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Abstract	
  
 
Photon-based spectroscopies have played a central role in exploring the electronic 
properties of crystalline solids and thin films. Though they remain a powerful tool for 
probing the electronic properties of nanostructures, they are limited by lack of spatial 
resolution. On the other hand, electron-based spectroscopies, e.g., electron-energy-loss 
spectroscopy (EELS) are now capable of sub-Angstrom spatial resolution. Core-loss 
EELS, a spatially-resolved analog of X-ray absorption, has been used extensively in the 
study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss 
EELS in an aberration-corrected scanning transmission electron microscope, which 
probes low-energy excitations, combined with a theoretical framework for simulating and 
analyzing the spectra, is a powerful tool to probe low-energy electron excitations with 
atomic-scale resolution. The theoretical component of the method combines density-
functional-theory (DFT) based calculations of the excitations with dynamical scattering 
theory for the electron beam. We apply the method to monolayer graphene in order to 
demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly 
periodic structure. The method is a complement to optical spectroscopy as it probes 
transitions entailing momentum transfer. The theoretical analysis identifies the spatial 
and orbital origins of excitations, holding the promise of ultimately becoming a powerful 
probe of the structure and electronic properties of individual point and extended defects 
in both crystals and inhomogeneous complex nanostructures. The method can be 
extended to probe magnetic and vibrational properties with atomic resolution. 
   
 
 
 
 



I. INTRODUCTION 
Optical spectroscopies along with energy-band theory were the cornerstones upon 

which modern solid-state physics was founded. Ultraviolet and X-ray photoemission 
spectroscopies (UPS and XPS) were subsequently instrumental in the field of surface 
science. X-ray emission and absorption spectra (XAE and XAS) and their many variants, 
e.g., resonant x-ray scattering, have also played significant roles in probing the electronic 
properties of solids. Infrared absorption has been a powerful probe of phonons and low-
energy electronic excitations. The spatial resolution of these spectroscopies, however, is 
quite limited by the respective photon wavelengths and other factors.[1,2] Nevertheless, 
they continue to make major contributions in the study of nanostructures.  

Electron-based spectroscopies have the advantage of ultrasmall de Broglie wave 
lengths, which enable high spatial resolution. Scanning transmission electron 
microscopes (STEMs) employ a highly focused electron beam, which produces direct 
images of crystalline films with atomic resolution. The primary imaging mode of the 
STEM is Z-contrast imaging, which relies on high-angle Rutherford scattering by atomic 
nuclei[3]. The intensity of scattered electrons is proportional to approximately the square 
of the atomic number Z. In addition, inelastic scattering of the focused beam yields 
spatially-resolved electron-energy-loss spectra (EELS). The advent of aberration-
corrected (S)TEMs has led to significantly enhanced spatial resolution[4-7] and ushered 
the era of “core-loss” EELS (electron excitations from core levels, analogs of XAS) with 
atomic resolution, especially at lower accelerating voltages[8-11]. These spectra enable 
the construction of  “chemical maps” that are constructed by plotting the integrated EELS 
of a characteristic edge of individual atomic species (e.g. an oxygen map constructed by 
plotting the integral over 10-20 eV of the oxygen K edge)[12-15]. Similarly, maps of 
individual features of near-edge structure, e.g. the height or integral of a peak or the 
separation between two peaks, can be constructed[10,16]. It was recently demonstrated 
that such maps can be simulated by using a combination of density functional theory 
(DFT) to describe core-electron excitations and dynamical scattering theory to describe 
the evolution of the STEM’s focused electron beam in the sample, including interference 
effects and the collection of the scattered electrons in the detector.[6,11,17] These 
simulations enable detailed analysis of the origins of excitations that give rise to 
individual spectral features and their variations as a function of the local environment.   

In addition to the core-loss EELS, so-called “low-loss” EELS arise from low-energy 
excitations, typically valence-electron excitations (valence-electron-energy-loss spectra 
or VEELS).  These are the analogs of optical and infrared absorption spectra. The key 
difference is that, in a perfect crystal, optical and infrared absorption arises from “direct” 
transitions in the Brillouin zone as low-energy photons carry negligible momentum.  In 
contrast, VEELS in a perfect crystal arises from transitions with nonzero momentum 
transfer. In this sense, VEELS is a complement to optical and infrared spectroscopies. 
Published VEELS maps often exhibit features arising from defects[18] and 
interfaces[19,20]. Previous theoretical work has focused on plasmon excitations 



under plane-wave illumination[21,22]. Atomically-resolved maps can also be 
obtained due to localization of phonon excitations[23]. Even in a perfect crystal, 
however, Bloch functions have spatial variations, whereby the question arises whether 
the spatial variation of valence--electron excitations can be captured by suitable VEELS 
maps. Extrapolation of arguments based on core-loss EELS has led to inferences that 
VEELS in perfect crystals is unlikely to yield sufficient contrast at different positions of 
the focused beam to generate atomic-resolution spatial maps[24-26]. 

