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A momentum balance equation is developed to investigate the magnetotransport properties in
monolayer molybdenum disulphide when a strong perpendicular magnetic field and a weak in-
plane electric field are applied simultaneously. At low temperature, in the presence of intravalley
impurity scattering Shubnikov de Haas oscillation shows up accompanying by a beating pattern
arising from large spin splitting and its period may halve due to high-order oscillating term at large
magnetic field for samples with ultrahigh mobility. In the case of intervalley disorders, there exists a
magnetic-field range where the magnetoresistivity almost vanishes. For low-mobility layer, a phase-
inversion of oscillating peaks is acquired in accordance with recent experiment. At high temperature
when Shubnikov de Haas oscillation is suppressed, the magnetophonon resonances induced by both
optical phonons (mainly due to homopolar and Fröhlich modes) and acoustic phonons (mainly due
to intravalley transverse and longitudinal acoustic modes) emerge for suspended system with high
mobility. For the single layer on a substrate, another resonance due to surface optical phonons
may occur, resulting in a complex behavior of the total magnetoresistance. The beating pattern of
magnetophonon resonance due to optical phonons can also be observed. However, for nonsuspended
layer with low mobility, the magnetoresistance oscillation almost disappears and the resistivity
increases with field monotonously.

PACS numbers: 75.47.-m, 72.20.-i, 81.05.Hd

I. INTRODUCTION

The rise of graphene,1,2 showing outstanding mechan-
ical and electronic properties, launched the era of mono-
layer material. However, pristine graphene does not have
a band gap, a property essential for electronic applica-
tions. Although, it is possible to open small band gap
in graphene by some method,3,4 it will inevitably lead
to increased fabrication complexity and reduced perfor-
mance of devices.5,6 This produces great limitations on
its becoming a perfect candidate for the next genera-
tion nanoelectronic material. In contrast to graphene,
the transition metal dichalcogenides are semiconductors
with naturally occurring band gap, which overcomes this
problem directly. A prominent representative in this
dichalcogenide family is molybdenum disulphide (MoS2).
Bulk MoS2 has an indirect gap, while monolayer MoS2,
which can be isolated by exfoliation techniques similar
to graphene, is a direct-gap semiconductor with a gap
of 1.9 eV.7 Due to the large carrier mobility8, high cur-
rent carrying capacity9, strong spin-orbit coupling, and
coupling of spin and valley degrees of freedom, mono-
layer MoS2 may become a replacement of graphene or
even a candidate for the exploitation of novel valleytronic
devices.10

On the aspect of transport investigation of monolayer
MoS2, the linear mobility is close to 200 cm2/Vs at low
temperature where a high-κ gate dielectric was used to
suppress the charged-impurity scattering strongly.11 This
value is still lower than the theoretical prediction, where
the highest phonon-limited mobility in n-type mono-

layer MoS2 is 410 cm2/Vs at room temperature.12 On
the other hand, the single layer MoS2 device grown by
chemical vapor deposition shows low temperature mo-
bility up to 500 cm2/Vs, where the leading scattering
mechanism is believed to be the short-range scatter-
ers at high carrier density.13 Hence, the main scatter-
ings determining the linear mobility is still open ques-
tion. Further, looking at all theoretical studies on electric
transport,12,14,15 the strong spin-orbit coupling in n-type
monolayer MoS2, which can lead to interesting coupled-
spin-valley physics,10,16,17 is omitted completely and the
energy band is chosen to be a simple parabolic one.

Especially, in magnetotransport the spin-orbit cou-
pling is important, which may result in the beating pat-
tern of Shubnikov de Haas oscillation (SdHO)18 and in-
duce direct magnetoresistance oscillation.19 Due to the
spin-valley coupling, the magnetic control of the val-
ley degree of freedom in monolayer MoS2 in the pres-
ence of normal magnetic field has been achieved.20 The
magneto-optical properties21 and magnetocapacitances22

have been analyzed in this system. However, even the ba-
sic SdHO considering all kinds of scattering mechanisms
in this single layer has not been seriously involved either
in theoretical or in experimental works. Only recently,
the SdHO was observed experimentally for the first time
in monolayer and few-layer MoS2.

23 In this paper, we ap-
ply a momentum balance equation to investigate the lin-
ear magnetotransport at both low and high temperatures
including SdHO and magnetophonon resonance (MPR)
effect induced by optical and acoustic phonons for both
suspended and nonsuspended samples.
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II. BASIC FORMULATION

We consider a monolayer of transition metal dichalco-
genide MoS2 having large number N carriers in the x-y
plane. These carriers, in addition to interacting with each
other, are scattered by the random impurities and cou-
pled with phonons in MoS2 and substrate. There exists
an external magnetic fieldB = (0, 0, B) applied along the
z direction and a uniform electric field E in the mono-
layer plane. The total Hamiltonian of the system is given
by

H = He +Hph +Hei +Hep. (1)

Here the carrier partHe =
∑

j(hj+erj ·E)+
∑

i<j Vc(ri−
rj) with rj = (xj , yj) being the in-plane coordinate for
the jth carrier and −e denoting its charge, and Vc(ri −
rj) standing for the Coulomb coupling potential between
the ith and jth carriers, which, though depends solely
on ri − rj for the thin-layer system, may vary with the
spatial (z-direction) dielectric environment around the
layer. The single-carrier low-energy Hamiltonian near K
(−K) point in the Brillouin zone for the jth carrier in
the presence of magnetic field is given by10,17

hj = at(τjπjxσjx + πjyσjy) +
∆

2
σjz − λτj ŝjz ⊗

σjz − 1

2
.

