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We study the isotope effect on the temperature of the proton order/disorder phase transition
between ice XI and ice Ih, using the quasi-harmonic approximation combined with ab initio density
functional theory calculations. We show that this method is accurate enough to obtain a phase
transition temperature difference between light ice (H2O) and heavy ice (D2O) of 6 K as compared
to the experimental value of 4 K. More importantly, we are able to explain the origin of the isotope
effect on the much debated large temperature difference observed in the phase transition. The source
of the difference is directly linked to the physics behind the anomalous isotope effect on the volume
of hexagonal ice that was recently explained in [Phys. Rev. Lett. 108, 193003 (2012)]. These
results indicate that the same physics might be behind the isotope effects in transition temperatures
between other ice phases.

I. INTRODUCTION

The polymorphism of ice is revealed by its rich phase
diagram1,2. The availability of different proton configu-
rations that satisfy Bernal-Fowler “ice-rules”3 adds an-
other dimension to this phase diagram, given that the
same crystalline structure could exist in proton ordered
and disordered form. This leads to additional phases,
separated by their corresponding order/disorder phase
transitions, as in the case of ice XI/ice Ih, ice IX/ice III,
and ice VIII/ice VII2.
In this paper we focus on the phase transition be-

tween proton ordered (ice XI) and proton disordered (ice
Ih) hexagonal ice. This phase transition has been sub-
ject of a large number of experimental4–8 and theoretical
studies9–21. However, open questions remain about the
mechanisms behind the phase transition and the impor-
tance of nuclear quantum effects in the temperature of
the transition22.
Experimentally, it is difficult to observe the phase tran-

sition from ice Ih to ice XI. A glass transition occurs
at around 100-110 K7,8, diminishing the proton mobility
and locking protons in their disordered positions, before
they orient to form the proton ordered ice XI structure.
This is overcome by catalyzing ice Ih by KOH4–6, which
allows the lattice parameters of both proton ordered ice
XI23–28 and disordered ice Ih26,29,30 to be experimen-
tally measured. The order/disorder phase transition is
achieved at 72 K for light4 and 76 K for heavy ice6. Al-
though the isotope effect on the phase transition temper-
ature is measured to be 4 K, a theoretical explanation for
this difference is still missing. Ref. 31 and 32 associated
the origin of the isotope effect on the transition temper-
ature to the difference in vibrational energies between
the two phases estimating a ∼ 27 K isotope effect on
the transition temperature, while Ref. 6 sought the ex-
planation in the difference in reorientation of the dipole
moments of heavy and light ices and predicted a much

smaller ∼ 1 K isotope effect. However, in both of these
studies they assume no isotope effect on the volume of
the two ices and they also did not take into account the
competing anharmonicities between the intra-molecular
covalent bonds and the inter-molecular hydrogen bonds.
In this work, we reexamine the issue taking into account
these two additional effects, extending a previous work
on the anomalies in the isotope effect on the volume of
ice33.

A large literature is devoted to the study of the or-
der/disorder phase transition in hexagonal ice. Two main
questions are discussed, (i) the ordering nature in the low
temperature phase, and (ii) theory and simulation predic-
tions for the phase transition temperature. Experiments
such as neutron diffraction26–28, as well as measurements
performed under an electric field25 indicate that the or-
dered phase has ferroelectric order. However, among the-
ory and simulation works there is a large dispersion of
results and lack of agreement9–21. The predicted low T
stable phase depends strongly on the choice of bound-
ary conditions, electrostatic multipoles, and treatment of
long range interactions.9–15. In addition, semi-empirical
force field models fitted to reproduce experimental data
are not accurate enough to distinguish small energy dif-
ferences between different proton orderings.

