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The spin-orbit field acting on the spin waves of a spin-polarized electron gas is studied by in-
elastic light scattering on a CdMnTe quantum well. Above-barrier illumination allows us to vary
the electronic density and control the collective Rashba and Dresselhaus coupling constants. We
demonstrate that the enhancement between the single-particle and the collective spin-orbit field in-
creases with increasing electronic density. This result is reproduced by a first-principles calculation.
This behavior, which is opposite to usual Coulombic spin enhancements, reveals a novel aspect of
the interplay of spin-orbit and Coulomb interactions in collective spin modes.

PACS numbers: 71.70.Ej 72.25.Rb 73.21.–b 78.30.–j

I. INTRODUCTION

Spin-orbit (SO) coupling is a relativistic effect: an elec-
tron moving with a velocity v in a static electric field E
sees a magnetic field BSO = − 1

c2v × E that couples to
its spin (c is the speed of light). In zinc-blende type
crystals such as GaAs or CdTe, intrinsic electric fields
E arise from the lack of inversion center of the bulk
material.1 In a heterostructure such as a quantum well,
additional intrinsic electric fields result from the struc-
tural inversion asymmetry.2 The respective Dresselhaus
and Rashba SO fields imprint the underlying heterostruc-
ture anisotropy onto the single- and many-particle prop-
erties of the carriers.3

At the single-particle level, the main effect of SO cou-
pling is a momentum (k) dependent spin splitting and
spin orientation of the conduction electron states, which
can be described by an effective magnetic field BSO(k).
Following early experimental evidence of this effect,4,5

recent experiments were able to separately measure the
Rashba and Dresselhaus fields in the same sample,6,7 and
the related anisotropy of the g-factor and of the spin re-
laxation rate.8 In addition, these k-dependent SO fields
are known to be the major source of spin relaxation in
doped quantum wells. Indeed, if a spin coherence is cre-
ated, e.g. by aligning the individual spins of the electron
gas, each spin will then precess with a proper direction
and frequency, and the memory of the initial state will
progressively be lost by decoherence. This single-particle
effect, referred to as D’yakonov-Perel’ decoherence,9 sets
severe limitations on many applications in spintronics.10

Studies of SO effects at the many-body level — in the
presence of Coulomb interactions between electrons —
are more preliminary, although they are expected to re-
veal a rich spectrum of phenomena.11 Coulomb interac-
tion was shown to renormalize the magnetic quantities re-
lated to SO coupling, leading to enhancements of the SO
coupling constants12 and of the g-factor.13 On the other
hand, Coulomb interaction reduces D’yakonov-Perel’ dis-
sipation via the additional momentum scattering14,15 and
the exchange field14,16 it produces. But the interplay of

Coulomb and SO interactions can even have more pro-
found effects in the case of spin waves, where the behavior
of electrons is intrinsically collective. In doped semicon-
ductors, such spin waves consist of a collective oscillation
or precession of the spin densities.17,18 SO coupling was
predicted to deeply modify the nature of these excita-
tions, leading to chiral collective modes.19–21 Conversely,
it was shown that Coulomb interaction can induce a
striking organization of the SO fields acting on a spin
wave.22–25 Indeed, for the two main kinds of collective
spin modes of quantum wells (intra- and inter-subband),
Coulomb interaction transforms the D’yakonov-Perel’ de-
coherence scenario into a constructive scenario, where
the spin dynamics is governed by a collective SO field
Bcoll

SO (q). The latter field is proportional to the excita-
tion momentum q, and it adds up to other magnetic ac-
tions such as real magnetic fields24 or exchange fields
from magnetic impurities.25

This collective SO field Bcoll
SO (q) has the same orien-

tation, but a much higher magnitude than the single-
particle SO field BSO(q) acting26–28 on individual elec-
trons. Indeed, it was shown that Bcoll

SO (q) = CBSO(q),
with C = 5.2 for the GaAs quantum well of Ref. 24
and C = 6.5 for the CdMnTe quantum well of Ref. 25.
The magnitude of this enhancement C is surprisingly
large, as Coulombic enhancements of spin quantities are
typically18,29–31 of the order of the Coulomb coupling
constant rs = 1/

