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Electronic cooling in Weyl and Dirac semimetals

Rex Lundgren1, ∗ and Gregory A. Fiete1

1Department of Physics, The University of Texas at Austin, Austin, TX 78712, USA

Energy transfer from electrons to phonons is an important consideration in any Weyl or Dirac
semimetal based application. In this work, we analytically calculate the cooling power of acoustic
phonons, i.e. the energy relaxation rate of electrons which are interacting with acoustic phonons, for
Weyl and Dirac semimetals in a variety of different situations. For cold Weyl or Dirac semimetals
with the Fermi energy at the nodal points, we find the electronic temperature, Te, decays in time as
a power law. In the heavily doped regime, Te decays linearly in time far away from equilibrium. In a
heavily doped system with short-range disorder we predict the cooling power of acoustic phonons is
drastically increased because of an enhanced energy transfer between electrons and phonons. When
an external magnetic field is applied to an undoped system, the cooling power is linear in magnetic
field strength and Te has square root decay in time, independent of magnetic field strength over a
range of values.

PACS numbers: 71.10.Pm, 03.67.Mn, 11.25.Hf

I. INTRODUCTION

Dirac1,2 and Weyl3 semimetals have received an enormous amount of attention due to the wide range of exotic
physical phenomena they are theoretically predicted to host. For example, exotic edge states known as Fermi arcs3–9

have recently been experimentally seen on the surface the Dirac semimetals Na3Bi
10 and Cd3As2

11 after their theoret-
ical prediction from first-principles calculations12,13. There also is recent experimental evidence of a Weyl semimetal
phase in TaAs14–16 and photonic crystals17, after their theoretical predictions18–20. Weyl (Dirac) semimetals have
linearly dispersing excitations [which obey the Weyl (Dirac) equation, respectively] around the band touching points
referred to as Weyl (Dirac) nodes. These nodes possess non-zero Berry curvature21, which gives rise to nontrival
momentum-space topology. Weyl semimetals also have many interesting topological properties, including the chiral
magnetic effect22,23 and other phenomena associated with the chiral anomaly24,25. The chiral magnetic effect is the
separation of electric charge along the direction of an applied external magnetic field and occurs when band touching
points have different energies. There is recent experimental evidence for the existence of the chiral magnetic effect
in ZrTe5

26. The chiral anomaly causes the number of particles with a given chirality to not be conserved and occurs
when external parallel electric and magnetic fields are applied. Dirac semimetals can be topologically protected by
space group symmetries2, however they are generally not as stable as Weyl semimetals. For an overview of Weyl and
Dirac semimetals, see Refs.27 and28.
We are interested in exploring energy exchange between electrons and phonons in Weyl and Dirac semimetals when

the electrons and lattice are at different temperatures. Energy exchange with phonons is often the most dominate
energy exchange mechanism in condensed matter systems29. As a result, energy transfer from electrons to phonons is
a key issue with possible Weyl and Dirac semimetals based devices that take advantage of the topological properties
or Berry curvature of Weyl and Dirac semimetals. Typically, to probe energy relaxation, electrons are excited to
high temperatures using an optical laser pulse. The hot electrons will then equilibrate through electron-phonon
interactions and the electronic temperature will approach the temperature of the lattice. As in normal metals and
graphene, we assume electron-electron interactions rapidly thermalize the electrons among themselves during the
relaxation process30–32. Transport measurements also provide a way to study electron-phonon interactions in Weyl
semimetals, but as with graphene33, resistivity due to electron-phonon scattering is expected to be smaller than the
residual resistivity contribution that arises from disorder or electron-electron interactions34,35.
In this paper, we analytically study the energy transfer of electrons to acoustic phonons in Weyl and Dirac semimet-