(2)
Here a is the lattice constant, t is the hopping integral,
∆ is the energy gap, λ is the spin-orbit coupling param-
eter, τj = ±1 is the valley index of the jth carrier re-
ferring to ±K valley, πj ≡ pj + eA(rj) = (πjx, πjy)
is the canonical momentum with pj = (pjx, pjy) be-
ing the momentum of the jth carrier and the vec-
tor potential in the Landau gauge A(rj) = (−Byj , 0),
σj = (σjx, σjy , σjz) is its pseudospin operator acting on

the orbit {dz2 , (dx2−y2 + iτjdxy)/
√
2} and ŝjz is the z-

component of its real spin operator. There are Q val-
leys locating near the halfway points along the Γ–K
axes, which may introduce additional intervalley scatter-
ing process, and thus influence the carrier transport.15

However, the accurate value of the energy separation be-
tween the K and Q points is still unsettled12,15,24 with
the estimate larger than 50meV. In the present calcu-
lation, the Fermi energy of this discussed system is far
below Q valleys. Hence, we can safely neglect the lim-
ited effect of Q valleys and assume the system in the
K-valley dominated carrier transport regime. Hph, Hei

and Hep are phonon Hamiltonian, carrier-impurity and
carrier-phonon interaction, whose forms can be found in
the textbook25 and Refs. 26 and 27.
In terms of the center-of-mass (c.m.) momentum and

coordinate defined as P =
∑

j pj and R = N−1
∑

j rj
for the whole system ofN carriers and the relative-carrier
momentum and coordinate p′

j = pj − P /N and r′
j =

rj−R of the jth carrier,27,28 the carrier Hamiltonian He

of this coupled many-body system can be written as the
sum of a c.m. part Hcm and a relative carrier part Her,

He = Hcm +Her, with

Hcm =
1

N

∑

j

at(τjΠxσjx +Πyσjy) +NeE ·R,

=V ·Π +NeE ·R, (3)

Her =
∑

j

[

at(τjπ
′
jxσjx + π′

jyσjy) +
∆

2
σjz

− λτj ŝjz ⊗
σjz − 1

2

]

+
∑

i<j

Vc(r
′
i − r′

j). (4)

HereΠ ≡ P+NeA(R) = (Πx, Πy) is the c.m. canonical
momentum of the total system, π′

j ≡ p′
j + eA(r′

j) =
(π′

jx, π
′
jy) is the canonical momentum for the jth relative

carrier, and

V = Ṙ = −i[R,H] =
1

N

∑

j

at(τjσjx î+ σjy ĵ) (5)

is the c.m. velocity operator of the carrier system.
Note that, the commutation relation between the c.m.

part Hcm and the relative-carrier part Her is of order
of 1/N . Hence for a macroscopically large N system
the c.m. motion and the relative motion of carriers are
truly separated from each other. A spatially uniform
electric field E shows up only in the c.m. part Hcm, and
Her is just the Hamiltonian of a monolayer MoS2 sub-
ject to a perpendicular magnetic field without the electric

field. The coupling of two parts appears only through the
carrier-impurity and carrier-phonon interactions.
To proceed the calculation of transport properties in

monolayer MoS2 in the presence of a magnetic field, we
can write down all the physical quantities in the Landau
representation. The Landau levels of the single-particle
Hamiltonian h is labeled by a band index α = ±1 for
conduction and valence band, valley index τ = ±1 for K
and −K valley, and spin index s = ±1 for spin up and
spin down in addition to the Landau index n with the
form

εατns = τsλ̄ + α

√

(

∆̄− τsλ̄
)2

+ nω2
c , (6)

for n = 1, 2, 3 · · · , while for n = 0

ετ0s = −τ
(

∆̄− sλ̄
)

+ sλ̄, (7)

with ∆̄ = ∆/2, λ̄ = λ/2, and the cyclotron frequency

ωc =
√
2at/lB =

√

2|e|Bat. One should take notice of
the fact that the zero level (n = 0) for K valley (τ =
+1) is in the valence band, while the zero level (n =
0) for −K valley (τ = −1) is in the conduction band.
The corresponding eigenstates, including zero levels (n =
0), are expressed as Ψατns = χs ⊗ ϕα,τ

n,s (r, kx), with χs

standing for the eigenstate of ŝz and

ϕα,+1
n,s (r, kx) =

eikxx

√

Θα,+1
n,s

(

Λα,+1
n,s φn−1,kx

(y)
φn,kx

(y)

)

, (8)
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ϕα,−1
n,s (r, kx) =

eikxx

√

Θα,−1
n,s

(

φn,kx
(y)

Λα,−1
n,s φn−1,kx

(y)

)

. (9)

Here kx is the x-component of wave vector k, the coeffi-
cient

Λα,τ
n,s =

√
nωc

(∆̄− τsλ̄)− ατ
√

(∆̄− τsλ̄)2 + nω2
c

, (10)

and Θα,τ
n,s = (Λα,τ

n,s )
2 + 1. Note that for K valley τ =

+1 (−K valley τ = −1), only the valence band α =
−1 (conduction band α = +1) is allowed when n = 0.
φn,kx

(y) is the harmonic oscillator eigenfunction giving
by

φn,kx
(y) =

1
√

2nn!lB
√
π
exp

[

− (y − yc)
2

2l2B

]

Hn

(

y − yc
lB

)

,

(11)
with Hn(x) the Hermite polynomial, and yc = kx/(eB).
In the Landau representation, the carrier-impurity and
carrier-phonon Hamiltonians including both intravalley
and intervalley interactions have the following forms:

Hei =
∑

q,a

∑

α,τ,n,s
α′,τ ′,n′,s′

Uττ ′(q)Jα′τ ′n′s′

ατns (q)eiq·(R−ra)

× c†ατnscα′τ ′n′s′ , (12)

Hep =
∑

q,ν

∑

α,τ,n,s
α′,τ ′,n′,s′

Mττ ′(q, ν)Jα′τ ′n′s′

ατns (q)φqνe
iq·R

× c†ατnscα′τ ′n′s′ . (13)

Here Uττ ′(q) and Mττ ′(q, ν) are the intravalley or inter-
valley carrier-impurity scattering potential with ra being
the impurity position and carrier-phonon coupling matrix
of ν branch, respectively; cατns and c†ατns are the annihi-

lation and creation operators of carrier; φqν = bqν+b†−qν

is the phonon field operator with bqν and b†qν being the
annihilation and creation operators for a two-dimensional
(2D) phonon of wave vector q in the branch ν having fre-
quency Ωqν ; and the integral

Jα′τ ′n′s′

ατns (q) =

∫

dr′
〈

ϕα,τ
n,s (r

′, kx)
∣

∣

∣
eiq·r

′

∣

∣

∣
ϕα′,τ ′

n′,s′ (r
′, kx)

〉

.