√
πn2Da

∗
B (with n2D the electronic den-

sity), which measures the average distance between elec-
trons in units of the effective Bohr radius a∗B, and gives an
estimate of the ratio between the interaction and kinetic
energies in the ground state. Yet, rs was much lower
than C in the probed samples (rs = 1.2 and 1.9, respec-
tively). In addition, the measured C is significantly larger
than the recently predicted32–34 enhancement of single-
particle SO coupling constants, which does not exceed a
few tens of percent for the considered values of rs. To-
gether with a few other recent experimental studies,35,36

such strong enhancement suggests the existence of a co-
operative mechanism between SO and Coulomb interac-
tions, which is not accounted for theoretically yet.

In this work, we gain insight into this novel mech-
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anism, by providing experimental and theoretical evi-
dence of an additional unconventional aspect: the en-
hancement C scales with the density n2D (i.e., with 1/rs)
rather than with rs, in contrast with usual Coulombic
spin enhancements.18,29–31 To demonstrate this behavior,
we continuously tune the electron density of a CdMnTe
quantum well through above-barrier illumination37,38

while monitoring the evolution of the collective SO field.
The experimental findings are supported by a first-
principles calculation of the enhancement factor, which is
compatible with all previous theoretical and experimen-
tal results for the collective SO field.22–25 What is also
important for applications, our results demonstrate the
ability to efficiently control the collective SO field, with
the electron density as the tuning parameter. This re-
sult extends to collective SO effects a result previously
established only for single-particle SO fields39–41, and il-
lustrates the potential of SO coupling to manipulate spin
waves carrying logical information.42,43

II. SAMPLE & EXPERIMENTAL SETUP

We investigate the two-dimensional electron gas
(2DEG) embedded in a dilute magnetic quantum well
of CdMnTe.25,31,44 In this system, the application of a
moderate in-plane magnetic field (in the Tesla range) po-
larizes the spins localized on the Mn impurities, which
in turn polarizes the electron gas through exchange
interaction.45 This causes a giant Zeeman splitting Z (of
order meV) of the electron gas, which dominates over the
orbital quantization. One thus obtains a spin-polarized
electron gas supporting spin-flip waves (SFW), which are
collective precessions of the itinerant spins.25,31,44

Our sample is an asymmetrically modulation-doped,
20 nm-thick Cd1−xMnxTe (x ' 0.13%) quantum well
grown along the [001] direction by molecular beam epi-
taxy. The sample is immersed in a superfluid he-
lium bath (∼ 2 K). The electronic density is n02D =
2.7× 1011 cm−2 (as determined below, and in agreement
with magneto-transport measurements) and the mobility
is 1.7× 105 cm2/Vs.

We employ inelastic light scattering (ILS), which al-
lows us to transfer a well-controlled momentum q to the
spin excitations of the 2DEG.44,46 In our setup, depicted
in Fig. 1(a), q can be varied both in magnitude and in-
plane orientation, measured by the angle ϕ with respect
to the [100] crystallographic direction of the well. A mag-
netic field Bext is applied in the plane of the well, always
perpendicular to q. The incoming and scattered light
are cross-polarized, which matches the required selection
rule to address spin-flip excitations.44,46

III. EXPERIMENTAL RESULTS

Figure 1(b) shows a series of ILS spectra of the SFW,
obtained at fixed Bext = 2 T and ϕ = π/4, but for
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Figure 1. Determination of the collective spin-orbit
field. (a) Inelastic light scattering (ILS) geometry: ki and
ks are the incoming and scattered light wave-vectors, respec-
tively; q is the transferred momentum, of in-plane orientation
measured by the angle ϕ from [100]. An external magnetic
field Bext is applied perpendicularly to q. (b) ILS spectra of
the spin-flip wave, obtained at Bext = 2 T and ϕ = π/4, for a
series of transferred momenta q. (c) Wave-vector dispersion
of the SFW for ϕ = π/4 and ϕ = 3π/4. (d) Variation of the
linear term E1 of the SFW dispersion (see text) as a function
of the in-plane angle ϕ.