als in a variety of situations. While we focus on acoustic phonons, we note that optical phonons will play a dominant
role in cooling for electronic temperatures around and above the lowest optical branch. First principles calculations
predict the optical branch to have a frequency of around 3.5 THz for BLi, a material that is expected to host a
Weyl semimetal phase36. Assuming other Weyl/Dirac materials have a similar scale, our results should be applicable
below some temperature range on the order of a few hundred Kelvin. The precise temperature range at which acous-
tic phonons dominate over optical phonons depends on the electron density and lattice and electron temperatures
along with electron-phonon coupling strength. We are unaware of any experimental data on electron-optical phonon
coupling strength for Dirac/Weyl materials, so we leave a discussion on the competition between cooling power of
acoustic and optical phonons for future work. We stress, however, there should be a temperature (which is below the
temperature of the lowest optical branch), at which acoustic phonons dominate cooling and our results apply.
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Alternatively, one could use our results to investigate the cross over between acoustic and optical phonon dominated
cooling. By first experimentally observing the results mentioned here for very low temperatures, one could then
increase the electronic temperature until a change in the cooling properties is observed. When the chemical potential
is at the nodal point, we find the temperature of the electrons decays as a power law in time over a few microseconds
for Cd3As2, for example. These long-lived hot carriers (compared to a characteristic time scale of picoseconds in
metals37 when Te is greater than the Debye temperature, TD)–important in calorimetry and bolometry38–exists as
long as Te is less then the temperature of the optical branch, whereas in normal metals long lived hot carriers only
exist for very low temperatures (Te ≪ TD)30,39.
In the highly doped limit, we find the temperature of the electrons decays linearly in time far from equilibrium

and exponentially decays in time near equilibrium. Motivated by recent electron cooling experiments on the two-
dimensional analog (in some respects) of Dirac and Weyl semimetals, graphene, we also consider the effect of short-
range disorder in the heavily doped regime. For graphene, short-range disorder greatly increased the cooling power
due to enhanced energy transfer between electrons and phonons40,41 and the relaxation rate can be controlled by
varying disorder42. We show that such an enhancement of cooling power should be expected over a wide range of
temperatures in Cd3As2 and other related materials. This result allows for a new three-dimensional material whose
cooling properties can be controlled by disorder. Finally, in the presence of a moderate strength external magnetic
field, the power loss of electrons is found to be linear in magnetic field strength and the temperature of electrons
linearly decays with a rate independent of the external magnetic field.
Our paper is organized as follows. In Sec. II, we calculate the power loss due to acoustic phonons for a single Weyl

node. In Sec. III, we consider the effect of short-range disorder on electronic cooling. In Sec. IV, electronic cooling
due to acoustic phonons is investigated in the presence of an external magnetic field. Finally in Sec. V, we present
our conclusions. Some technical results are regulated to the appendices.

II. SINGLE WEYL NODE

We first consider the case of a single isotropic Weyl node. To generalize to N Weyl nodes, one can multiply the
result for a single Weyl node by N (provided there is negligible scattering between nodes). To obtain the results for
a single Dirac node, multiply the cooling power for a single Weyl node by two. Our approach follows the one taken
in Ref.29 for normal metals and Refs.43 and44 for graphene. The power loss, P , is given by

P =
∂E

∂t
= ∂t

∑

~k,α

ǫ~k,αf
α
~k
, (1)

where fα
~k

is the time-dependent Fermi distribution function, E is the energy of the system, ǫk,α = α~vF |~k| is the

quasiparticle dispersion relation for quasiparticles with wavevector ~k, vF is the Fermi velocity, ~ is the reduced Planck’s
constant, and α = ±1 labels the valence and conduction bands. The Fermi velocity has been experimentally found
(via transport, optical measurements, angle-resolved photoemission spectroscopy) and theoretically predicted (via
first principal calculations) to range from 1 × 105 m/s to 2 × 106 m/s36,45–52 in various Dirac and Weyl semimetal
systems. In the case of Cd3As2, the Dirac cone is anisotropic48. We do not expect anisotropy to significantly alter
our predictions.
In this work, we take vF = 1 × 106m/s, a value appropriate for Cd3As2. Eq. (1) can be rewritten as a differential

equation for the electronic temperature, ∂tTe = P
Ce

, where Ce = ∂Te
E is the electronic heat capacity. We note that

both cooling power and electronic heat capacity scale with the number of Weyl nodes, thus the temporal evolution of
Te will be independent of the number of Weyl nodes, under the assumption of negligible inter-node scattering. From
Boltzmann’s equation, we have

∂tf
α
~k
= −

∑

~p,β

(

fα
~k
(1− fβ

~p )W~kα→~pβ
− {~kα ↔ ~pβ}

)