In this paper, we report experimental VEELS data in pristine monolayer graphene 
that demonstate the existence of atomic-scale contrast. We also report the development of 
a corresponding theory and computer codes, based on DFT and dynamical scattering 
theory, that yield simulations of VEELS maps, enabling a detailed analysis of the 
transitions that underlie the spectra. This initial application to a perfect crystal establishes 
low-loss EELS as a powerful atomic-resolution complement of optical and infrared 
spectroscopies. Defects and interfaces naturally induce wave function localization, 
whereby the corresponding low-loss EELS has the potential of a powerful probe of 
electronic properties of defects in crystals and of nanostructures with atomic resolution. 
Data are still lacking, but the advent of new monochromators that give high energy 
resolution and possible new solid-state detectors with higher signal-to-noise ratio promise 
that such data will be forthcoming. The methodologies and analysis presented here are 
uniquely suited for such data. For example, one can anticipate VEELS maps that provide 
characteristic signatures of defects with more than one stable configurations, can detect 
interdiffusion at interfaces, and many other applications. Ultimately, the present method 
can be extended to magnetism as in electron magnetic chiral dichroism and to phonons.    

The rest of this article is organized as follows: In Sec. II, we present the experimental 
technique and conditions under which the STEM-EELS experiments were performed and 
discuss the data obtained on a monolayer of pristine graphene. In Sec. III we introduce 
the theoretical framework of our method that allows us to simulate the experiment and 
directly compare with the data. In Sec. IV we discuss in detail the theoretical results and 
we sumarize our findings in Sec. V. Some further details regarding the theoretical 
simulations are discussed in the Appendix.  

II. EXPERIMENTAL	
  DATA	
  
	
  

The STEM-EELS experiments were performed with a Nion UltraSTEM, equipped 
with a cold field emission electron source and a corrector of third and fifth order 
aberrations, operating at 60 kV accelerating voltage. After aberration correction, this 
microscope is capable of providing 1.065 Å information transfer limit in Z-contrast 
imaging, with a probe current of ~110 pA. EEL spectra were collected using a Gatan 
Enfina spectrometer, with an energy resolution of 0.5 eV for 0.1 eV/channel energy 
dispersion. The convergence semi-angle for the incident probe was ~30 mrad, with an 
EELS collection semi-angle of ~48 mrad. Under these conditions we obtain that the 
maximum momentum transfer occurred in the experiment is about 6 Å-1, which is large 



enough to trigger excitations through the whole Brillouin zone. In order to increase the 
signal-to-noise ratio and avoid non-locality effects, the majority of scattered electrons are 
collected. For the results shown in this manuscript, EEL spectrum images were collected 
from 0.5 to 134.5 eV energy-loss range with 0.1 eV/channel dispersion, 0.02 s/pixel 
dwell time, and 0.257 Å pixel size. Z-contrast images were collected from ~86 to 200 
mrad half-angle range. The VEEL spectrum images were obtained by plotting the 
VEELS intensity integrated in different energy-loss ranges from the raw data, without 
any background subtraction or filtering, as a function of probe position.  

Figure 1(a) shows a STEM Z-contrast image of monolayer graphene that was 
simultaneously acquired with a VEEL spectrum image. Figure 1(b) shows the averaged 
VEEL spectrum, which displays two main features, namely the π and π+σ peaks at 4.5 
eV and 15 eV, respectively. We mapped out the spatial distribution of electronic 
excitations by integrating the intensity at the three different energy-loss regions that are 
highlighted in Fig. 1(b).  

The image in Fig. 1(e) obtained by integrating the spectra in the 13-26 eV range  
does not show any atomic resolution or contrast, in apparent accord with the common 
belief that VEEL signals are delocalized[24-26]. Strikingly, the VEEL spectral image 
obtained within the intermediate energy range of 26-42 eV, Fig 1(d), displays a spatial 
resolution similar to the one observed in the Z-contrast image. We provide a quantitative 
assessment of the experimental images by defining the contrast using the formula 

 where IMAX and IMIN maximum and minimum intensities in the 
image. This gives us a value of 3.1% for the contrast. In Fig 1e, although the image is 
noisier due to the lower intensity in this energy range, we are able to measure a weak 
atomic contrast of about 0.4% by excluding the noisiest areas of the image.  