According to Ref. 9, the TIP4P-FQ34 model pre-
dicts the proton disordered phase to be stable, in agree-
ment with Ref. 15 where other less known models were
studied. On the other hand popular water models like
SPC/E35, TIP4P36, TIP5P-E37 and NvdE13 models pre-
dict the proton ordered phases to be more stable in the
low temperature limit. Among these studies, only the
NvdE13 model predicts the ferroelectric-ordered phase as
the lowest energy phase, in agreement with experiments,
while the other three models predict the stable phase to
be antiferroelectric-ordered. In this same study, it was
also shown that modifying the polarizability of the KW-
pol model was enough to favor ferroelectric ordering over
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disordered configurations at low T15. Therefore polar-
izability is an important factor in obtaining the correct
potential energy surface.
The effect of proton disorder on the hexagonal ice

structure has also been studied using ab initio density
functional theory (DFT). DFT calculations correctly re-
produce the lattice structure16, and give the cohesive en-
ergy of ferroelectric-ordered ice to be larger than either
antiferroelectric-ordered or disordered ices17,18. That is,
ferroelectric-ordered ice is the stable ground state. A
recent DFT study of ice slabs shows that contrary to
the bulk case, the antiferroelectric-ordered ice is more
stable in the case of thin films38. DFT-based simula-
tions have also been used to predict the phase transition
temperature. A Monte Carlo study, where DFT calcu-
lations of hydrogen bond configuration energies are used
to parametrize a model to perform Monte Carlo simula-
tions, predicted ice XI as the most stable phase, with
a transition temperature of 98 K.19,20 Another recent
DFT-based Monte Carlo study of dielectric properties
of ice, predicted the temperature of the order-disorder
phase transition to be around 70-80 K21. The advan-
tage of DFT-based Monte Carlo simulations is that they
can explore the configurational entropy of the free en-
ergy surface in good detail. However, none of these cal-
culations include zero point nuclear quantum effects, or
thereby investigate the transition temperature difference
between different isotopes. Our goal is to investigate the
order/disorder transition from ferroelectric-ordered ice or
antiferroelectric-ordered ice to disordered ice, with differ-
ent isotopic compositions, from an ab initio perspective,
including nuclear quantum effects.
In our study we will also compare a polarizable force

field model, TTM3-F39 to DFT calculations for the pre-
diction of the most stable phase at low temperatures in-
cluding zero point corrections.

II. THEORY

In a recent study, we explained the anomalous isotope
effect on the volume of ice29,30,33, by obtaining the free
energy with ab initio DFT within the quasi-harmonic
approximation. We have shown that the anticorrelation
between the intra-molecular OH covalent bonds and the
inter-molecular hydrogen bonds makes the volume per
molecule of D2O ice larger than that of H2O ice33.
In this work, we extend our study of nuclear quan-

tum effects to analyze the contribution to the or-
der/disorder phase transition using both ab initio

DFT functionals and the TTM3-F39 force field model.
We investigate both ferroelectric-ordered/disordered and
antiferroelectric-ordered/disordered phase transitions.
In addition, we analyze the importance of van der
Waals forces, by comparing a generalized gradient ap-
proximated functional, PBE,40 to a van der Waals
functional41,42, vdW-DFPBE . We obtain the tempera-
ture dependence of the free energy for both ice phases us-

ing the quasi-harmonic approximation, and we compare
the phase transition temperature of different isotopes.

A. Free Energy within Quasi-harmonic
Approximation

To account for nuclear quantum effects, quantum har-
monic eigenstates are needed as a function of volume V ,
at volumes near V0, the “frozen lattice” zero pressure
volume that minimizes the Born-Oppenheimer energy,
E0(V ). To lowest order in a Taylor series around V0,
we have

E0(V ) = E0(V0) +
B0

2V0
(V − V0)

2 (1)

and

ωk(V ) = ω(V0)

(

1− γk
V − V0

V0

)

. (2)

B0 is the dominant part of the bulk modulus, omitting
vibrational corrections which will be discussed in a later
paper. The “mode Grüneisen parameters” γk are defined
as

γk = −
∂(lnωk)

∂(lnV )
= −

V

ωk

∂ωk

∂V
. (3)

The phonon frequencies, ωk are calculated at three differ-
ent volumes. The volume dependence of ωk(V ) is calcu-
lated to the linear order. Then the Helmholtz free energy
F (V, T ) 43of independent harmonic oscillators acquires a
volume-dependence through ωk(V ),