, (2)

where

W~kα→~pβ
=

2π

~

∑

~q

[|M−|2(NL(ωq) + 1)δ− +NL(ωq)|M+|2δ+], (3)

is the transition rate between states |~k, α〉 and |~p, β〉, M± = wαβ
q δ~k,~p±~q

is the transition matrix element, δ± =

δ(ǫα,β~k,~p
± ωq), ǫ

α,β
~k,~p

= ǫk,α − ǫp,β, N
L(ωq) is the Bose distribution function evaluated at the temperature of the lattice
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TL, w
αβ
q =

~
2D2q2(1+sαβ cos θ)

4ρV ωq

43,53,54, ωq = ~csq is the dispersion relation for the phonons, cs is the speed of sound, θ

is the angle between ~k and ~p, ρ is the mass density of ions, V is the volume, D is the deformation potential constant,
and sαβ = 1 for intraband transitions and −1 for interband transitions. The deformation potential constant is just
the electron-ion potential at zero wavevector30.
In this paper, we take cs = 2.3 × 103 m/s and ρ = 7 × 103 kg/m3 which are the speed of sound and density of

Cd3As2
55 unless otherwise noted. The deformation potential has been estimated in Cd3As2 to be in the 10− 30 eV

range from transport measurements56. Throughout this work, we take the deformation potential to be 20 eV. We
ignore vertex corrections, which give corrections that scale as cs/vF

30,57, a small value in realistic systems. After
some algebra (see App. A for details), we find the power loss, to lowest order in cs/vF and for arbitrary chemical
potential, µ, referenced from the nodal point is

P (µ, Te, TL) ≈ −V D
2

ρ

(kBTe)
6

π3~7v8F
(kBTe − kBTL)

×
∫ ∞

0

dxx5
(

f(x− βeµ) + f(x+ βeµ)

)

, (4)

where kB is Boltzmann’s constant. We now discuss some limits of Eq. (4). We note, for a general chemical potential,
to find the relaxation rate one must solve coupled differential equations (Eq. (1) and ∂n

∂t
= 0, where n is the electronic

density which is assumed to be spatially uniform) to find the relaxation rate since the chemical potential has a
temperature dependence.
In the limit of µ = 0, we have

P = −2V D2(kBTe)
6(kBTL − kBTe)

ρπ2v8F~
7

Γ(6)η(6), (5)

which gives (using Ce =
4V k4

BT 3Γ(4)η(4)
π2(~vF )3 , where Γ is the gamma function and η is the Riemann zeta function),

∂Te
∂t

= −γrT 3
e (Te − TL), γr =

D2k3B
2ρπ4v5F ~

4

Γ(6)η(6)

Γ(4)η(4)
. (6)

We remind the reader that the temperature difference between lattice temperature and electron temperature is due
to the system being hit with an optical pulse. This result agrees with the dimensional analysis of P , E, and Eq. (1)
put forth in Ref.43. The cooling power at low temperatures is weak due to the high exponent of Te that appears in
the cooling power. Physically, the weak cooling power of acoustic phonons in Weyl and Dirac semimetals is due to
the small energy of acoustic phonons, cs

vF
kBTe, at a typical transition momentum of kBTe

~vF
and the small density of

states for electronic transitions. Far from equilibrium, i.e, in the limit that TL ≪ Te, we find Te(t) =
T0

(1+ t
τ0

)
1
3
, where

τ0 = 1
3γrT

3
0
and T0 is the initial temperature of the electrons. Taking an initial electron temperature of 140 Kelvin,

we find τ0 = 36× 10−6 s.
In the limit where Te & TL, the electronic temperature decays exponentially with a characteristic time scale,

τL = 1
γrT

3
L

. This should be compared to the low electronic temperature (Te ≪ TD) cooling in metals. In this case,

P ∝ T 5
e and we have similar slow cooling of the electronic temperature30. However, this slow cooling only happens

in metals when Te ≪ TD. In contrast, slow electronic cooling in Weyl and Dirac semimetals exist for a wide range
temperatures (as long as Te is much less than the temperature of the optical phonon branch, which is typically on the
order of a few hundred Kelvin). We note that Cd3As2 intrinsically has a large amount of charge carriers51,58. Thus
it is an open experimental question if this limit can be reached in Cd3As2.
We now discuss cooling when the system is heavily doped. For Cd3As2, an experimentally well-established Dirac