values of the transferred momentum varying between
q = −3.4 µm−1 and q = +2.5 µm−1 [the positive sign
for q is defined by the orientation of q in Fig. 1(a)].
The corresponding wave-vector dispersion is plotted in
Fig. 1(c) (squares): it is a parabola, with the maximum
occurring at a non-zero value of q. In the same figure we
show the dispersion measured for ϕ = 3π/4 (circles): its
maximum occurs for a different value of q. These charac-
teristics are signatures of SO coupling.25 Indeed, in the
absence of the latter, the dispersion E(q) of the SFW
would be independent of ϕ and symmetric about q = 0:
E (q) = Z − fq2, where Z is the Zeeman splitting of the
conduction band45 and f > 0 depends on rs and on the
spin-polarization degree of the 2DEG.47

Due to SO coupling, the inversion asymmetry of the
confining potential (Rashba effect)48 and of the crys-
talline cell (Dresselhaus effect)49 gives rise to an in-plane
SO field acting on an electron of momentum k:

BSO(k) = 2α (ky,−kx) + 2β (kx,−ky) , (1)

(to lowest order in k) with x̂ ‖ [100] and ŷ ‖ [010], and
with α and β the single-particle Rashba and Dresselhaus
coupling constants, respectively. This field controls the
spin splitting and orientation of individual electrons.3

By contrast, it was shown25 that the SFW, instead of
feeling the distribution of the latter single-particle SO
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fields, is subject to a collective SO field

Bcoll
SO (q) = 2α̃ (qy,−qx) + 2β̃ (qx,−qy) , (2)

where α̃ and β̃ are the collective Rashba and Dresselhaus
coupling constants, respectively. This collective SO field,
which arises from many-body effects, adds up to the ex-
change field44,45 coming from the Mn impurities. This
leads25 to the emergence of a linear term in the SFW
dispersion, such that:

E (q, ϕ) = Z − fq2 − 2(α̃+ β̃ sin 2ϕ)q . (3)

This linear term shifts the maximum of the SFW dis-
persion away from q = 0, in an anisotropic way, see Fig.
1(c). We also note from the latter figure that the energy
of the q = 0 SFW mode slightly depends on ϕ, which is
not accounted for by Eq. (3). This dependence, which
evidences the breakdown of Larmor theorem44 due to
SO coupling, will be detailed in a separate publication.50

Here we isolate the contribution of the collective SO field
to the dispersion, by extracting the linear coefficient E1

from a parabolic fit E = E0 − fq2 +E1q. We repeat the
procedure for a series of in-plane angles ϕ, and plot E1 as
a function of ϕ in Fig. 1(d). The experimental variation
E1(ϕ) is in remarkable agreement with the predicted si-

nusoidal variation E1(ϕ) = −2(α̃+ β̃ sin 2ϕ). We deduce

α̃ = 46.7± 1.2 meVÅ and β̃ = 93.0± 2.3 meVÅ, which
completely characterizes the collective SO field of Eq. (2)
acting on the SFW.

As a next step, we will vary the density of the 2DEG
and determine how it affects this collective SO field. For
this purpose we use a secondary cw green laser beam
(514.5 nm), defocused to illuminate an area about 4 times
larger than the one probed by ILS, guaranteeing the ho-
mogeneity of the 2DEG density on the probed area.37,38

To calibrate the effect of the above-barrier beam, we first
show in Fig. 2(a) photoluminescence (PL) spectra taken
for a series of green power densities Fgreen ranging from
0 to 330 mW cm−2. The decrease of the quantum Stark
effect blueshifts the PL peak, while the decrease of the
2DEG density narrows the PL line. Fitting the PL line
shape51 (black lines) yields the 2DEG density n2D, shown
in Fig. 2(c) with solid circles.