These results are not simply preservation of elastic image contrast[27], as seen in Ref  
[25],   since no contrast is observed in the integrated zero-loss peak (ZLP) image and the 
bright field image shows reverse contrast as shown in Fig. 2. Figures 2a and b present the 
simultaneously acquired STEM-HAADF image and the ZLP spectrum image in the 
energy range of -0.4 to 0.8 eV. While the HAADF image is noisy due to the limited 
number of pixels and short acquisition time, the graphene lattice can still be observed. 
Since the image in Fig. 2(b) is formed by an incoherent sum of elastically scattered 
electrons over a large detector collection angle, it shows no discernible coherent 
phase contrast. This should be compared to the weak inverse contrast exhibited by 
the conventional bright field image shown in Fig. 2(d), which was simultaneously 
acquired with the HAADF image in Fig. 2(c).  If the results shown in Figure 1d were 
simply preservation of elastic image contrast, similar level of image contrast should also 
be observed in the ZLP image. In contrast, the ZLP spectrum image is dominated by the 
noise from the electron source and shows no lattice information.  

These results, thus, confirm that preservation of elastic image contrast is not the 
mechanism for the lattice contrast observed in our experimental VEELS image and that 
the spatial resolution of VEELS imaging can reach even the atomic level. We also 
performed STEM-VEEL spectrum imaging with different EELS collection semi-angles 
(35 mrad), different energy dispersions (0.05 eV/channel, 0.3 eV/channel), different 
energy-loss collection onsets, and atomic-resolution VEEL spectrum images were 
consistently obtained as those shown in Fig. 1.  

 

( )MAX MIN MAX/C I I I= −



III. THEORETICAL SIMULATIONS: Inelastic Image Formation Based On 
Valence Electron Excitations. 

The conditions under which atomic resolution is possible cannot be revealed by the 
experiment solely, but requires a theoretical approach that takes into account the band 
structure effects in combination with the interactions with the fast electrons of the probe.  
The transition induced by the fast electron between different electronic states within a 
crystal is moderated by the Coulomb interaction and the real space transition matrix 
element hence has the form 

   (1) 

where  is the coordinate of the fast electron and the crystal coordinate. Here  is the 
electron charge and  the permittivity of free space. Also  and  are the electronic 
crystal wavefunction for the states  and  with eigenvalues  and respectively. 
Eq. (1) can be seen as a convolution of the probe intensity with the long-range 
Coulomb interaction, which introduces the delocalization of the excitation. For 
transmission electron microscopy it is usual to work in the projected potential 
approximation[29,30]. Writing, , we define 

  , (2)  

where is the momentum transfer to the crystal along the beam (z) direction 
determined by the energy-loss  and the incident energy  by the formula 

and t the crystal thickness. In order to calculate the inelastic image for 
the transition from the ground state 0 to the excited state n we need to construct the 
inelastic potential for this particular transition[30] 

  ,  (3) 

where  is the energy loss of the fast electron and  the mass of the electron. t is 
an effective thickness of the graphene layer, which drops out in the final equation for the 
measured spectral intensity (see below). For a single sheet of graphene we may neglect 
channeling of the fast electron and write the image formed by this particular transition as 
a convolution with the probe intensity[31-33] 

   (4) 

Here υ is the velocity of the fast electron, is the probe position and  the 
probe wave function (see Appendix for more details). Over the effective range of the 
projected potential the probe intensity may be considered to be approximately constant in 
the z-direction. In this way Eq. (4) can be written as 

   (5) 
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  The inelastic image is then determined by a 
linear combination of transitions that lie within a given energy range. For computational 
reasons it is more practical to calculate the transition matrix elements in the reciprocal 
instead of the real space as in Eqs (2)--(3). The projected transition matrix element is 
given by the formula 

   (6) 

as a function of the transverse momentum transfer  and for fixed  The momentum 
transfer  is connected with the wave vectors and  of the fast electron before and 
after the inelastic scattering by the formula . Note that, the delocalization 
of the VEEL excitation is expressed by the term  in Eq. (6). The real space 
transition matrix element is then calculated via an inverse Fourier transform of the 
reciprocal space matrix element. The transition matrix element in Eq. (6) is calculated 
within the formalist of the Projector Augmented Wave method (PAW) method and is 
further discussed in Appendix B. 

We have, therefore, developed a theoretical scheme that allows us to simulate the 
images that are formed by valence electron excitations. Within the framework of this 
theory we are able to study VEELS through the low-loss energy range – up to 50 eV 
above the Fermi level—on an equal footing. Our method allows us to calculate images 
within a given energy range or between particular electronic states without invoking the 
dipole approximation. The latter is essential for a realistic simulation of STEM-VEELS 
experiments where a nonvanishing amount of momentum transfer is always present. 
Within this scheme, such images are essentially equivalent to the inelastic scattering 
cross section that describes the excitations of valence electrons through inelastic 
scattering by the fast electrons of the microscope probe.  