F (V, T ) = E0(V ) +
∑

k

[

~ωk(V )

2
+ kBT ln

(

1− e−~ωk(V )/kBT
)

]

−TSH (4)

The index k runs over both phonon branches and phonon
wave vectors within the Brillouin zone. This “quasi har-
monic” approximation is correct to first order for volume
derivatives like P = −(∂F/∂V )T . Higher volume deriva-
tives, such as B(T ), in general may require higher vol-
ume derivatives of E0 and ωk. As shown in our recent
contributions33,44, the first derivative in eq. 2 is a good
approximation for hexagonal ice. The temperature de-
pendence of volume VFmin

(T ) is then found in the usual
way by minimizing F (V, T ) at fixed T , the same as set-
ting P (T ) = 0.
The last part of the free energy, SH , is the entropy

of the proton disorder. This term is zero for proton-
ordered ice phases. For the proton-disordered phase, ice
Ih, we use the estimation by Pauling, SH = NkB ln(3/2),
which was obtained by counting hydrogen orientations
that obey the ice rules45, and experimentally confirmed
for fully disordered cases46,47. We assume that this term
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does not change with temperature.
Lastly, the classical limit of the free energy is obtained

by taking the high temperature limit of the QHA:

F (V, T ) = E0(V ) +
∑

k

[

kBT ln

(

~ωk(V (T ))

kBT

)]

− TSH . (5)

B. Cohesive Energy

To determine which structure is the most stable one
at zero temperature, cohesive energies of ices are calcu-
lated without (E0

c ) and with (Ec) zero point effects. The
cohesive energy is defined as the amount the energy of a
molecule is lowered in a crystal relative to in vacuum:

E0
c =

Eice
0

Nmolecules
− Emonomer

0 (6)

Ec =
F ice(VFmin

, 0)

Nmolecules
− Emonomer

0 − Emonomer
vib , (7)

where the vibrational energy
∑

k ~ωk/2 of the three
modes of the monomer is Emonomer

vib . The classical cohe-
sive energy, E0

c is defined in eq. 6 using the Kohn-Sham
energies of the ice and monomer; and similarly, the quan-
tum cohesive energy with zero point effects, Ec is defined
as eq. 7.

III. SIMULATION DETAILS

A. System Description

In order to predict the most stable phase of hexago-
nal ice in the zero temperature limit, we performed total
energy calculations of three hexagonal ices with different
proton configurations. (i) Ice XI. This is the ferroelectric-
proton-ordered ice. Oxygen atoms are constrained to the
hexagonal wurtzite lattice and hydrogen atoms are or-
dered such that ice XI has a net dipole moment along
the ĉ axis, shown in Fig. 1. Precise measurements of lat-
tice structure of ice XI have shown ferroelectric ordering,
with a net dipole moment along the ĉ-axis.23–28 There
are 4 molecules per formula unit. However, TTM3-F cal-
culations were performed for a 3a× 2

√
3a× 2c supercell

with 96 molecules, with the same cell size as disordered
ice Ih.
(ii) Ice aXI. We label the antiferroelectric-proton-

ordered ice as ice aXI. Ice aXI has 8 molecules in the
unit cell. The unit cell is doubled from the ferroelectric
proton-ordered ice XI along the x-y plane, with dipole
moments of the neighboring molecules pointing in oppo-
site directions such that the system has no net dipole
moment, as shown in Fig. 2. Similarly, we have used a

FIG. 1. Unit cell of the ferroelectric proton-ordered ice XI
structure. The 4 molecules in the unit cell are labeled with a
star symbol next to it, and a, and c lattice vectors are shown.
The image on the left is the side view of the x-z plane; the
image on the right is the top view of the x-y plane.

unit cell of 8 molecules for the DFT, and 96 molecules
for the TTM3-F calculations.