We confirm these determinations by extracting n2D
from the cross-polarized ILS spectra of the single-particle
excitations (SPE). Indeed, for a transferred momentum
q, the corresponding SPE line peaks at ~vFq, with vF the
Fermi velocity.51 Figure 2(b) shows SPE spectra taken at
q = 10.4 µm−1 for various power densities Fgreen [same
color code as in Fig. 2(a)]. As expected, the energy of
the peak decreases with increasing Fgreen. For each value
of Fgreen, we extract the slope versus q of the peak en-
ergy and correct it by taking into account Coulombic
effects,47 to obtain vF. The corresponding values of n2D
are plotted with empty circles in Fig. 2(c). Both determi-
nations of the density are in good agreement, and we use
their average in the following. Note that the measured
variation of n2D with Fgreen is well reproduced by the
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Figure 2. Tuning of the 2DEG density. (a) Photolumines-
cence (PL) spectra, at Bext = 0, for a series of power densities
Fgreen of secondary illumination. (b) For the same values of
Fgreen, cross-polarized ILS spectra of the single-particle exci-
tations at Bext = 0 and q = 10.4 µm−1. (c) 2DEG density as
a function of Fgreen, as extracted from the PL (solid circles)
and ILS (empty circles) data. The line is a fit to the theory
of Chaves et al.37

mechanism of Chaves et al.37 (see black line), which pre-
dicts Fgreen = A(n02D−n2D)e−B

√
n2D , with n02D the 2DEG

density in the absence of secondary illumination. Finally,
fitting the energy E0 of the q = 0 SFW versus Bext with
a Brillouin function,44,45 we verified that the green beam
does not increase the temperature of the system by more
than 0.3 K. In conclusion, Fig. 2(c) demonstrates that
n2D can be reproducibly tuned by a factor of 2 in our
sample.

We are now in a position to determine how this change
of n2D affects the collective SO field Bcoll

SO (q) acting on
the SFW. For a series of values of Fgreen, we extract the

collective coupling constants α̃ and β̃ as described above,
from the linear coefficient E1 of the SFW dispersion at
Bext = 2 T. Figure 3(a) shows the deduced α̃ (black

squares) and β̃ (red circles) as a function of Fgreen, and
Fig. 3(b) shows the same quantities as a function of n2D.

Both α̃ and β̃ exhibit a strong variation: the collective

Dresselhaus constant β̃ varies from 93 to 26 meVÅ, while
the collective Rashba constant α̃ varies from 47 meVÅ to
nearly zero.

Having determined the collective SO coupling con-
stants for different values of the 2DEG density, we now
turn to comparing them to the single-particle coupling
constants α and β [Eq. (1)], so as to deduce the en-

hancement factor C ' α̃/α ' β̃/β between the single-
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Figure 3. Optical control of the collective spin-orbit

field. (a) Collective Rashba (α̃) and Dresselhaus (β̃) cou-
pling constants as a function of the secondary illumination
power density. (b) Same quantities as a function of the 2DEG
density, as deduced from Fig. 2(c).

particle and the collective SO field.24,25 In Ref. 25, α
and β were determined experimentally, by analyzing the
SO-induced splitting in the SPE line. This is not pos-
sible in the sample studied here, as the reduced disor-
der and stronger Coulomb interaction strength (higher
rs) lead to important modifications of the SPE line, de-
parting its behavior from that of a Lindhard function.47

We will thus use theoretical values of the single-particle
SO constants. For each value of n2D, we perform a self-
consistent Schrödinger-Poisson calculation of the confin-
ing potential and electronic wavefunction. We then cal-
culate the Rashba coefficient α = r6c6c41 e〈Ez〉 and the
Dresselhaus coefficient β = γ〈k2z〉.3 Here, r6c6c41 and γ are
material-dependent parameters, e is the electronic charge
and Ez, kz are respectively the electric field and wavevec-
tor along the growth axis. Using r6c6c41 = 6.93 Å2 and

γ = 43.9 eVÅ3 calculated by k ·p perturbation theory3

for CdTe, we show α and β as a function of the electron
density in the inset of Fig. 4.