With the theoretical method described here we can provide a direct simulation of the 
experimental results of Fig. 1.  Figure 3(a) shows the calculated Z-contrast image, which 
displays the hexagonal structure of graphene. Figure 3(b) shows the calculated area-
averaged VEEL spectrum. We see that the theoretical result is in good agreement with 
the experimental data. The two main calculated graphene peaks are located at about the 
same energies as in the experimental data with a slight shift of about 1 eV toward lower 
energies. The latter is due to excitonic effects[34], which were neglected in the 
calculations.  

We continue now with the calculation of VEELS images by applying Eq. (5) and 
integrating over the same energy ranges as in Fig. 1. Within the intermediate energy 
range the image displays the hexagonal symmetry of pristine graphene with a contrast 
about 4.1%, which is consistent with the experimentally obtained value of 3.9% as shown 
in Fig. 1(d).  We obtain a low contrast about 1.9% for the low energy region -- Fig. 3(c)-- 
whereas for the higher energies it increases to 3.9% but without showing a graphene-like 
structure. Note that noise is always present is such experiments making the observation of 
a weak contrast rather difficult. The latter is demonstrated in the lower halves of Fig. 3(c-
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e) where a certain level of noise with a standard deviation of 1% is added to the simulated 
images. In this way any contrast is disappeared in Fig 3(c) while the graphene-like 
structure in Fig. 3(d) remains intact. To further compare the experiment with the 
theoretical results in a more quantitative way we consider the line profile measurements. 
In Fig. 4 we show the line profile of the experimental VEELS image of Fig. 1(d) and the 
corresponding ones of the simulation derived by the images in Fig. 3(c-e). The 
measurements are taken along a line shown in Fig. 4(b). We observe that the maximum 
intensity within the energy range of 26 to 42 eV for both experiment and simulation 
coincides with the positions of the carbon atoms, while the minimum intensity occurs at 
the center of the hexagonal rings. On the other hand the line profiles for the lower or the 
higher energy diverges from a graphene-like profile as we clearly see in Fig. 3(c) and (e). 
We conclude that our theoretical technique provides a realistic description of VEELS 
excitations, which is in accordance with the STEM-EELS experiments and therefore can 
be used to further study the nature of the experimental results. The latter is the focus of 
the rest of this paper. 
 

IV. 	
  DISCUSSION	
  
The theoretical technique discussed in Sec. III allows us to examine the contribution 

of each transition separately as a function of electron probe position, and so identify the 
origin of the experimentally observed contrast. In order to identify the character of a 
particular VEELS excitation one needs to study the character of the underlying states. 
The degree of atomic character is determined by the projection of the electronic Bloch 
wave functions onto a spherical harmonic centered on a particular atomic position. The 
latter is defined by the formula by integrating within a sphere around a 
particular atomic position. That quantity becomes large when the overlap between the 
states involved increases, and therefore provides a qualitative criterion of the atomic 
character of the electronic wavefunction. This analysis reveals the complex character of 
the band structure of pristine graphene. As shown in Fig. 5, the graphene conduction 
band consists of isolated “islands” of states where the atomic character is high in 
comparison with the surrounding states. These states can be identified as having s, pz, pxy 
or d character, reflecting the existence of sp2 hybridization in the hexagonal graphene.  

In Fig. 6 we focus on excitations at the Γ point in the Brillouin zone (BZ) -- where the 
atomic character of the states is highest -- and show images from excitations between 
states with maximum atomic character. In this way, we demonstrate the character of a 
VEELS image with respect to the character of the underlying exitations. Such images 
reflect the symmetries of the involved states, for example px or py orbitals on each atom, 
which may differ from the hexagonal symmetries of graphene. Figures 6 (a), (b) and (c) 
show calculated images from the non-dipole allowed s to s, pz to pz and pxy to pxy 
excitations correspondingly. We observe that all three images exhibit a graphene-like 
structure with a very high contrast and therefore contribute the most to the total VEEL 
image contrast. Figure 6(d) shows the spectrum image of a dipole-allowed transition that 
also exhibits atomic-like character. The images due to pz to d transitions in Fig. 6(e) show 
strong atomic contrast, but less localized on the C atom sites than the pz to pz excitations 
in Fig. 6(b). In particular, the s to pxy transitions in Fig. 6(f) show atomic resolution with 
reversed contrast, their maxima not coming from the carbon sites. Such contributions 
lower the overall spectroscopic image contrast.   