FIG. 2. Antiferroelectric proton-ordered ice aXI structure.
The 8 molecules in the unit cell are labeled with a star symbol
next to it, and a, b, and c lattice vectors are shown. The image
on the left is the side view of the x-z plane; the image on the
right is the top view of the x-y plane.

FIG. 3. Proton-disordered ice Ih structure. The image on the
left is the side view of the x-z plane; the image on the right
is the top view of the x-y plane.

(iii) Ice Ih. Experimentally, the lattice structure of
light(H2O) and heavy(D2O) proton-disordered hexago-
nal ice Ih have been measured using both syncrotron
radiation29,30 and neutron diffraction26, with good agree-
ment. Oxygen atoms still have an underlying hexagonal
lattice, while hydrogen atoms are disordered such that it
has no net dipole moment. An example of this system
is shown in Fig. 3. To accommodate different proton-
disordered configurations in ice Ih, we have used a large
cell of 96 molecules with dimension 3a×2

√
3a×2c in our

DFT calculations.
We have computed five different 96 molecule configura-

tions of ice Ih using the TTM3-F model. They are gener-
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ated with an algorithm that goes over all possible allowed
proton configurations and produces structures with no
net dipole moment15.

B. Simulation Procedure

We used siesta code48,49 to perform DFT calculations
within the generalized gradient approximation (GGA) to
the exchange and correlation (XC) functional. The cal-
culations use PBE and vdW-DFPBE functionals,40–42 to
compare non-local van der Waals effects with semi-local
GGA approximations. These density functionals have
previously been shown to give good results for volume
calculations of hexagonal ice Ih.33

Full structural relaxations for calculating the E0(V )
curve are performed with tζ+p basis. For these relax-
ations, we have used a real-space mesh cut-off of 500 Ry
for the integrals, electronic k-grid cut-off of 10 Å (corre-
sponding to 38 k-points) for unit cell calculations of ice
Ih, force tolerance of 0.001 eV/Å , and a density matrix
tolerance of 10−5 electrons. Instead of doing a variable
cell optimization, we calculate the energy of the relaxed
structure at a fixed volume for each lattice parameter.
Even though results with the tζ+p basis are accurate

enough to obtain general structural properties33, for pre-
cise order-disorder free energy values, the energy must be
very well converged. Recently, a systematic method to
obtain the finite-range atomic basis sets for liquid water
and ice has been proposed50. We use the quadruple-ζ
double polarized (qζ+dp) basis obtained with the new
proposed framework. We calculate the energy of the
structures again, with the qζ+dp basis, without relax-
ation.
For the tζ+p basis, the error compared to the qζ+dp

basis is −0.23% in lattice constant a, −0.28% in c, and
−0.71% in the total volume. The change in the energy,
E0(V0) from tζ+p basis to the qζ+dp basis without re-
laxation is 948.6 meV. Further relaxing the structures
with the qζ+dp basis does not change the lattice param-
eters, and changes the energy only by 1.3 meV. Details of
this calculation and the lattice parameters with qζ+dp
basis are given in the Supplementary Information (SI).
For the free energy calculations which include the nu-

clear quantum effects, the vibrational modes are calcu-
lated using the frozen phonon approximation. All the
force constant calculations are performed with the tζ+p
basis. There are two reasons for this: the tζ+p basis gives
a good first approximation to the configurational infor-
mation, and the qζ+dp basis is costly in computer time.
In addition, the largest error in the free energy calcula-
tions comes from the initial E0(V ) contribution, which we
reduce significantly as explained above. The error in the
zero point energy contribution is much smaller than the
electronic energy error. The force constant calculations
of proton-ordered ice XI structure use a finer real-space
mesh cut-off of 800 Ry and an atomic displacement of
∆x = 0.06 Å. Similarly, the force constant calculations

of proton disordered ice Ih use a real-space mesh cut-
off of 500 Ry and an atomic displacement of ∆x = 0.08
Å for the frozen phonon calculations. The acoustic sum
rule has been used throughout the study.
The phonon frequencies, ωk(V0) and Grüneisen param-

eters γk(V0) are obtained by diagonalizing the dynamical
matrix, computed by finite differences from the atomic
forces in a (3 × 3 × 3) supercell, at volumes slightly be-
low and above V0. We tested these parameters to ob-
tain force constants in phonon calculations, so that the
Grüneisen parameter calculations have minimum noise33.
The Grüneisen parameters are calculated for 3 volumes
corresponding to isotropic expansion and compression
around the minimum. In order to cover the full Brillouin
zone of ice XI and ice aXI, 729 k-points are selected, di-
viding each reciprocal lattice vector into 9 equal sections.