We can now plot in Fig. 4 the enhancement factor
C of the collective SO field, as given by α̃/α (black)

and β̃/β (red). As the central result of this work,
we observe a strong increase of the enhancement factor
with the electronic density. As α and β subtly depend
on the exact shape of the wavefunction and confining
potential,52 which are calculated here in a simple model,
we cannot assert the relevance of the discrepancy be-

tween α̃/α and β̃/β, nor their precise dependence with
the density. But the increasing behavior with density
is clearly evidenced, with C growing from 2-5 to 10-20

when n2D increases from 1.5× 1011 cm−2 (rs = 2.9) to
2.7× 1011 cm−2 (rs = 2.2). This behavior is quite re-
markable, as it is opposite to usual Coulombic spin en-
hancements, which decrease when the electronic density
is increased.18,29–34

Before continuing our discussion, we note that our
modeling neglects the cubic Dresselhaus effect, as usually
done in similar experiments.28,53 This effect would give
an additional contribution γ(−kxk2y, kyk2x) to the single-
particle SO field of Eq. (1). One could expect that this
would translate into a cubic component in the collective
SO field of Eq. (2) and thus in the dispersion of Eq. (3).
However, it is experimentally seen that the dispersions
are very well reproduced by simple parabolas (see Fig.
1c), so that it does not seem necessary to introduce a
cubic term in the definition of the collective SO field.
Regarding now the single-particle SO field, we note that
if the cubic Dresselhaus effect is taken into account, an
electron at the Fermi level acquires a SO splitting 2β?kF,
with β? = γ(〈k2z〉−πn2D). Here, β? appears as a “renor-
malized” Dresselhaus coefficient, smaller than the linear
coefficient β. In our experiments we calculate β? ' 0.7β
for the lowest electronic density and β? ' 0.6β for the
highest density explored. This means that, if the ratio

β̃/β? had been considered (instead of β̃/β), the values of
the deduced enhancement factor C would be higher and
show a steeper increase with the density, thus resembling
more the enhancement deduced from the Rashba term
α̃/α (see Fig. 4). Thus, the qualitative increase of the
enhancement factor C with the density is fully preserved
(even amplified) if cubic terms are considered.

IV. THEORETICAL DISCUSSION

We note that a similar density dependence of SO effects
on the SFW was found in Ref. 54, in analogous CdMnTe
quantum wells. The authors studied the modulation of
the SFW energy with the in-plane angle ϕ (as in Ref. 25)
at a fixed momentum q = 5 µm−1, but as a function of
n2D through above-barrier illumination. However, they
attributed the amplitude ∆E of this modulation (energy
difference of the SFW between ϕ = π/4 and ϕ = 3π/4) to
the SO splitting of individual electrons at the Fermi mo-
mentum kF ‖ q. This single-particle interpretation yields
∆E = 4βkF = 4β

√
2πn2D, which indeed reproduces the

behavior of ∆E with n2D. However, this picture dis-
agrees with our data and model, which demonstrate the
proportionality of ∆E to the momentum magnitude q
[Fig. 1(c)]. We note that Ref. 54 did not investigate the
q-dependence of ∆E. On the other hand, our model [Eq.

(3)] predicts ∆E = 4β̃q = 4Cβq and, as β is mainly in-
dependent of n2D (inset of Fig. 4), the increase of ∆E
with increasing n2D demonstrates the increase of the en-
hancement factor C of the collective SO field acting on
the SFW.

We now turn to the mechanism governing C. It would
be tempting to understand it as an effect of summa-
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Figure 4. Enhancement factor C of the collective spin-

orbit field, obtained from = α̃/α (black squares) and = β̃/β
(red circles) as a function of the 2DEG density n2D. The black
line corresponds to the theory of Eq. (4). Inset: calculated
single-particle Rashba (α, black) and Dresselhaus (β, red)
coefficients versus n2D.