(14)
The derivation of momentum balance equation starts

from the rate of change of the c.m. canonical momentum
Π̇ = −i[Π ,H]. To linear order in the carrier-impurity
and carrier-phonon couplings,27–29 the statistical average
of this operator equation can be obtained by using the
initial density matrix ρ̂0 = Z−1e−(Hph+Her)/T at temper-
ature T in the case of weak in-plane electric field E. In
the dc steady state, 〈Π̇〉 = 0, the momentum balance
equation for a system of unit area (N is thus understood
as the carrier number density) reads

0 =−Nev ×B −NeE + fei + fep, (15)

with v = 〈V 〉 being the averaged carrier drift velocity.
The frictional forces experienced by the center of mass
due to impurity and phonon scatterings, fei and fep, have
the following form:

fei = ni

∑

q,τ,τ ′

|Uττ ′(q)|2 qΠττ ′

2 (q, ω0), (16)

fep =
∑

q,τ,τ ′,ν

|Mττ ′(q, ν)|2 qΠττ ′

2 (q,Ωqν + ω0)

×
[

n
(Ωqν

T

)

− n
(Ωqν + ω0

T

)

]

. (17)

In the above expressions, ni is an effective impurity den-
sity; n(x) = (ex − 1)−1 is the Bose distribution function;

ω0 ≡ q ·v; Πττ ′

2 (q, ω) is the imaginary part of the Fourier
spectrum of the valley-dependent relative-carrier density
correlation function, defined by

Πττ ′

(q, t− t′) = −iθ(t− t′)
〈[

ρττ
′

q (t), ρτ
′τ

−q (t
′)
]〉

0
, (18)

where ρττ
′

q (t) = eiHertρττ
′

q e−iHert with

ρττ
′

q =
∑

α,n,s
α′,n′,s′

Jα′τ ′n′s′

ατns (q)c†ατnscα′τ ′n′s′ ,

and 〈· · · 〉0 stands for the statistical averaging with re-
spect to the initial density matrix ρ̂0.

27,28

In most cases the electron density-correlation function
in the presence of intercarrier coupling, Πττ ′

2 (q, ω), can
be obtained in the random-phase approximation through
the density-correlation function Πττ ′

02 (q, ω) in the absence
of intercarrier coupling,

Πττ ′

2 (q, ω) =
Πττ ′

02 (q, ω)

|εττ ′(q, ω)|2 , (19)

where εττ ′(q, ω) is the carrier-coupling related RPA
screening function or carrier screening function, which
may vary with the dielectric environment of two-
dimensional (2D) monolayer. Therefore, in Eqs.(16) and

(17) Πττ ′

2 (q, ω) function can be replaced by Πττ ′

02 (q, ω)
function, as long as the impurity and phonon scatter-
ing potentials are considered screened by the intercarrier
coupling: Uττ ′(q)/εττ ′(q, ω) and Mττ ′(q, ν)/εττ ′(q, ω).

The Πττ ′

02 (q, ω) function can be expressed as

Πττ ′

02 (q, ω) =
1

2πl2B

∑

α,n,s
α′,n′,s′

Cα′τ ′n′s′

ατns (z)

×Πττ ′

02 (α, n, s;α′, n′, s′;ω). (20)

Here30

Πττ ′

02 (α, n, s;α′, n′, s′;ω) = − 1

π

∫ +∞

−∞

dǫ[f(ǫ)− f(ǫ+ ω)]

× ImGατns(ǫ + ω)ImGα′τ ′n′s′(ǫ), (21)
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with ImGατns(ǫ) standing for the imaginary part of re-
tarded Green’s function Gατns(ǫ) and the form factor for
intravalley case is given by

Cα′τn′s′

ατns (z) = δss′
1

Θα,τ
n,sΘ

α′,τ
n′,s′

zn2−n1e−z n1!

n2!

×
[

Λα,τ
n,sΛ

α′,τ
n′,s′

√

n2

n1
Ln2−n1

n1−1 (z) + Ln2−n1

n1
(z)

]2

, (22)

while for intervalley case it has a more complex form

Cα′ τ̄n′s′

ατns (z) = δss′
1

Θα,τ
n,sΘ

α′,τ̄
n′,s′

e−z

{

(

Λα,τ
n,s

)2
zm2−m1

m1!

m2!

[

Lm2−m1

m1
(z)

]2
+
(

Λα′,τ̄
n′,s′

)2

zk2−k1
k1!

k2!

[

Lk2−k1

k1
(z)

]2

+ 2sm2−m1

1 sk2−k1

2 Λα,τ
n,sΛ

α′,τ̄
n′,s′z

(m2−m1+k2−k1)/2Lm2−m1

m1
(z)Lk2−k1

k1
(z) cos[s1(m2 −m1)− s2(k2 − k1)]θq

}

, (23)

with Lm
n (z) being associated Laguerre polynomials, z =

l2Bq
2/2, n1 = min(n, n′), n2 = max(n, n′), m1 = min(n−

1, n′), m2 = max(n − 1, n′), k1 = min(n, n′ − 1), k2 =
max(n, n′ − 1), θq is the polar angle of wave vector q,
and

s1 =

{

1, n− 1 < n′

−1, n− 1 ≥ n′ ,

s2 =

{

1, n < n′ − 1
−1, n ≥ n′ − 1

.

In the presence of carrier-impurity, carrier-phonon,
and carrier-carrier scatterings, the Landau levels of
monolayer MoS2 are broadened. The imaginary part of
the retarded Green’s function ImGατns(ǫ) or the density
of state of the ατnsth Landau level is modeled using a
Gaussian form:31

ImGατns(ǫ) = −
√
2π

Γατns
exp

[

−2(ǫ− εατns)
2

Γ 2
ατns

]

, (24)

with Γατns denoting the half width.
The chemical potential εf at temperature T is deter-

mined by the carrier density (electron density N+ or hole
density N−) of the system by the following equation

{

N+

N−

}

= − 1

2π2l2B

∑

τ,n,s

∫ +∞

−∞

dǫ

{

f(ǫ)ImG+τns(ǫ)
[1− f(ǫ)] ImG−τns(ǫ)

}

.