semimetal, has a Fermi energy of around 200 meV (in the heavily doped limit the chemical potential is the Fermi
energy). Unfortunately, this energy scale is nearly the same as same the band inversion energy scale, which is about
250 meV12, thus it is questionable whether the Dirac fermion description is applicable at finite temperatures for
EF = 200 meV59. However, recent experimental progress has been made in tuning the Fermi level51,60 in Cd3As2 and
thus we believe our predictions can be experimentally realized by lowering the Fermi level. To this end, we choose
µ = 100 meV, a value well below band inversion energy scale. When kBT ≪ µ, the maximum phonon momentum
is 2~kF , where kF is the Fermi momentum. Thus, the maximum phonon energy is given by ~cskF . When the
lattice temperature is below TBG = ~cskF

kB
, the Block-Grüneisen temperature61, our approach breaks down. In this

respect, the heavily doped case resembles the typical metallic case, where the quasielastic approximation fails below
TBG

43,61. Using 100 meV for the chemical potential gives a Block-Grüneisen temperature of around 5 K. Given the
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recent experimental progress in tuning the Fermi level in Cd3As2, the Block-Grüneisen temperature is also tunable
parameter. When kBT ≪ µ, we can use the Sommerfeld expansion to evaluate the integral in Eq. (4). The cooling
power is found to be

P ≈ −V D
2µ6kB

3ρπ3~7v8F
(Te − TL). (7)

We also obtain (using Ce =
V k2

BTµ2

(~vF )3 )

∂Te
∂t

= −γp
Te − TL
Te

, γp =
D2µ4

3kB~4v5fρ
. (8)

When TL ≪ Te, the electronic temperature decays linearly in time with a rate given by γp. Using the experimental
values for Cd3As2 we find γp = 1.8 × 1010 K/s. Thus, the equilibration process is much faster for heavily doped
systems compared to undoped systems. Closer to equilibrium, Te decays exponentially with a rate given by γp/TL.

III. SHORT-RANGE DISORDER

We now consider the effects of short-range disorder on cooling for heavily doped Dirac or Weyl semimetals. Recall in
the absence of disorder, the momentum of the phonons are limited to 2~kF , and thus the phonons have small energies,
cs
vF
µ. With disorder, phonon momentum is no longer restricted and may reach up to kBT/cs

42. This provides a boost
to cooling power since the phonons can take away more energy from the electrons. For low impurity concentrations,
this process can be described by dressing the electron-phonon vertex. Following the formalism developed in Ref.42, we
derive the transition matrix elements and analytically find the power loss (see App. B for a derivation of the transition
matrix elements) for disorder described by the following zero-range potential V (r) = u

∑

j δ(r− rj)(1 + σz)/2, where
rj is the location of the jth impurity and σz is the third Pauli matrix. This formalism has had success in describing
electronic cooling in graphene.
As first mentioned in Ref.42, allowing for this type of generalized disorder that depends on the spinor structure

of the wave-function allows one to obtain a matrix element linear in u. In other words, pure scalar disorder gives a
quadratic dependence on the disorder strength and thus the power will scale as u4, which is small for weak disorder and
won’t provide efficient cooling. Physically, this type of disorder might arise from differences of sublattice potential42

or magnetic impurities62,63. The transition matrix elements are |M±|2 = |M |2 = πu2D2n0

4ρ~csv2
F
q3
|〈k′|(~σ× ~q)z |k〉|2, which we

plug into Eq. (1) and then perform an angular average to find

Pd =
V πν(µ)D2k4B
ρ(~cs)3vF l

π4

30
(T 4

e − T 4
L), (9)

where l is the mean free path and ν(µ) is the density of states at the Fermi energy. The ratio of power loss for disorder
to the normal momentum conserving process [Eq. (7)], after linearizing Eq. (9) in Te − TL is

Pd

P
=

π6

120

1

kF l

(

Te
TBG

)3

. (10)

The mean-free path in Cd3As2 is on the order of a 100 nm64. We thus take kF l = 40. Disorder assisted cooling then
dominates if Te & 2TBG. This result is insensitive to the precise value of kF l because of the cubic root in Eq. (10).
The ratio for arbitrary values of electron and lattice temperature is

Pd

P
=

π6

120kF l

T 3
e + T 2

e TL + TeT
2
L + T 3

L

T 3
BG

. (11)

Taking Te = 50 K, TL = 10 K and TBG = 5 K, we find that cooling power is enhanced by a factor of 250 in the
presence of short-range disorder. The time evolution for Te ≫ TL is