tion of the single-particle SO fields, but this interpre-
tation is not physical, as SO fields only appear in the
reference frame of each electron and cannot add up.
However, in the presence of Coulomb interaction, each
spin acts on the others through an exchange field, which
tends to minimize the total Coulomb energy by align-
ing the spins parallel to each other.18 Due to SO cou-
pling, k states participating to a collective mode ex-
perience the same change of their individual SO field
BSO(k + q) − BSO(k) ' BSO(q).22,24,25 Thus, the dy-
namical Coulomb exchange field aligns with the com-
mon BSO(q), and tends to average out the spread of
orthogonal components. As a result, all the exchange-
contributions will add up to create a Coulomb-SO field.
We thus expect the enhancement factor C to scale with
the exchange energy of the 2DEG, i.e. to increase with
the electronic density.

This heuristic argument, and the qualitative behav-
ior of the enhancement C, are fully corroborated by a
first-principles calculation. We have extended the linear-
response formalism developed earlier for the case of in-
tersubband excitations22,23,55 to calculate the spin-wave
dispersions of a spin-polarized 2DEG in a quantum well
with spin-orbit coupling. To first order in α and β and to
second order in the wavevector q, we obtain after a some-
what involved calculation (to be published elsewhere) the
following simple analytic result for the enhancement fac-
tor of the collective spin-orbit field:

C =
2EF

Z∗
Z

Z∗ − Z
. (4)

Here, EF is the Fermi energy and Z∗ is the Coulomb-

renormalized Zeeman energy. The latter is given by
Z∗ = Z + 2∂εxc/∂ζ, with εxc the exchange-correlation
energy per particle and ζ the spin-polarization degree of
the electron gas (−1 ≤ ζ ≤ 1).18 As Z is essentially in-
dependent of the density (within 3%), we use its mean
experimental value Z = 0.41 meV, and calculate C by us-
ing a quantum Monte-Carlo determination of εxc.

29 The
results are plotted with a black line in Fig. 4, in compar-

ison with the quantities α̃/α and β̃/β. The disagreement
in the absolute values may arise from the uncertainty in
the theoretical determination of α and β, as discussed
above. On the other hand, the qualitative increase of C
with the density is fully reproduced, confirming our inter-
pretation. We note that our analytical finding [Eq. (4)]
is fully compatible with the behavior found numerically
in Ref. 22 for the magnitude of SO effects in the inter-
subband spin plasmons. This suggests the generality of
the effect of Coulomb interaction on the collective spin
excitations of conducting systems.

V. CONCLUSION

In conclusion, we have studied the SO fields acting
on the spin excitations of a diluted magnetic quantum
well under above-barrier illumination. The enhancement
between the SO field acting on individual electrons and
that acting on the collective spin mode has been de-
termined for various electronic densities. Contrary to
usual Coulombic enhancements of spin quantities, this
enhancement increases with increasing density, as repro-
duced by a first-principles calculation. Together with the
high values of the enhancement, this behavior evidences
a novel aspect of the interplay of SO and Coulomb in-
teractions in itinerant spin systems. An important con-
sequence for spintronics applications is that we have evi-
denced, in usual semiconductors, SO coupling constants
as high56 as 100 meV Å, which can be tuned by varying
the electron density. In the perspective of a spin-wave
based transistor,42,43 our findings suggest the ability to
switch such transistors by controlling either the density
or the spin-orbit constants to tune the magnitude of the
collective SO field.
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and M. Bernard, Phys. Rev. Lett. 109, 166401 (2012).

25 F. Baboux, F. Perez, C. A. Ullrich, I. D’Amico, G. Kar-
czewski, and T. Wojtowicz, Phys. Rev. B 87, 121303(R)
(2013).

26 V. Kalevich and V. Korenev, JETP Lett. 52, 230 (1990).
27 Y. K. Kato, R. C. Myers, A. C. Gossard, and D. D.

Awschalom, Nature 427, 50 (2004).

28 L. Meier, G. Salis, I. Shorubalko, E. Gini, S. Schön, and
K. Ensslin, Nature Phys. 3, 650 (2007).

29 C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G. B.
Bachelet, Phys. Rev. Lett. 88, 256601 (2002).

30 J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and
K. W. West, Phys. Rev. Lett. 90, 056805 (2003).

31 F. Perez, C. Aku-leh, D. Richards, B. Jusserand, L. C.
Smith, D. Wolverson, and G. Karczewski, Phys. Rev. Lett.
99, 026403 (2007).