Pnlmk = Ylm Ψnk



Using the transitions shown in Figs 6 (a) and (f) as an example, we examine the 
underlying mechanisms resulting in the simulated image contrast. Fig. 7(a) reproduces 
the image Fig. 6(a) while Fig. 7(e) and (i) contribute equally to the formation of the 
delocalized image Fig. 6(f) which comes from excitations to a two-fold degenerate pxy 
state. These images are formed by convolution of the probe intensity with the inelastic 
scattering potentials shown in Fig. 7(b), (f) and (j) respectively, as discussed in section 
IIa. While Fig. 7(b) is highly localized on the atomic sites, Figs 7(f) and (j) show 
intensity inside the graphene ring albeit with two localized features. This is reflected in 
the Fourier transform of the Figs 7(b), (f) and (j) shown in Figs 7(c), (g) and (k) 
respectively. Fig. 7(c) shows significant intensity at large q values corresponding to 
localized features in the potential. Figs 7(g) and (k) are dominated by low q features 
resulting in a less localized potential with a higher background.  Figs 7(d), (h) and (l) 
show the projected transition matrix elements, given by Eq. (6), for each case. Fig. 7(d) 
indicates a high contribution from transitions with significant transverse momentum 
transfer. This is reduced in Figs 7(h) and (l) except for two lobes corresponding to the 
two localized features in Figs 7(f) and (e). It is clear from Fig. 7 that electrons scatter 
only with momentum transfer smaller than 1 Å-1, which is consistent with the fact 
that the experimental spectra do not change with the size of the collection apertures 
used in the experiment (see section II). 
       The atomic character of the states decreases away from the Γ point in the BZ as 
shown in Fig. 5. Figure 8(a) shows the joint density of the non-dipole excitations 
including all k-points of the BZ. Due to momentum transfer, which is always present in 
VEELS, the joint density includes also indirect excitations. It is clear that the character of 
the excitations varies as a function of the energy loss. Excitations with a pz character 
(blue) are found mostly at lower energy losses, while the pxy and s excitations are located 
within the 10-40 eV range. At higher energies the graphene band structure mostly 
consists of delocalized d states with a weak atomic character. In order to associate the 
resulting images with the character of the excitations we calculate images within 2 eV 
energy windows where the atomic character is maximized. The obtained images are 
shown in Fig. 8(b-d). It is clear that the contrast of these images is significantly reduced 
compared to Fig. 6, much closer to that observed experimentally. Figure 8(e) shows an 
image in which the intensity is not localized at individual atomic sites, but blurs two 
atomic sites together, consistent with Fig. 2(e).  The results confirm that the origin of the 
experimental contrast lies in these atomic-like transitions. Finally, for energy losses 
around 50 eV, as in Fig. 8(e), we obtain a low-intensity image, as compared to the rest of 
the images, with low contrast at the carbon sites. This is due to the lack of highly 
localized excitations for energies higher than 40 eV. Any atomic contrast within that 
energy range originates from excitations to states with a weak d character. We, thus, 
conclude that the graphene-like images are mostly controlled by excitations that are 
highly localized. The lower contrast seen experimentally is due to contributions from 
dipole excitations showing weaker or reversed contrast.  

The character of a VEELS image depends strongly on the energy-loss integration 
window. As we show in Fig. 9 by shifting the energy range by a few eVs we obtain 
images with various patterns. The images in Figs 9(b-d) show the strong dependence on 
the energy loss. The lower energy image (b) shows only one bright spot something that is 
reversed at the higher energy range (d). At the 30eV image we observe again the 



graphene structure with a comparatively high contrast of 5.3%. The latter is a direct 
indication that the total image at the 26-42eV mainly originates by the excitations that are 
located within a narrow window at around 30eV. This result is due to interplay between 
the different types of excitations that co-exist within the intermediate energy range. 
Increased signal to noise ratios will open the possibility of experimental measurement 
from reduced energy windows allowing the exploration of such transitions.  

We note further that some of the images in Fig. 8 exhibit the full graphene lattice 
and others do not. We expect s-s and pz-pz transitions to exhibit the full graphene 
lattice because s and pz orbitals have the full point-group symmetry of the lattice. 
This feature is evident in Fig. 6 where we plotted single excitations. In contrast, px 
and py orbitals do not have the full point-group symmetry (graphene does not have 
90° rotation symmetry). As a result, some of the images in Fig. 8, depending on the 
energy range, do not exhibit the graphene lattice.  

It is clear from Fig. 8(d) that the graphene-like image is directly associated with the 
existence of s-to-s excitations within the 29-31 eV window. The states involved in such 
excitations have the point-group symmetry of graphene and therefore yield an 
image that resembles a graphene lattice. On the other hand, images that come from pz 
excitations at 8-10 eV , Fig. 8b, and pxy excitations at 20-22 eV, Fig 8(c), show a rather 
distorted graphene-like pattern since one spot is much brighter than the other. To 
understand that feature, one must consider that states with pxy character are degenerate at 
the Γ point. The one-to-one mixing of the px and py orbitals at the high symmetry BZ 
points results in the graphene-like image of Fig. 3c. However, if we split the image into 
partial ones, those coming from pairs of states within the subspace, we see that they 
exhibit spatial distortions due to the variant px-py mixing 