Te(t) =
T0√

1 + 2σtT0
, (12)

where σ =
π3D2k2

BkF

60ρ(~cs)3vF (kF l) . The cooling time can be controlled by tuning the amount of disorder. This possibility was

first suggested in Ref.42 for graphene. More specifically, the ratio of time it takes to cool to some temperature (which
is greater than the lattice temperature) for two different disorder strengths is the ratio of the mean free paths.
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We note that scattering from Coulomb impurities will likely dominate electronic transport due to inefficient screening
of three dimensional semimetals34,65, however we expect electronic cooling by acoustic phonons to be dominated by
short-range disorder as in graphene66. Physically, this is due the fact that Coulomb disorder doesn’t have any spinor
structure and vanishes to first order in disorder strength.

IV. ELECTRON COOLING IN A MAGNETIC FIELD

In this section we consider the effect of an applied external magnetic field on electron cooling in the cold, neutral
limit. Most of the interesting physics of topological semimetals involve the presence of an external magnetic field24,25,67.
We consider the following low-energy Hamiltonian of a Weyl semimetal with two nodes in an external magnetic field
(with ~ = 1)68,

H =

∫

d3rψ̄
(

−ivF (γ · (∇+ ie ~A)− (~b · γ)γ5
)

ψ, (13)

where ~A is the vector potential, ψ and ψ̄ = ψ†γ0 are four component spinors, e is the electric charge, γ are the
four-dimensional Dirac matrices in the chiral representation and γ5 = iγ0γ1γ2γ3. The Weyl nodes are separated in

momentum space by the vector 2~b. We take the twoWeyl nodes to be at the same energy, i.e. the zero-component of the

four vector ~b is zero. Our results also apply for Dirac semimetals when b = 0. Recall Weyl nodes at different energies
give rise to the chiral magnetic effect, which generates an electrical current parallel to the external magnetic field.
This electrical current will cause phonon drag69. Thus, the phonons will dissipate energy along with transporting it.
While this situation is very interesting, it is beyond the scope of this work. The Weyl nodes are taken to be separated

in the z-direction and the magnetic field, ~B, is also taken to lie in the z-direction. We leave any possible dependence

of the cooling power on the angle between ~b and ~B for future work. We ignore the effects of the magnetic field on the
ions due to their large mass.
The cooling power can be written in terms of the imaginary part of the self-energy as originally derived by Kogan70.

The power loss is given by

P =
∑

~q

∫

dω

π
ω(NL(ω)−Ne(ω))ImΠPh(~q, βe, ω)ImD(~q, ω), (14)

where ImΠPh(~q, βe, ω) is the imaginary part of the phonon self-energy and Im D(~q, ω) = π(δ(ω − ωq)− δ(ω + ωq)) is
the imaginary part of the phonon Green’s function71. The phonon self-energy to one loop order is given by30,

ΠPh(~q, iωn) =

g2(~q)

βeV

∑

ipm

∑

~k

Tr[γ0G(~k, ipm)γ0G(~k + ~q, ipm + iωn)],

(15)

where G(~k, ipm) is the Greens function of the electrons in the presence of an external magnetic field, g2(~q) = D2q
4ρcs

is

the electron-phonon coupling strength and βe is the inverse electron temperature. We derive the imaginary part of
the phonon self-energy in the presence of a magnetic field in App. C. We find the exact expression for the imaginary
part of the lowest Landau level contribution to the self-energy (after analytically continuing to real frequencies) is,

ImPh[Π(~q,Ω)] =
∑

λ=±

g2(~q)Ω

8π5vF l2B
δ(−Ω− λvF qz)e

−
q2
⊥

l2
B

2 , (16)

where lB =
√

1
eB

is the magnetic length and q2⊥ = q2x + q2y. We observe that the imaginary part of the self energy

is independent of temperature and chemical potential. A similar feature is seen in the current-current correlation
function for Weyl semimetals in the presence of an external magnetic field68.
After plugging Eq. (16) into Eq. (C26), the contribution of the lowest Landau level at µ = 0 at a lattice temperature

of zero to the power loss is (restoring factors of ~)

PB ≈ − V D2ω5
D

320π7v2F l
2
Bρc

4
, (17)
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where ωD is the Debye frequency (See App. C for some keys steps in this derivations). In this case, ωD acts as a

high-energy cut off. This result is valid to lowest order in cs
vF

and in the limit α2
B ≫ 1

2
vF
cs

TD

Te
, where αB =

~vF
1
lB

kBTe
.