(25)

Here f(ǫ) = {exp[(ǫ − εf )/T ] + 1}−1 is the Fermi dis-
tribution function. For electron conduction case, the
summation index n in the above equation is taken over
1, 2, 3, · · · for K valley (τ = +1), but 0, 1, 2, · · · for −K
valley (τ = −1). However, for hole conduction, it is taken
over 0, 1, 2, · · · for K valley, but 1, 2, 3, · · · for −K valley.

The momentum balance equation (15) combining with
equation of carrier density (25) describes the steady-state
magnetotransport of monolayer MoS2, which can deter-
mine either the drift velocity (charge current density) for
given electric field or the electric field for given current.
In the Hall configuration, e.g., with the charge current
J (or drift velocity) in the x direction, J = (J, 0) =
(−Nev, 0), the momentum balance equation (15) gives
a transverse magnetoresistance Rxy = −Ey/(Nev) =
−B/(Ne) and a longitudinal magnetoresistance Rxx =
−(fei + fep)/(N

2e2v).

III. NUMERICAL RESULTS AND DISCUSSION

For numerical calculation, we concentrate on the n-
doped case, i.e., carrier is electron, N = N+ and we only
need to consider α = α′ = +1. In the following, the index
α or α′ will be omitted. The half-width Γτns should vary
with the band indices generally. However, for simplicity,
we neglect the effect of spin-orbit interaction, and take it
with the form:32,33

Γ =

√

eωc0αΓ

πm∗µ
. (26)

Here µ is the zero-field mobility at temperature T , ωc0 =
eB/m∗ is the cyclotron frequency with effective mass
m∗ = ∆/(a2t2), and αΓ is a phenomenological param-
eter to relate the single-particle lifetime to the transport
scattering time.32,33 In the following numerical evalua-
tion, we will set αΓ = 3, except otherwise specified.
The intravalley electron-impurity scattering potential

is considered due to charged impurities distributed at a
distance d from the layer:34

Uττ (q) =
Zie

2

2ε0κq
e−qd, (27)
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with Zi standing for the effective impurity charge num-
ber, κ for the dielectric constant of MoS2. For suspended
MoS2 monolayer, d = 0. The carrier screening is taken
into account with a static screening function of Thomas-
Fermi form14,31,35

ε(q, 0) = ε(q) = 1 +
qeffTF

q
. (28)

For suspended MoS2, qeffTF equals the zero-temperature
Thomas-Fermi wave vector qTF = m∗e2/(πε0κ); while
for the layer on a substrate, the value of qeffTF, which could
be a couple of times larger or smaller than qTF depending
on the dielectric environment and carrier density, will be
taken from Ref. 35. Note that the main role of carrier
screening is to enhance or decrease the mobility with or
without magnetic field. In the present study, the effective
impurity charge density niZ

2
i , which may be modified by

the spatial dielectric environment of the system, is deter-
mined by the zero-temperature carrier mobility µ0 in the
absence of the magnetic field under the same screening
condition, thus the major magnetic-field related behav-
iors are not sensitive to the detailed form of the scattering
potential or screening.
In addition to above intravalley impurity scattering, we

also include intervalley disorder scattering, which can be
induced by lattice vacancy in a two-dimensional honey-
comb lattice36 and by defects raised from ion irradiation
as in graphene.37 The scattering potential is usually mod-
eled by a δ-function form, i.e., a constant Uτ τ̄ (q) = u0.
For intrinsic electron-phonon couplings in suspended

layer, we consider both intravalley and intervalley acous-
tic deformation potential interactions. In the case of
optical deformation potential, both zero-order and first-
order couplings are taken into account and the homopo-
lar mode is also included. The relevant formulas can be
found in Ref. 12. The polar longitudinal optical phonons
are also important and their coupling matrix element
with 2D carriers can be written as12,38

Mττ (q,Fr) = gFrerfc(qσ/2), (29)

where gFr is the Fröhlich coupling constant, erfc is the
complementary error function, and σ is the effective
width of the electronic envelope function.
For MoS2 on a substrate, the surface optical phonons

(SOPs) couple to the electrons via an effective electric
field, which may play important role in transport35,39

just like graphene.34,40,41 The coupling matrix element is
expressed as40

|Mττ (q, SO)|2 =
e2ΩΓ,so

2ε0κq

(

1

1 + κ∞
e

− 1

1 + κ0
e

)

e−2qd,

(30)
with ΩΓ,so the frequency of SOP, and κ∞

e (κ0
e) denoting

the high (low) frequency dielectric constant of substrate.
Unlike the case of the static impurity scattering, the

carrier screening for phonon scattering is dynamic, i.e., it
is the screening function ε(q,Ωqν) at phonon frequency
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FIG. 1: (Color online) Longitudinal magnetoresistance as a
function of average filling factor ν0 at different lattice tem-
peratures T = 0.5, 1.0, 1.5, 2.5, 4.0K. The inset shows the en-
larged magnetoresistance at T = 0.5K for small filling. The
linear mobility at zero temperature15 µ0 = 4000 cm2/Vs and
the electron density N = 7× 1012 cm−2.

Ωqν rather than the static function ε(q, 0), should be
used in the equation with phonon scattering. It has been
shown27,42 that optic (as well as acoustic) phonon in-
duced 2D resistivity with dynamic screening are essen-
tially equivalent to those without screening at tempera-
ture T > 100K, when phonon scatterings play important
roles. Therefore, in the numerical calculation of phonon-
related magnetotransport at higher temperatures we will
not include screening in the electron-phonon matrix ele-
ment.
The relevant parameters used in the numerical calcu-

lation are listed in Table I, except otherwise specified.

A. Shubnikov de Haas oscillation

In this subsection we consider the magnetotransport
of suspended MoS2 at low temperatures. First, the im-
purity scattering is assumed to be only the intravalley
Coulombic scattering (d = 0). In Fig. 1, the longitu-
dinal magnetoresistance Rxx is calculated versus aver-
age filling factor ν0 = ω−2

c [ε2F − ∆̄2] with εF denoting
the Fermi energy. The electron density is set to be
N = 7 × 1012 cm−2 and the zero-field linear mobility
µ0 = 4000 cm2/Vs at zero temperature. This value of
mobility, though one order larger than those currently
obtained experimentally,11,13 is consistent with the the-
oretical work.15 Higher linear mobility at low temper-
ature can be achieved via the gate dielectric engineer-
ing to effectively screen charge impurities,44 and doping
and strain modulations already realized a mobility higher
than 1000 cm2/Vs at room temperature,45 we thus expect
this zero-temperature mobility will be reached in the near
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TABLE I: Material parameters for monolayer MoS2 used for
calculation. The Γ/K subscripts represent intra/intervalley
phonons.