To demonstrate the effect of degeneracy on the formation of VEELS images we show 
in Fig. 10 the partial images that contribute equally to the total image in Fig. 6(c), which 
comes from a 4-fold degenerate pxy excitation at the G point. In Fig. 9(e), we plot the line 
profiles for the partial images (a-d) (y-axis values are normalized to the maximum value 
of the total image). Although none of the partial line profiles shows graphene-like 
behavior the total image restores the correct profile. The variant spatial dependence of the 
partial images is due to different px –py mixing. Only the total image has a 50%-50% 
mixing between px and py and hence conserves the graphene symmetry. In the general 
case –where excitations between all k-points of the BZ are included- the excitation of a 
single partial image is now attainable due to the breaking of the degeneracy. Therefore 
excitations between pxy states do not contribute at the graphene-like images but 
introduces deviations from the hexagonal pattern.  

Such distortions affect images only at k-points away from the high-symmetry points 
where the degeneracy of the pxy is broken. Therefore, the high concentration of pxy 
excitations around 20 eV is responsible for the distorted graphene images calculated 
theoretically. Although at lower energies the concentration of pz excitations is higher, the 
images are still distorted due to strong contributions that come from the remaining pxy 
excitations. Such contributions are negligible at much lower energies -about 5 eV- and 
the graphene-like pattern is restored. The latter is clearly demonstrated in Fig. 11 where 
VEELS images in the two main peaks of the EEL spectrum, namely the π and π+σ peaks,  
are shown. Both images display very low contrast while only the π peak image exhibits 
a graphene-like structure. According to Fig. 8 the p peak lies within the areas where the 



pz excitations are dominant while for the π+σ peak the pxy excitations contribute in an 
equal footing. Because of that the image that corresponds to the π peak is graphene-like 
while the π+σ peak gives a distorted image.  

V. CONCLUSIONS 

In summary, we have introduced a powerful experimental and theoretical 
methodology that probes low-energy excitations in solids and nanostructures with atomic 
resolution, complementing optical spectroscopies that have limited spatial resolution. We 
demonstrated that certain electron--beam--induced valence--electron excitations contain 
atomic-scale information that can be revealed by suitable STEM-VEELS maps. We 
developed a theoretical scheme that allows the direct simulation of such maps. This 
scheme further allows us to investigate the contributions of individual excitations to the 
observed features and identify their spatial and orbital characteristics. In this first 
implementation of the technique we chose pristine graphene for computational efficiency, 
but also because it provides unambiguous evidence for the atomic-scale contrast even in 
the absence of defects, which naturally induce localization of electronic states. 
Experimentally, it may be possible to maximize the contribution of the non-dipole 
transitions using special detection schemes such as annular apertures[35].  

Though for a perfect crystal the theoretical VEEL maps only provide 
information about the origin of the transitions that correspond to experimental 
maps, the technique presented here provides a useful tool for investigating the 
properties of structural defects and impurities. More specifically, one would be able 
to compare the experimental maps with theoretical maps corresponding to different 
atomic configurations and determine which configurations fits the data best. As 
detectors with improved signal-to-noise ratios and monochromators with higher energy 
resolution become available, the new kind of atomic--resolution maps may be able to 
probe all types of low-energy excitations, including plasmons, interband transitions, and 
phonons. Mapping their variation around defects and interfaces will give new 
fundamental insights into the atomic-scale origins of electronic, magnetic, transport and 
thermal properties and provide characteristic signatures for defect identification, offering 
guidance for atomic-level defect engineering for improved functionality.    

APPENDIX 
 

a. Probe	
  wavefuction	
  
In this appendix we discuss the properties of the fast electron probe as described by a 

probe wavefunction. The probe wave function is most easily expressed in reciprocal 
space as 
   (7) 
where the pupil function 

   (8) 

P(R0,Q) = A(Q)exp −iχ Q( )⎡⎣ ⎤⎦exp −2πiQ ⋅R0[ ]
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is defined by the probe forming aperture with . The aberration function is 
defined as 

   (9) 

where  is the fast electron’s wavelength,  the probe defocus and  the third order 
spherical aberration of the imaging system. We have limited our description to the first 
aberrations with spherical symmetry.  The real space wave function is simply the inverse 
Fourier transform of Eq. (7). 