IV. RESULTS

A. Order-Disorder Phase Transition

To understand the phase transition between proton-
disordered and proton-ordered ice, we calculated the co-
hesive energy from eqs. 6, 7. The cohesive energy in-
cluding the zero-point nuclear quantum effects are also
presented in Table I. The results from different proton-
disordered configurations using the TTM3-F model all lie
within ±0.22 meV of each other, as indicated in the first
line of Table I. The change in the cohesive energy due
to the residual entropy of hydrogen disorder is on the
order of 0.22 meV, which means that our quantitative
prediction of the most stable phase is within this range.
Both DFT functionals predict stability to decrease in

the order ice XI → ice aXI → ice Ih. This agrees with
the experiments that the structure of the ordered phase
is ferroelectric. On the other hand, TTM3-F predicts
the stability order to be the reverse, ice Ih → ice aXI
→ ice XI, giving the wrong ground state and no phase
transition. Furthermore, considering the error in the co-
hesive energy, it is impossible to predict the correct sta-
ble phase at the zero temperature limit with this model.
The phase transition can only be obtained with the DFT
calculations.
In order to analyze the proton order-to-disorder phase

transition temperature, we study the Helmholtz Free en-
ergy at zero pressure. We evaluate the volume depen-
dence of free energy, F(V) at fixed temperature and find
the value of free energy minimum, F (VFmin

(T )). There-
fore, we obtain a temperature dependence of free energy,
by evaluating free energy minimum for each temperature,
F (VFmin

(T )), using eq. 5 or 4.
In the classical limit of the free energy, without con-

sidering nuclear quantum effects, as given in eq. 5, DFT
predicts a phase transition, regardless of the chosen func-
tional. In addition, both semi-local PBE and non-local
vdW-DFPBE functionals overestimate the phase transi-
tion temperature, when nuclear quantum effects are not
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TABLE I. Classical (E0
c) and quantum (Ec ) cohesive energies, in meV. Quantum values include zero point effects.

FF/XC Ice E0
c H2O D2O H2

18O

TTM3-F Ih 601.07±0.22 521.17±0.22 536.24±0.22 522.87±0.23

TTM3-F aXI 600.30 520.33 535.41 522.04

TTM3-F XI 599.71 520.11 535.11 521.81

PBE Ih 620.44 502.07 526.70 504.15

PBE aXI 626.21 507.17 531.95 509.25

PBE XI 629.06 509.02 534.07 511.11

vdW-DFPBE Ih 723.94 601.64 627.65 603.64

vdW-DFPBE aXI 725.53 602.58 628.80 604.57

vdW-DFPBE XI 728.75 605.18 631.52 607.18

included in the calculations. On the other hand, the
TTM3-F force field model does not correctly predict the
stable phase in the low temperature limit, and the dif-
ference between the free energies of the two phases in-
creases with temperature. Therefore, it does not show
a phase transition. We present the full temperature de-
pendence of classical free energy in the SI. To understand
how each component of eq. 5 contributes to the total free
energy, we also present the temperature dependence of
E0(VFmin

(T )), and −TS terms separately in the SI.
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FIG. 4. Relative free energy per molecule including the quan-
tum zero point effects as a function of temperature. The
lines show DFT results with vdW-DFPBE functional and the
dashed lines are the results with the TTM3-F model. DFT
correctly predicts the most stable phase as ice XI for low tem-
peratures, with an energy difference of ∼ 4.5 meV. For low
temperatures, the TTM3-F model predicts ice Ih as the stable
phase with ∼ 1 meV energy difference at zero temperature;
and a separation of energy at higher temperatures, making
the prediction correct for high temperatures only. The re-
sults of the TTM3-F model for ice XI and ice aXI represented
by black and red dashed lines respectively are almost indis-
tinguishable in this scale.