Parameter Symbol Value

Lattice constant10 a 3.193 Å

Hopping integral10 t 1.1 eV

Energy gap7 ∆ 1.9 eV

Spin splitting energy10 λ 75meV

Mass density12 ρ 3.1× 10−7g/cm2

Effective Layer thickness12 σ 4.41 Å

dielectric constant of MoS2
43 κ 7.6

dielectric constant of ZrO2
41

low frequency κ0
e 24

high frequency κ∞

e 4

Transverse sound velocity12 vTA 4200m/s

Longitudinal sound velocity12 vLA 6700m/s

Acoustic deformation potentials12

TA ΞTA 1.6 eV

LA ΞLA 2.8 eV

TA D1
K,TA 5.9 eV

LA D1
K,LA 3.9 eV

Optical deformation potentials12

TO D1
Γ,TO 4.0 eV

TO D1
K,TO 1.9 eV

LO D0
K,LO 2.6× 108 eV/cm

Homopolar D0
Γ,HP 4.1× 108 eV/cm

Fröhlich coupling38

LO gFr 286meVÅ

Phonon energies15

TA ΩK,TA 23.1meV

LA ΩK,LA 29.1meV

TO ΩΓ,TO 48.6meV

TO ΩK,TO 46.4meV

LO ΩΓ,LO 48.0meV

LO ΩK,LO 42.2meV

Homopolar ΩΓ,HP 50.9meV

SOP energies of ZrO2
41

1st mode Ω
(1)
Γ,so 25.02meV

2nd mode Ω
(2)
Γ,so 70.8meV

future.

As can be seen from Fig. 1, the magnetoresistivity ver-
sus filling factor ν0 or magnetic field B, exhibits marked
SdHO with a beating pattern, having approximate period
∆ν0 ≃ 1 at large fillings or low magnetic fields. The re-
sistivity peaks or valleys locate at integer fillings. There
is a phase inversion, i.e., a change from the integer fillings
for peaks to the ones for valleys. These features are in
vivid contrast to graphene,46,47 where the SdHO valleys
locate in the vicinity of half-integer filling factors with-
out beating patterns, but analogous to the behavior of
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FIG. 2: (Color online) Curves of analytical expressions for
magnetoresistance versus average filling factor ν0. The blue
solid line is obtained from Eq. (33), while the red solid line is
directly calculated from Eq. (32) for the maximum kmax = 2.
The other parameters are the same as Fig. 1.

conventional 2D electron gas with spin-orbit coupling.18

Further, at large magnetic fields or small fillings, the pe-
riod of oscillation in monolayer MoS2 halves, which can
be seen clearly in the inset of Fig. 1. With an increase of
temperature, the amplitude of SdHO decreases rapidly.

At these low temperatures shown, contribution to the
frictional force mainly originates from electron-impurity
scattering, and thus resistivity Rxx ≃ −fei/(N

2e2v).
For δ-form intravalley short-range scattering potential
Uττ(q) = u0, the zero-temperature magnetoresistivity
Rxx can be expressed as

Rxx = − niu
2
0

N2e2

∑

qτ

q2x
∂Πττ

02 (q, ω)

∂ω

∣

∣

∣

∣

ω=0

=
niπu

2
0

N2e2l2B

∑

τss′

gτs(εF)gτs′(εF)

[
∫ +∞

0

dzzCτν
τs

′s′

τντss (z)

]

,

in which the density of states of electrons in the τth
valley with spin s at Fermi energy εF, gτs(εF) =
−
∑

n ImGτns(εF)/(2π
2l2B), can be rewritten, by means

of Poisson summation formula, as

gτs(εF) =
εF

πl2Bω
2
c

{

1 + 2

∞
∑

k=1

[

cos(2πkντs)

− kβ sin(2πkντs)
]

exp

(

−2k2
β2ε2F
Γ 2

)

}

, (31)

where ντs = ω−2
c (εF − ∆̄)(εF + ∆̄ − τsλ̄) is the filling

factor of electrons in τth valley with spin s, and β =
πΓ 2/ω2

c . For monolayer MoS2 even with low mobility
µ ∼ 10 cm2/Vs, the coefficient β ≪ 1, therefore, the
term with sine function could be omitted safely. In the
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case of high filling factor ντs, the integral

∫ +∞

0

dzzCτν
τs

′s′

τντss (z) = 2ντsδss′ ,

and the linear magnetoresistance can be written as

Rxx =
niu

2
0

2πN2e2
ε2F

l2Ba
4t4

∑

τs

ντs

[

1 + 2

kmax=∞
∑

k=1

cos(2πkντs)

× exp

(

−2k2
β2ε2F
Γ 2

)

]2

. (32)

Usually, on the account of the rapid decay of the expo-
nential function, one only needs to keep terms with k = 1
in the summation, leading to

Rxx =
niu

2
0

N2e2
ε2F(ε

2
F − ∆̄2)

πa6t6

[

1 + 4 cos (2πν0)

× cos

(

2πν0
λ

εF + ∆̄

)

exp

(

−2
β2ε2F
Γ 2

)

]

. (33)

This represents that the amplitude of oscillation is mod-
ulated by the second cosine function due to the spin-
splitting and there are nodes at λν0/(εF + ∆̄) = l ±
1/4 with l being an integer. Note that three smallest
nodes in positive regime corresponds to λν0/(εF + ∆̄) =
0.25, 0.75, 1.25 or ν0 = 6.4, 19.1, 31.9, in agreement with
the numerical calculation (see Fig. 1). However, the os-
cillating peaks at large magnetic field or small filling fac-
tor obey ∆(ν0) ≃ 0.5 in the figure, which cannot be ex-
plained by the above equation and is due to terms of
higher frequency. Because of the small value of β, the
product (βεF/Γ )2 may not be considerably larger than
one and the oscillating terms with k > 1 also may some-
what contribute to the total resistivity. Fig. 2 demon-
strates the results from the approximate expression (33)
and from (32) with k summing up to 2. It is clear that the
oscillation part of high frequency comes from the terms
with k = 2. It is noteworthy that this feature is irre-
spective of the half-integer filling in graphene due to the
electron-hole symmetry of zero Landau level for massless
electrons. In the absence of magnetic field, the resistivity
Rxx reduces to