32 G.-H. Chen and M. E. Raikh, Phys. Rev. B 60, 4826
(1999).

33 C. H. Yang, W. Xu, Z. Zeng, and C. S. Tang, J. Phys.:
Cond. Matt. 18, 6201 (2006).

34 A. Agarwal, S. Chesi, T. Jungwirth, J. Sinova, G. Vignale,
and M. Polini, Phys. Rev. B 83, 115135 (2011).

35 B. Nedniyom, R. J. Nicholas, M. T. Emeny, L. Buckle,
A. M. Gilbertson, P. D. Buckle, and T. Ashley, Phys.
Rev. B 80, 125328 (2009).

36 G. Liu, V. N. Antonov, O. Jepsen, and O. K. Andersen.,
Phys. Rev. Lett. 101, 026408 (2008).

37 A. Chaves, A. Penna, J. Worlock, G. Weimann, and
W. Schlapp, Surf. Sci. 170, 618 (1986).

38 D. Richards, G. Fasol, and K. Ploog, Appl. Phys. Lett.
57, 1099 (1990).

39 J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys.
Rev. Lett. 78, 1335 (1997).

40 M. Studer, G. Salis, K. Ensslin, D. C. Driscoll, and A. C.
Gossard, Phys. Rev. Lett. 103, 027201 (2009).

41 A. Balocchi, Q. H. Duong, P. Renucci, B. L. Liu,
C. Fontaine, T. Amand, D. Lagarde, and X. Marie, Phys.
Rev. Lett. 107, 136604 (2011).

42 V. V. Kruglyak, S. O. Demokritov, and D. Grundler, J.
Phys. D: Appl. Phys. 43, 264001 (2010).

43 Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida,
M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando,
K. Takanashi, S. Maekawa, and E. Saitoh, Nature 464,
262 (2010).

44 B. Jusserand, F. Perez, D. R. Richards, G. Karczewski,
T. Wojtowicz, C. Testelin, D. Wolverson, and J. J. Davies,
Phys. Rev. Lett. 91, 086802 (2003).

45 J. Gaj, R. Planel, and G. Fishman, Solid State Commun.
29, 435 (1979).

46 A. Pinczuk, S. Schmitt-Rink, G. Danan, J. P. Valladares,
L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 63, 1633
(1989).

47 F. Perez, Phys. Rev. B 79, 045306 (2009).
48 Y. Bychkov and E. I. Rashba, J. Phys. C 17, 6039 (1984).
49 G. Dresselhaus, Phys. Rev. 100, 580 (1955).
50 It was shown in Ref. 25 that the modulation of the SFW en-

ergy is independent of Bext within the experimental error,
which rules out any substantial influence of the g-factor in-
plane anisotropy (see for instance Ref. 53) neither in the
zone-center energy nor in the linear term.

51 C. Aku-Leh, F. Perez, B. Jusserand, D. Richards, W. Pa-
cuski, P. Kossacki, M. Menant, and G. Karczewski, Phys.
Rev. B 76, 155416 (2007).

52 Our Schrödinger-Poisson calculation takes into account the
nominal two Iodine modulation-doping layers (located at
respectively 45 and 95 nm from the quantum well cen-
ter), but ignores other possible unintentional charges, ei-
ther negative at the surface of the sample [W. Maslana