B. Isotope Effects in the Transition Temperature

Going further, the nuclear zero point effects are cal-
culated to compare the predicted phase transition tem-
perature to the experiments. Fig. 4 shows the tempera-
ture dependence of the free energy with zero point effects
for H2O. At all temperatures, TTM3-F model predicts
ice Ih to be the stable phase. DFT correctly predicts
the most stable phase as the ferroelectric-ordered ice XI
for low temperatures, with an energy difference of ∼ 4.5
meV. As the temperature increases, there is a crossing
at T = 91 K and the proton disordered ice Ih becomes
the stable phase beyond this temperature for H2O. DFT
predicts antiferroelectric ice aXI to have lower free en-
ergy than ice Ih at low T, but at all T, ferroelectric
ice XI is preferred to ice aXI. The crossover from the
antiferroelectric-ordered ice aXI to proton disordered ice
Ih is at much lower temperatures, because ice aXI is less
cohesive than the ferroelectric-ordered ice XI. Therefore,
we establish that with DFT, the most stable phase at low
temperatures is the ferroelectric-ordered ice XI, in agree-
ment with the experiments. For the rest of the transition
temperature discussion, we will focus on the ferroelectric-
ordered to disordered transition, ice XI/ice Ih.

Inclusion of zero point effects also allows us to obtain
the isotope effect in the phase transition temperature,
since it is experimentally known that the order-disorder
transition temperature of heavy ice (D2O) is higher than
light ice (H2O) by 4 K4,6. Table II shows that we al-
ready observe the phase transition with calculations at
the classical limit of free energy, for both PBE and vdW-
DFPBE approximations, and that the transition temper-
ature decreases with the inclusion of zero-point effects.
The vdW-DFPBE results are below the glass transition
temperature around 100-110 K7,8 where proton mobility
diminishes. This is in general agreement with the ex-
perimental order-disorder phase transition temperatures.
Although PBE gives a correct prediction of the stable
phase, and an isotope effect of 6.4%, the value of the
phase transition temperature is much larger than the ex-
perimental range. In agreement with the experimental 4
K difference in the phase transition temperature of the
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TABLE II. The classical (T0
c) and quantum (Tc) proton order to disorder transition temperature, Tc (K) including zero point

effects for ice Ih-ice XI and ice Ih-ice aXI. The ratio of the temperature for different isotopes is given as R(D)=D2O/H2O and
R(18O)=H2

18O/H2O, and the isotope effect on the temperature with respect to the H2O transition temperature is also given

as the isotope effect percentage: IS(A-B)= T (A)
T (B)

− 1.

Ice Method T0
c H2O D2O H2

18O R(D) R(18O) IS(D-H) IS(18O -16O)

aXI PBE 153 151 156 151 1.03 1.00 +3.31% 0.00%

aXI vdW-DFPBE 42 30 35 30 1.17 1.00 +16.67% 0.00%

XI PBE 221 202 215 203 1.06 1.01 +6.44% +0.50%

XI vdW-DFPBE 105 91 97 90 1.07 0.99 +6.59% −1.10%

XI Expt4,6 72 76 1.06 +5.56%

isotopes, the vdW-DFPBE functional predicted transition
temperature of the heavy ice is larger than the light ice
with a 6 K difference. As a result, with this method, the
ratio between the phase transition temperatures of heavy
and light ice is reproduced within 1% of the experimen-
tal value and the isotope effect on the temperature with
respect to the H2O transition temperature is calculated
to be 6.6%, as compared to the 5.6% of the experimen-
tal isotope effect. Therefore, it is important to note that
inclusion of non-local van der Waals forces is critical for
a reasonable prediction of the transition temperature.