R0 =
niu

2
0

N2e2
ε2F(ε

2
F − ∆̄2)

πa6t6
=

niu
2
0

Ne2
πa2t2N + ∆̄2

a4t4
. (34)

Despite the linear dispersion on momentum, this resistiv-
ity depends on the electron density owing to its massive
property, in contrast to the result of graphene.48 The
corresponding density N is 58× 1012 cm−2 when πa2t2N
equals ∆̄2 for the present parameters. Hence, for small
density resistivity R0 is inversely proportional to density
similar to the case of conventional 2D electron gas, while
for very large density R0 becomes independent of electron
density.
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FIG. 3: (Color online) Normalized magnetoresistance versus
filling factor ν0 for the case λ = 54meV (black solid line)
and λ = 0 (red dash line) at temperature T = 0.3K. Here
electron density N = 9.69 × 1012 cm−2, linear mobility µ0 =
600 cm2/Vs, and αΓ = 8. The inset shows the corresponding
experimental results, which are replotted as function of ν0.

To compare our theoretical result with recent experi-
mental observation,23 Fig. 3 presents the normalized re-
sistivity versus filling factor for another monolayer MoS2
with electron density N = 9.69 × 1012 cm−2 and linear
mobility µ0 = 600 cm2/Vs at T = 0.3K. The curves for
the cases with spin-orbit coupling λ = 54meV and with-
out spin-orbit coupling are plotted, respectively, as solid
and dash lines. Here the factor αΓ = 8. In the inset,
we replot the experimental result taken from Fig. 4(b) in
Ref. 23, as a function of average filling factor. For the ex-
perimental sample having low mobility, the Landau level
broadening is so large that the beating pattern can not
be observed. Nevertheless, the phase inversion of SdHO
peaks still shows clearly. As can be seen, ν0 = 5 cor-
responds to a position of SdHO peak, while ν0 = 12 is
for valley. The numerical calculation agrees with the ex-
perimental observation well. The red dash line for the
case of λ = 0, where the peaks always locate at integer
filling factors, is also plotted for comparison. We can see
that the spin-orbit splitting is very important for mag-
netotransport in monolayer MoS2, even for low-mobility
sample in which the full beating pattern of SdHO is not
easy to observe.

To investigate the intervalley scattering effect on the
SdHO, in Fig. 4 we plot the oscillating magnetoresistance
induced solely by the short-range intervalley disorder at
various lattice temperatures T = 0.5, 1.0, 1.5, 2.0, 8.0K.
Here the relaxation time τs = 1/(m∗niu

2
0) is set to be

1 ps. For the purpose of comparison, the SdHO induced
by intravalley short-range electron-impurity scattering is
also plotted in the inset of Fig. 4(a) for the same value of
relaxation time at T = 0.5K. It is seen that the magne-
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FIG. 4: (Color online) (a) Intervalley electron-impurity scat-
tering induced magnetoresistance vs the average filling factor
ν0 at different lattice temperatures T = 0.5, 1.0, 1.5, 2.0, 8.0K
when the relaxation time τs = 1ps. The inset shows the
intravalley short-range electron-impurity scattering induced
magnetoresistance at T = 0.5K for the same relaxation time.

(b) Magnetoresistance contributions R
(0)
xx , R

(1)
xx , R

(2)
xx and R

(3)
xx

versus the average filling factor at T = 0.5K.

toresistance induced by the intervalley collision, though
almost two order smaller than intravalley one, also ex-
hibits SdHO versus the average filling factor and the ex-
trema show up at integer fillings and the oscillation is
also modulated by the spin-orbit interaction with nodes
locating at the same positions as in the intrasuband case.
But the modulation appears much stronger than the in-
travalley one: with increasing temperature the amplitude
of SdHO decreases, while the envelope of oscillation still
exists even at T = 8.0K when the intravalley one dis-
appears. Especially, in contrast to the intravalley case,
there exists a regime AB (3 < ν0 < 8 or 9T < B < 24T),
in which the magnetoresistance almost vanishes.
All these can be referred to the fact that, in contrast

to intravalley case, the intervalley scattering hardly takes
place between two states having the same Landau in-
dex n > 0. The Landau levels ετns expressed in (6) for
n = 1, 2, 3, ..., can be written as ǫn,ι with ι ≡ τs. As
indicated in Eq. (21) the resistivity is proportional to the
product of DOSs of two close (contributory) Landau lev-
els around the Fermi energy. In the vicinity of Fermi

energy, for a fixed Landau index n the level separation
of different ι is almost independent of the magnetic field,
while the distance between Landau levels having same
ι but different Landau indexes n and n′ is proportional
to the magnetic field. Hence, at large magnetic fields
two contributory Landau levels of different ι must have
the same Landau index n. At low magnetic fields, the
Landau indexes of two contributory Landau levels may
not be equal to each other and their difference increases
with decreasing magnetic field. In Fig. 4(b) the magne-

toresistance R
(m)
xx , contributed from electron transitions

between two Landau levels with Landau-index difference
of m near Fermi energy, are plotted as functions of av-
erage filling factor ν0 at 0.5K. At low filling factors or
large magnetic fields, the energy distance between levels
with same Landau and spin indexes but different valley
indexes is smaller compared with that between Landau
levels with different Landau indexes, and we only need to
consider the transition between levels of different valleys

but having same Landau index ν0, leading to R
(0)
xx . For

low magnetic fields, contributions of electron transitions
between levels having different Landau indexes dominate.