http://dx.doi.org/ 10.1103/PhysRevB.39.1411
http://dx.doi.org/ 10.1103/PhysRevB.39.1411
http://dx.doi.org/10.1103/PhysRevLett.68.106
http://dx.doi.org/ 10.1038/nphys675
http://dx.doi.org/ 10.1103/PhysRevLett.103.027201
http://dx.doi.org/ 10.1103/PhysRevB.83.041301
http://dx.doi.org/ 10.1103/PhysRevB.83.115135
http://dx.doi.org/ 10.1103/PhysRevLett.101.026408
http://dx.doi.org/ 10.1103/PhysRevB.80.125328
http://dx.doi.org/ 10.1103/PhysRevB.80.125328
http://dx.doi.org/10.1103/PhysRevB.75.165309
http://dx.doi.org/10.1103/PhysRevB.76.205301
http://dx.doi.org/10.1103/PhysRevB.76.205301
http://dx.doi.org/10.1103/PhysRevLett.109.227201
http://dx.doi.org/10.1103/PhysRevLett.109.227201
http://dx.doi.org/10.1103/PhysRevB.91.035106
http://dx.doi.org/10.1103/PhysRevB.91.035106
http://dx.doi.org/10.1103/PhysRevLett.114.156803
http://dx.doi.org/10.1103/PhysRevLett.114.156803
http://dx.doi.org/10.1103/PhysRevB.66.205305
http://dx.doi.org/10.1103/PhysRevB.66.205305
http://dx.doi.org/10.1103/PhysRevB.68.235310
http://dx.doi.org/10.1103/PhysRevB.68.235310
http://dx.doi.org/ 10.1103/PhysRevLett.109.166401
http://dx.doi.org/ 10.1103/PhysRevB.87.121303
http://dx.doi.org/ 10.1103/PhysRevB.87.121303
http://dx.doi.org/ 10.1038/nphys675
http://dx.doi.org/10.1103/PhysRevLett.88.256601
http://dx.doi.org/ 10.1103/PhysRevLett.90.056805
http://dx.doi.org/ 10.1103/PhysRevLett.99.026403
http://dx.doi.org/ 10.1103/PhysRevLett.99.026403
http://dx.doi.org/10.1103/PhysRevB.60.4826
http://dx.doi.org/10.1103/PhysRevB.60.4826
http://dx.doi.org/ 10.1103/PhysRevB.83.115135
http://dx.doi.org/ 10.1103/PhysRevB.80.125328
http://dx.doi.org/ 10.1103/PhysRevB.80.125328
http://dx.doi.org/ 10.1103/PhysRevLett.101.026408
http://dx.doi.org/ 10.1016/0039-6028(86)91029-0
http://dx.doi.org/10.1063/1.103544
http://dx.doi.org/10.1063/1.103544
http://dx.doi.org/10.1103/PhysRevLett.78.1335
http://dx.doi.org/10.1103/PhysRevLett.78.1335
http://dx.doi.org/ 10.1103/PhysRevLett.103.027201
http://dx.doi.org/10.1103/PhysRevLett.107.136604
http://dx.doi.org/10.1103/PhysRevLett.107.136604
http://dx.doi.org/ 10.1103/PhysRevLett.91.086802
http://dx.doi.org/10.1103/PhysRevLett.63.1633
http://dx.doi.org/10.1103/PhysRevLett.63.1633
http://dx.doi.org/10.1103/PhysRevB.79.045306
http://dx.doi.org/ 10.1103/PhysRevB.76.155416
http://dx.doi.org/ 10.1103/PhysRevB.76.155416


7

et al., Appl. Phys. Lett. 82, 1875 (2003)] or positive in
the substrate. Also, as in similar experiments,28,53 we ne-
glect a possible influence of the applied in-plane mag-
netic field, which can have orbital effects enhancing the
Rashba coupling constant as shown e.g. in resonant tun-
neling diodes57,58.

53 P. S. Eldridge, J. Hbner, S. Oertel, R. T. Harley, M. Henini,
and M. Oestreich, Phys. Rev. B 83, 041301(R) (2011).

54 C. Rice, D. Wolverson, A. Moskalenko, S. J. Bending,
G. Karczewski, and T. Wojtowicz, Phys. Rev. B 87,
121304 (2013).

55 C. A. Ullrich, I. D’Amico, F. Baboux, and F. Perez, Proc.
SPIE 8813, 88132W (2013).

56 In Pt/Co/AlOx thin layers α is of order 400 meV Å
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