0 50 100 150 200 250 300
-10

-5

0

5

F 
(I

h-
X

I)
 (

m
eV

)

H
2
O

D
2
O

90 95 100
-0.2

-0.1

0

0.1

0.2

0.3

E
0 (

Ih
-X

I)
 (

m
eV

)

90 95 100
Temperature (K)

E
Z

P (
Ih

-X
I)

 (
m

eV
)

90 95 100

-T
S v+

E
v-E

Z
P-T

S H
 (

Ih
-X

I)
 (

m
eV

)

FIG. 5. Top, free energy difference per molecule between ice
Ih and ice XI calculated with vdW-DFPBE functional in the
region of the phase transition. Bottom, contributions to this
free energy difference by each term in eq. 4. Left frozen lattice
electronic term. Middle zero-point vibrational energy. Right
remaining terms. All the energies on the bottom plots have
been shifted to allow them to be compared in the same energy
scale.

To understand the main reason behind the differ-
ence between the transition temperatures of different
isotopes, we study the temperature dependence of each
component of eq. 4 separately, as presented in Fig. 5.

The electronic energy difference between the two ices,
E0(Ih)−E0(XI), is larger for H2O than D2O. This would
result in a larger transition temperature for H2O than
D2O, contradicting experiments. The last two terms,
zero-point-free vibrational entropy and energy −TSv +
Ev − EZP =

∑

k kBT ln
(

1− e−~ωk(VFmin
(T ))/kBT

)

, and
configurational entropy−TSH also result in larger energy
difference for H2O than D2O. However, the zero-point vi-
brational energy EZP =

∑

k ~ωk(VFmin
(T ))/2 difference

between the two ices, EZP (Ih)−EZP (XI), is smaller for
H2O than D2O. This is the only term that shifts the
transition temperature of H2O below that of D2O. These
results show that the phase transition occurs at a lower
T for H2O than D2O because of the zero-point energies
of the phonon modes.

This can also be seen from a simple model. The tran-
sition occurs when the free energies of the two ices are
equal. For the sake of simplicity, we can set the zero of
energy at the frozen lattice cohesive energy of ice XI and
denoting by Ed = E0(Ih) − E0(XI) and SH the energy
and the residual entropy caused by the disorder of ice Ih.
The free energies are F (XI) = 0 and F (Ih) = Ed −TSH .
Therefore, at the zeroth order, in the classical limit, it
follows that Tc(0) = Ed/SH . When the vibrations are
included, the free energies from eq. 4 are equal at the
transition temperature,

Tc =
Ed

SH − kB
∑

k ln
[

sinh(~ωk(Ih)/2kBTc)
sinh(~ωk(XI)/2kBTc)

] . (8)

A more detailed discussion with the high and low T limits
of this transition temperature and the latent heat can
be found in the SI. Assuming the shifts are not large,
the isotope shift in the transition temperature can be
simplified to

TD2O
c − TH2O

c

TH2O
c

=
kBTc

Ed

∑

k

ln

[

Rk(Ih)

Rk(XI)

]

(9)

where

Rk(Ih) =
sinh(~ωD2O

k (Ih)/2kBTc)

sinh(~ωD2O
k (Ih)/2kBTc)

, (10)
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and similarly for Rk(XI). Then the low temperature limit
becomes,

∆Tc(low)

TH2O
c

=
~

2Ed

∑

k

[(ωD2O
k (Ih)− ωD2O

k (XI))

−(ωH2O
k (Ih)− ωH2O

k (XI))] (11)

where the difference in the frequencies exactly corre-
sponds to the energy difference shown in the bottom mid-
dle panel of Fig. 5. This model clearly shows that the
main source of the isotope effect in the transition tem-
perature is the difference in the zero point energies of the
different ices.