Here, R
(1)
xx stands for contribution from the transitions

between ν0 and ν0 − 1 levels and those between ν0 and

ν0 + 1 levels. R
(2)
xx stands for contribution from electron

transitions between ν0 +1 and ν0 − 1 levels, and R
(3)
xx for

contribution from transitions between ν0 + 2 and ν0 − 1
levels and those between ν0 − 2 and ν0 + 1 levels. It is

found that R
(0)
xx + R

(1)
xx + R

(2)
xx + R

(3)
xx almost equals the

total magnetoresistance Rxx shown in Fig. 4(a).

R
(0)
xx becomes quite small when ǫν0,+ − εF & Γ and/or

εF − ǫν0,− & Γ, i.e., it is almost zero for magnetic fields
lower than a certain value. On the other hand, with the
increase of the magnetic field, the level distance of dif-

ferent Landau indexes enlarges, leading to R
(1)
xx almost

vanishing for magnetic fields larger than a certain value,
which is determined by ǫν0,− − ǫν0−1,+ & Γ (so do for

R
(2)
xx and R

(3)
xx ). In the range between these two magnetic

fields, the total magnetoresistance appears very small.
For the present parameters (set ǫν0,+ − ǫF = 1.3Γ), this
range is 8.8T < B < 23.3T or 3.1 < ν0 < 8.2, as indi-
cated AB in the Fig. 4.

B. Magnetophonon resonance

Now we concentrate on the case of higher tempera-
ture up to room temperature. First, we consider the
suspended MoS2. The total magnetoresistances Rxx in-
duced by the intravalley screened Coulombic electron-
impurity scattering (d = 0) and all above-mentioned in-
travalley and intervalley electron-phonon couplings ex-
cept SOP mode, are plotted as functions of magnetic
field at various high temperatures in Fig. 5(a). The Rxx

increases with the increment of magnetic field, accom-
panying an oscillation at large fields. The behavior of
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FIG. 5: (Color online) (a) Total longitudinal magnetoresis-
tance Rxx in suspended MoS2 versus magnetic field B at high
temperatures T = 150, 200, 250, 300K. The inset shows the
main contributions from electron-phonon scattering, where
Ros = Rac + Rop. (b) The impurity-induced magnetoresis-
tance Rim is plotted as a function of magnetic field B. (c) The
magnetoresistance induced by intravalley transverse (longitu-
dinal) acoustic phonons RTA(RLA) versus the ratio ωa/ωB.
(d) The magnetoresistance induced by intravalley homopolar
(Fröhlich coupling) optical phonons RHP(RFR) versus the ra-
tio ωo/ωB at temperatures T = 100, 200, 300K. The other
parameters are the same as Fig. 1.

resistivity increase with increasing magnetic field is due
to impurity-induced resistivity Rim as shown in Fig. 5(b).
Since SdHO almost disappears at this temperature, the
small oscillation in Rxx originates from phonon scatter-
ings. With ascending temperature, Rim descends, while
the total Rxx increases because of the increasing con-
tributions from electron-phonon scatterings. It is found
that, in addition to the electron-impurity scattering, the
contributions of the intravalley transverse and longitu-
dinal acoustic phonons, RTA and RLA, and those of ho-
mopolar and Fröhlich coupling optical phonons, RHP and
RFR, play a dominant role in the total resistivity. The
inset of Fig. 5(a) shows that the oscillation arises mainly
from the optical contribution Rop = RHP + RFR. The
acoustic one Rac = RTA + RLA gives almost a constant
value at room temperature.

Actually, the acoustic contributions RTA, RLA also os-
cillate with magnetic field, especially at relatively low
temperature, exhibiting the so called MPR induced by
acoustic phonons.34,51–53 The magnetoresistance peaks

occurs when the energy of the optimum phonons ωa =
2kFvac equals an integral multiple of the inter-Landau-
level distance ωB near Fermi surface. Here vac = vTA
or vLA is the sound velocity for the transverse or lon-
gitudinal mode. The energy distance ωB between two
intravalley Landau levels with same spin around Fermi
energy εF is given by

ωB ≈ ω2
c

2
√

(∆̄− τsλ̄)2 + ντsω2
c

≈ ω2
c

∆
. (35)

Fig. 5(c) indeed shows the oscillation of magnetoresis-
tance for both RTA and RLA with inverse magnetic field
having period ∆(ωa/ωB) ≃ 1. With increasing temper-
ature, the peaks at high ratio ωa/ωB tend to disappear
gradually. Further, the peak slightly shifts to smaller
ωa/ωB position and the magnetoresistance due to longi-
tudinal modeRLA becomes larger than the transverse one
RTA in view of enlarged phonon energy with the rise of
temperature. In the present case with relatively low mo-
bility, the MPR induced by acoustic phonons has little
influence on the total magnetoresistance. However, for
monolayer MoS2 having ultrahigh mobility, the acoustic
electron-phonon coupling contributes dominantly at low
temperature, hence this MPR could be observable.
With further increase in lattice temperature, the

electron-optic phonon coupling becomes more and more
important in comparison with other scattering mecha-
nisms. Due to the large coupling coefficients, the re-
sistivities induced by the homopolar and Fröhlich in-
teractions have largest values. It is well known that
the resistivity exhibits MPR when the energy of opti-
cal phonons ωo equals the distance of Landau levels. In
monolayer MoS2 for εF− ∆̄ ≪ ∆̄, the intravalley Landau
levels are almost evenly spaced and the level distance
approximately equals ωB. In Fig. 5 (d) the magnetore-
sistance RHP or RFR is plotted versus the ratio ωo/ωB,
where ωo = ΩΓ,HP or ΩΓ,LO is respectively the frequency
for homopolar or Fröhlich coupling. It is true that the
magnetoresistances show peaks or valleys at ωo/ωB = l,
i.e. magnetoresistance oscillates with inverse magnetic
field having period ∆(ωo/ωB) ≃ 1. However, in con-
trast to the usual MPR induced by optical phonons in
two-dimensional electron gas, the oscillating resistivity
in MoS2 is modulated due to the spin splitting by an

approximate factor cos
(

2π ωo

ωB

λ
εF+∆̄

)

analogous to the

SdHO. Hence, there are nodes at ωo

ωB

λ
εF+∆̄

= l ± 1
4 . This

leads to the nodes appearing at ωo/ωB = 19.1, 31.9, in
accordance with Fig. 5(d).
Now we study the MPR for MoS2 on a ZrO2 sub-

strate. It is found that the frequencies of SOPs for
ZrO2 are so small that they play an important role in
electron transport.35 Hence, in Fig. 6 magnetoresistances
for MoS2 on ZrO2 are plotted versus magnetic field. In
the calculation, the elastic scattering is assumed to be
the intravalley remote-impurity scattering distributing at
d = 1nm from the single layer, the inelastic scatterings
are due to all the intrinsic modes mentioned above and



10

ÿ

�

�

�

�

�

�

� ÿ� �� ��

	 � ��� �

	 � ��� �







��

� � �

� � 	 �

�
��

�
�
��

�
�

Ω

�

� ÿ� �� ��

���

���

���

���

���

	 � ��� �

	 � ��� �

µ
�

� ��� ��
�

 !"