The probe intensity is further modified by incoherence in the imaging system.  The 
simplest is spatial incoherence describing the finite size of the electron source.  This can 
simply be added by convolving the probe intensity with the distribution of the source 
size.  For this work we have assumed a Gaussian source broadening with a full width half 
maximum of 0.75 Å. Temporal incoherence is more complicated to deal with in most 
cases.  However, the use of Eq. (7) allows us to include it directly in the probe intensity.  
Temporal incoherence is due to the energy spread in the incident electron beam, which 
due to chromatic aberration of the probe forming optics, leads to a defocus variation  
in the probe. In its simplest form this can be expressed as 

   (10) 

where  is the chromatic aberration coefficient,  the energy spread of the incident 
beam and  the incident energy. For the Nion UltraSTEM 100 used in these results 

. The resulting probe intensity is easily calculated as an incoherent sum of 
probe intensities for different defocus values 
   (11) 

 where  is a weighting factor depending on the geometry of the energy/defocus spread.  
 

b. Calculation	
  of	
  the	
  inelastic	
  transition	
  matrix	
  element	
  within	
  the	
  PAW	
  
method.	
  

In this appendix we present the calculation of the matrix elements between an initial 
electronic state  in the valence band and a final state  in the conduction band of the 
operator   given by 
  . (12) 
Both wavefunctions are given by the following generic formula 
   (13) 

within the formalism of the Projector Augmented Wave method (PAW)33-34. The 1st term 
of the right-hand side corresponds to the pseudo wavefunction, which is expressed as a 
plane wave expansion  over the reciprocal vectors G. Note that 
the pseudo wavefunction is rapidly varying around the core positions in order to be 
orthogonal to the core states. That makes the accurate description of the electronic states 
numerically challenging. Moreover the pseudo wavefunctions do not by definition satisfy 
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the orthogonally condition for the higher energy states of the conduction band. Therefore 
in order to avoid any unnatural divergence at the low momentum transfer limit it is 
essential to include the PAW corrections to the electronic wavefunctions as described by 
the 2nd term in the right-hand side of Eq. (13). In this way we obtain a smooth 
wavefunction around the cores and simultaneously we ensure the orthogonally and thus 
the numerical accuracy of our simulations. Note that the index  in Eq. (13) stands for 
the atomic quantum numbers and the atomic positions. Also  are the all-
electron (AE) and pseudo (PS) atomic wave functions, which are proportional to a 
spherical harmonic with a radial weighting  and 

. The term  expresses a projection that transforms the 

AE wavefunction onto the PS wavefunction within the sphere with the atomic radius .  
Moreover, the AE and PS atomic orbitals are constructed in a way to match each other 
outside of the augmentation sphere, with radius , which is smaller than the atomic 
radius .  

By substituting the PAW wavefunction in Eq. (12) we obtain that the transition 
matrix element within the PAW formalism is given by 

 (14) 

where we make use the completeness relation , for the projector 
operators. Although the set of projector operators is complete for an infinite number of 
projectors, for computational reasons we keep only 2 projectors for every atomic level 
lm. Note that for  the above relation is reduced to the orthonormalization relation 
for the AE wavefunction 

   (15) 

For the calculation of the 1st part, matrix elements between the pseudo wavefunctions as 
in Eq. (14), we use the form of the plane wave expansion for the wavefunction. In this 
way we found that  
   (16) 

The contribution of the plane wave expansion to the matrix element has the form of a 
double sum over the reciprocal vectors . The pair of these vectors has to satisfy the 
delta function, which connects the momentum transfer vector q with the wavevectors  
and  of the initial and final state correspondingly. In this way crystal local-field 
corrections, which play a crucial role to highly anisotropic 2D materials such as graphene, 
are taken into account[36]. 

In order to evaluate numerically the PAW part of the transition matrix element we 
make use of the expansion 
   (17) 
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where  is a spherical Bessel function of the 1st kind, into the PAW part of Eq. (14) 
and taking into account the fact that the atomic orbitals do not overlap with those on the 
neighboring site. In this way we found that the PAW part of the matrix element is 
   (18) 

where we introduce the radial  and the angular  integrals given by the 
following formulas 

   (19) 

While the radial integral  needs to be evaluated numerically, the angular integral is 
written as 

  (20) 

where we make use of the properties of the spherical harmonics and the 3j symbols. 
While the angular integral in Eq. (20)  introduces a set of selection rules for the angular 
momentum the radial integral governs the intensity of the transition matrix element with 
respect to the momentum transfer.  
 

c. First-­‐Principles	
  Calculations	
  of	
  the	
  Electronic	
  Wavefunctions.	
  
