is plotted as the black dashed line on the right axis. The insets

depict the angular distribution of fluorescence emission, normalized

by the maximum intensity over all directions, at selected frequencies.

C. Fluorescence

We now consider application of the FVC formulas to the

calculation of fluorescence. A typical fluorescence setup con-

sists of an incident wave impinging on a fluorescent body,

leading to the absorption and subsequent re-emission of light

by molecules inside the body.3 Both of these effects are cap-

tured by the current–current correlation matrix described in

Sec. II E, which encodes the spectral properties of the fluctu-

ations. In the particular problem of one-photon fluorescence

induced by an incident monochromatic wave at a given fre-

quency ωinc, the spectral function J (x, ω) has the form given

in Eq. 25, with the excitation spectrum given by the locally

absorbed power,

χinc(x) ∝ ωinc Imχ|E(x, ωinc)|
2, (33)

and χemm(x, ω) denoting the fluorescence spectrum of the

bulk medium, usually a relatively broad Lorentzian lineshape

centered near the material’s absorption resonance. (Note that

χinc = 0 in the absence of a fluorescent medium.) A well-

known approach to enhance fluorescence involves design-

ing bodies to have strong resonances at ωinc, leading to in-

creased absorption.3 For bodies designed to have additional
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resonances within the fluorescence bandwidth, determined by

χemm, there is an additional source of enhancement arising

from the increased local density of states, or increased cou-

pling of dipole emitters to far-field radiation. Inhomogeneities

arise due to the fact that χinc and the local density of states are

both highly spatially non-uniform near resonances.

Figure 6 shows the fluorescence emission Φ(ω) from a

sphere of radius R and uniform permittivity ǫ = 12 + i, ir-

radiated by an x-polarized, z-traveling incident wave of fre-

quency ωincR/c ≈ 1.58, chosen to coincide with one of its

resonances. For simplicity, we assume a non-dispersive and

uniformly distributed fluorescent medium with χemm = 1, al-

though as noted above our formalism can just as easily handle

spatially varying distributions. The first step in computing the

fluorescence emission is to obtain the locally absorbed power

within the sphere χinc(x), which boils down to the calcula-

tion of a single and far simpler scattering problem exploiting

Eq. 12, as described in Ref. 157. Along with Φ (blue line),

Fig. 6 shows χinc along three different cross-sections inter-

secting the center of the sphere (top contour plots), illustrat-

ing the highly non-uniform spatial pattern of current fluctu-

ations. Also shown is the spectrum Φeff obtained by appli-

cation of a homogeneous approximation (red line) where the

absorbed power is averaged over the volume of the sphere to

yield a uniform, effective χeff =
´

V
d3xχinc(x), along with

the corresponding ratio Φ/Φeff (black line). As before, such

approximations yield accurate results in the sub-wavelength

regime but break down at larger frequencies. For instance, at

ωR/c ≈ 1 we find that Φ/Φeff ≈ 1.5. More importantly,

the approximation fails to capture the angular distribution of

radiation (insets): both the direction of largest fluorescence

and overall emission pattern change drastically as the emis-

sion frequency increases from ωR/c ≈ 1.1 to ωR/c ≈ 1.3.

V. CONCLUDING REMARKS

Our FVC formulation of EM fluctuations enables accurate

calculations of wide-ranging incandescence (e.g. thermal ra-

diation, dispersion forces, heat transfer) and luminescence

(e.g. spontaneous emission, fluorescence, Raman scattering)

phenomena in arbitrary geometries. Similar to recently pro-

posed scattering-matrix and surface-integral equation formu-

lations of radiative heat transfer, the calculation of physical

observables requires traces of matrices describing interactions

among basis functions. However, because JM-VIE “scatter-

ing” unknowns are volume currents rather than propagating

waves or surface currents, this formalism is applicable to a

broader set of problems. As illustrated above, this approach

captures phenomena associated with the presence material in-

homogeneities, including spatially varying temperature gradi-

ents and dielectric properties within bodies. In future work,

we will apply our FVC method to investigate radiative emis-

sion in a variety of unexplored settings, demonstrating predic-

tions of unusual effects, including highly directional radiation

from heterogeneous structures subject to thermal gradients,109

non-equilibrium Casimir torques between chiral particles,171

and enhanced, directional emission from gain–composite me-

dia.180 Although our calculations focused on geometries in-

volving compact bodies, the same power and momentum for-

mulas derived above apply to geometries involving extended

bodies, the subject of future work. Finally, we note that the

results above were obtained using an in-house, open-source,

and freely available software package.181
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