α
Γ

� �

� � �

�
��

�
�

Ω

�

� � 	 �

ÿ� �� �� �� �� ��
���

��ÿ

���

���

µ
�

� ���� ��
�

 !"

α
Γ

� �

� # �

�
$%
&

'
(

�
�

Ω

�

Ω) * +
ΓΓΓΓ, -.

 ω
/

� ÿ� �� ��

���

���

���

���

ÿ��

0 � �1ÿ�
*�

��
2�

3456 7 8 9:: ;

3456 7 8 <:: ;

3=>6 7 8 9:: ;

3=>6 7 8 <:: ;

3 ? @ A
BC

6 7 8 9:: ;

3 ? @ A
BC

6 7 8 <:: ;

� D �

�
E
F

�
�
GH

�
�

$%
&

'
(

�
�

Ω

�

� � 	 �

FIG. 6: (Color online) Magnetoresistance in ZrO2/MoS2/Air
structure at high temperature T = 200, 300K. Here the elec-
tron density N = 7 × 1012 cm−2. In (a) and (b), the zero-
field mobility at zero temperature µ0 = 4000 cm2/Vs and
αΓ = 3, while in (c) and (d) µ0 = 600 cm2/Vs and αΓ = 8
for another sample. (a) Total magnetoresistance Rxx and
impurity-induced one Rim versus magnetic field B. (b) The

SOP-induced magnetoresistance R
(1)
SO is plotted as a function

of Ω
(1)
Γ,so/ωB. (c) The total magnetoresistance for the sample

with low mobility versus the magnetic field. (d) The magne-
toresistance induced by intravalley homopolar, Fröhlich cou-

pling optical phonons, and SOP RHP, RFR, and R
(1)
SO versus

magnetic field.

the intravalley SOPs. qeffTF used in the screening of elas-
tic scattering is estimated to be 0.3qTF from Fig. 2 in
Ref. 35. Two samples with different zero-field mobilities
are considered for comparison. For the clean system, the
remote impurity scattering weakens the quick increase of
impurity-induced resistivity with magnetic field in con-
trast to suspended case, leading to more evident MPR in
the total magnetoresistance. On the other hand, in com-
parison to suspended MoS2, the MPR behavior becomes
more complex because of the crucial influence of SOPs,

especially the mode with low frequency Ω
(1)
Γ,so. The resis-

tivity R
(1)
SO induced by the first SOP mode is plotted in

Fig. 6(b) versus Ω
(1)
Γ,so/ωB. The resonant feature of R

(1)
SO

is similar to other intrinsic modes. However, for another
sample with low mobility in heavily overlapping-Landau-
level regime, the MPR almost disappear. The magne-
toresistance increases monotonously with magnetic field,

and only a small oscillation occurs at very large field. In
Fig. 6(d), contributions of three important optical modes
are plotted.
The effect of a SiO2 substrate on the MPR of MoS2

is also tested and it is found that this dielectric plays
negligible role due to its large frequencies of SOPs.

IV. SUMMARY

In summary, we have studied the linear magnetotrans-
port in single layer MoS2 employing a balance equa-
tion analysis by including spin-orbit coupling and all
kinds of intravalley and intervalley electron-impurity and
electron-phonon scatterings.
The existence of an energy gap between the conduction

and valence bands, or lack of electron-hole symmetry of
the zero Landau level in MoS2, makes its magnetotrans-
port behavior more like a conventional 2D electron gas
than graphene: the resistivity peaks or valleys of its low-
temperature SdHO, resulting either from intravalley or
from intervally elastic scatterings, locate at integers of
filling factor ν0.
The large spin-orbit coupling in the system, however,

gives rise to a significant modulation or beating of the
magnetoresistance oscillation, or a phase inversion of the
oscillation peaks. The agreement between theoretical
prediction and recent experiment on the phase inversion
of SdHO peaks demonstrates the importance of the spin-
orbit splitting in magnetotransport even for systems of
low-mobility. The clear beating pattern of the oscillating
magnetoresistance should appear in the well-separated
Landau-level regime in high-mobility systems.
On the other hand, the behavior of magnetoresistance

oscillation at large magnetic fields or small filling factors
appears different for intravalley and intervalley scatter-
ings: the period of oscillation associated with intraval-
ley scattering may halve due to the weak decay of the
second-order oscillating term, while in the case of inter-
valley disorder much stronger spin-orbit induced SdHO
modulation shows up that there exists a magnetic-field
range in which the magnetoresistivity almost vanishes.
Of course, intervalley elastic scattering contributes only
a much smaller part to the total magnetoresistance than
that from intravalley ones.
At high temperatures, the magnetoresistance oscilla-

tion arising from MPR may show up in the smooth
impurity-induced resistivity background both for sus-
pended and nonsuspended samples with high mobility.
Both acoustic phonons (mainly intravalley transverse and
longitudinal acoustic modes) and optic phonons (mainly
homopolar and Fröhlich modes) can induce MPR. A
beating pattern with the same frequency as in the SdHO
also appears in the optical-phonon-induced MPR due to
spin-orbit coupling. For the single layer on a substrate,
another resonance due to SOPs may occur, resulting in a
complex behavior of the total magnetoresistance. How-
ever, for nonsuspended layer with low mobility, the mag-
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netoresistance oscillation almost disappears and the re-
sistivity increases with field monotonously.
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