	
  

The initial and final electronic wavefunctions are calculated within Density 
Functional Theory (DFT). We carry out the DFT calculations by using the Vienna ab 
initio Simulations Package (VASP)[37-39]. In order to correctly model the vacuum on 
either side of a graphene sheet we use a two-atom unit cell with a significantly increased 
size, about 30 Å, along the perpendicular direction. That increases the number of 
transitions significantly and makes the numerical simulation challenging. In order to 
converge the density of states and the electronic wavefunctions up to 60 eV, we use 260 
bands and a dense sampling of the Brillouin zone (BZ) with 12×12  k-points on the x-y 
plane. We also work within the Local Density Approximation (LDA) while we take into 
account the PAW corrections which are essential for the proper treatment of the low 
momentum transfer limit (dipole approximation)[37,40].  
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FIG. 1 (Color online). Simultaneously acquired Z-contrast image (a) and averaged VEEL 
spectrum (b). (c-e) VEEL spectrum images within the three energy-loss windows 
highlighted in (b). (c) 13-26 eV. (d) 26-42 eV. (e) 42-58 eV. The contrast is calculated by 
comparing the maximum (that occurs at the atomic positions) with the minimum value at 
the center of the hexagon. 



 
Fig. 2 (Color online). Zero-loss peak (ZLP) spectrum image and bright field image from 
graphene. a-b, Simultaneously acquired STEM-HAADF image (a) and ZLP spectrum 
image in the energy range of -0.4 to 0.8 eV (b). No obvious atomic contrast can be seen 
in the ZLP image. c-d, Simultaneously acquired HAADF image (c) and BF image (d) at 
optimum focus for the HAADF image. These two images have been low-pass filtered in 
order to reduce the random noise. The white circles in the two images marks the identical 
positions. The carbon atoms display weak dark contrast in the BF image under this 
particular focus setting. The four images were acquired using different detectors and 
imaging conditions. The intensity is displayed in arbitrary units. 
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FIG. 3 (Color online). Calculated Z-contrast image (a) and VEEL spectrum (b). (c-e)  
integrated spectroscopic images obtained with the same energy windows as in Fig. 1 
without (upper halves) and with the addition of noise (lower halves). Figs (f-h) are the 
cray-scaled versions of Figs (c-e) correspondingly. To visually emphasize the contrast 
variations Figs. (c-e) have been normalized to a common mean and displayed over a 
common intensity range.  
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Fig. 4 (Color online).  (a) Line profile measurements for the experimental image in Fig 
1(d) (blue squares) and the theoretical images in Fig 3(c-e) (solid lines). In order to 
account for the experimental noise the experimental profile is taken within the less noisy 
area of the image in Fig 1(d). (b) a sketch showing the line along which the 
measurements are taken.  The two dashed lines in (a) show the positions of the carbon 
atoms. Measurements are normalized to show the variations with respect to the energy.  



 
Fig. 5 (Color online). (a) a map illustrating the atomic character of all states in the 
Brillouin Zone. Only states with an atomic character of 50% or higher are shown. All 
states in the valence band show high atomic character whereas the conduction band 
consists of “island” of states with a high atomic character. (b) the graphene band structure 
along the high symmetry lines.  



FIG. 6 (Color online). Characteristic images at the Γ point created by non-dipole allowed  
(a-c) and dipole-allowed excitations (d-f). (a) s to s excitations. (b) pz to pz excitations. (c) 
pxy to pxy excitations. (d) pxy to s excitation. (e) pz to d excitations. (f) s to pxy excitations. 
(d-f) images show the highest intensity and thus contribute the most to the total image. 
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Fig.	
  7	
  (Color	
  online).	
  (a)	
  the	
  image	
  of	
  Fig	
  6(a)	
  .	
  (e)	
  and	
  (i)	
  contribute	
  equally	
  to	
  the	
  
formation	
   of	
   the	
   delocalized	
   image	
   (f)	
   of	
   Fig.	
   6.	
   (b),	
   (f)	
   and	
   (j)	
   are	
   the	
   inelastic	
  
scattering	
  potentials	
  that	
  after	
  convoluting	
  with	
  the	
  probe	
  produce	
  the	
  images	
  (a)	
  ,	
  
(e)	
  and	
  (i)	
  respectively.	
  (c),	
  (g)	
  and	
  (k)	
  are	
  the	
  Fourier	
  transform	
  of	
  (b),	
  (f)	
  and	
  (j)	
  
respectively.	
   	
   (d),	
   (h)	
  and	
  (l)	
  are	
  the	
  projected	
  transition	
  matrix	
  elements	
   for	
  each	
  
case.	
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FIG. 8 (Color online). (a) the number of characteristic non-dipole excitations as a 
function of energy loss. (b-e) images obtained by excitations within the illustrated energy 
ranges color coded to represent the dominant atomic transition. 
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Fig. 9 (Color online). (a) The three highlighted areas where the images in (b-d) are 
calculated. (b-d) The integrated images obtained within the three highlighted areas in (a) 
with a 2 eV energy window.  
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Fig. 10 (Color online). (a-d) partial images that contributes to the total image in Fig 6(c). 
(e) line profiles for the partial images (a-d) (y-axis values are normalized to the maximum 
value of the total image). 
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Fig. 11 (Color online). (a) highlighted areas of the energy ranges for the images in (b) and 
(c).  
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