Ic
e 

X
I 

D
oS

 (
a.

u)
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0

1

2

3

Frequency (cm-1)
0 500 1000 1500 2000 2500 3000 3500

Ic
e 

Ih
 D

oS
 (

a.
u)

3000 3100 3200 3300 3400

600 800 1000 1200

FIG. 6. Vibrational density of states for H2O for proton or-
dered ice XI and disordered Ih structures, as obtained with
vdW-DFPBE functional. Average Grüneisen constants of the
different modes are given in color code. The inset above zooms
into the stretching modes and shows the redshift, while the
inset below zooms into the librational modes and shows the
blueshift in ice XI with respect to ice Ih.

This is also evident from the phonon density of states
of the two ices. Fig. 6 shows phonon density of states
for H2O for both proton ordered ice XI and proton dis-
ordered ice Ih at zero temperature. The colors represent
the average Grüneisen parameter of each band separately.
The main effect driving the isotope differences is associ-
ated to the blue shift of the librational band in ice XI
with respect to ice Ih, and a corresponding redshift of
the stretching band. Therefore, with proton ordering,
the covalency of the intra-molecular bonds is weakened,
while the inter-molecular hydrogen bonding is strength-
ened. This combined with the weights of the Grüneisen
parameters results in an overall slightly larger zero point
energy for ice XI than ice Ih.
One of the reasons of the quantitative difference from

the experimental results of transition temperature can
be due to the error in the estimation of residual entropy
from disorder in both systems. Experimentally, it has
been shown that at the transition, ice XI loses much but
not all of the entropy at Tc

26. However, it is not clear
whether this arises from equilibrium thermal disorder in
ice XI, or from failure to complete the phase transition,
leaving some domains of non-equilibrium ice Ih coexist-
ing with ice XI22. Another reason for the quantitative

difference can be the loss of precision of the QHA at
larger temperatures, as the temperature dependence of
the phonon vibrations is not taken into account. This
is also the case in the calculated V0 with isotope effects;
the calculated values deviate from the experimental val-
ues at larger temperatures33. However, this deviation is
not significant at around 100 K, which is the region of
interest of this work.
Finally, the exact values depend on the choice of the

DFT functional. While we have shown that the inclu-
sion of vdW interaction in the functional is crucial, it
should be noted that the local part of the XC functional
also changes the structure significantly. In Ref. 33, it
has been shown that vdW-DF functional with the local
XC flavor of revPBE softens the structure such that the
anomalous isotope effect on the V(T) is not reproduced
at low temperatures. In addition, Ref. 51 studied the
phonon dispersion of ice XI. While the distribution of
the modes are almost identical, the values of the stretch-
ing modes are higher and the librational modes are lower
by ∼ 50 cm−1 than those calculated in this work. Fur-
thermore, Ref. 52 studied the non-local vdW functionals
with different GGA and hybrid functionals for the local
XC, and showed that the cohesive energies depend on
the choice of these functionals. A hybrid functional with
exact exchange for the local XC, with a vdW functional
for the non-local correlations could be a good candidate
to improve on these results.
All in all, the QHA within DFT with non-local vdW

forces, predicts a 6 K temperature difference between the
isotopes, as compared to the experimental 4 K difference.
This isotope shift is solely due to the nuclear quantum
effects from the phonon vibrational energy differences,
and it is predicted without invoking any other effects,
such as tunneling.

V. CONCLUSION

In this study, we did a detailed analysis of the phase
transition between the ferroelectric vs. antiferroelectic-
proton-orderered ice XI and disordered ice Ih. Ab ini-

tio DFT is necessary to correctly predict the most sta-
ble phase of ice as the ferroelectric-ordered ice XI. The
TTM3-F force field model needs improvement for the en-
ergy predictions, especially at low temperatures.
By including nuclear quantum effects to the free en-

ergy, we have predicted the ferroelectric order to disorder
phase transition for hexagonal ices. The best accuracy
requires using the vdW-DFPBE functional, with a tran-
sition temperature at about 91 K for H2O and 97 K for
D2O. This 6 K temperature difference is mainly due to
the difference in the zero point energy of ice with dif-
ferent isotopes, while entropy related terms contribute
in the opposite direction. The method is robust to cor-
rectly predict and explain the isotope effect on the or-
der/disorder phase transition of hexagonal ice Ih.
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