The limit that α2
B ≫ 1

2
vF
cs

TD

Te
is physically reasonable. For example, taking Te = 30 Kelvin, ~vF

1
lB

= 1200 Kelvin

(this magnetic energy scale can be reached with only 9 Telsa for vF = 106 m/s), vF
cs

= 100, and TD = 140 Kelvin,

we find 1
α2

B

× 1
2
vF
cs

TD

Te
≈ .15. For Weyl and Dirac semimetals, the Debye temperature can range from 140 Kelvin in

Au2Pb
35, 200 Kelvin in Cd3As2

55 to 420 Kelvin in the pyrochlore iridates72,73. While we have derived this result for
zero lattice temperature, it is applicable when Te ≫ TL. We note this result is only valid when the scattering between
Dirac/Weyl nodes of different chirality is weak.
The contribution from the lowest Landau level will dominate as long as αB ≫ 1. All higher Landau levels are

exponentially suppressed by e−αBn, where n is the nth Landau level. (We note at finite chemical potential, αBn must

be greater than µβe to suppress the nth Landau level.) From this, we find (using the heat capacity, Ce =
V k2

BT

12l2~vF
74,

which is valid when αB ≫ 1)

∂Te
∂t

= −γB
1

Te
, γB =

3D2k3BT
5
D

80π7ρvF (~cs)4
. (18)

Notably, this rate is independent of the magnetic field and the distance between Weyl nodes (provided scattering
between nodes is negligible). We note there will be small corrections due to the small contribution of higher Landau
levels. The electronic temperature decays as

Te(t) =
√

T 2
0 − 2γBt. (19)

Taking ωD to be 140 Kelvin and cs = 5× 103 m/s, we find γB = 40× 1012 K/s. We do not use the speed of sound and
Debye temperature of Cd3As2 for this calculation since that material has a larger ratio of Fermi velocity to speed of
sound and Debye temperature then other Dirac/Weyl materials (this makes the limit α2

B ≫ vF
cs

TD

Te
harder to reach).

Furthermore, to see quantum limit transport in Cd3As2 one needs fields of 43 Tesla75. This is due to the large Fermi
surface of Cd3As2. As a result of such high fields and low temperatures, one might expect electron-phonon coupling
to be modified76.
Finally, we remark that these results are rather unique to Weyl or Dirac semimetals and one does not generically

expect to see electronic cooling dominated by the lowest Landau level in normal metals. This is because the magnetic
energy scale for Weyl or Dirac semimetals is much larger than that of normal metals74. More explicitly, the magnetic
energy scale for Weyl or Dirac semimetal with vF = 106 m/s is 1200 Kelvin for a 9 Telsa magnetic field. For the same
applied field in a normal metal it is 12.6× me

m
Kelvin, where m is the effective mass and me is the electron mass. For

most metals, me/m is on the order of unity77.

V. CONCLUSION

In this work, we have analytically studied the cooling power of acoustic phonons as a function of doping level,
disorder, and externally applied magnetic fields. Our main results are in Eqs. (5), (7), (9) and (16), along with the
corresponding decays for the electronic temperature, Te, in each case. Importantly, we find disorder can effectively
be used to control the cooling power in Cd3As2 and other closely related materials. We stress that we have ignored
electronic cooling from optical phonons and that our results are only valid for some temperature below the temperature
of the lowest optical branch. This temperature depends crucially on the chemical potential, electronic-optical phonon
coupling strength, and electron and lattice temperatures. We leave these material specific details as an open question.
In future work it would be interesting to study the effect of Fermi arcs and Kondo impurities78 on electronic cooling,
as well as interactions79–83.
Note Added – Just prior to completion of this work, we noticed experimental results on the cooling by phonons in

Cd3As2 for temperatures far above the temperature of the lowest optical branch84. It was suggested in Ref.84, that
hot carriers and optical phonons equilibrate rapidly (500× 10−12 s) followed by slower cooling (10−12 s) through the
emission of acoustic phonons by the decay of optical phonons or hot carriers.
Acknowledgments – R.L. thanks A. H. Macdonald, C. Weber, D. Lorshbough, W. Witczak-Krempa, D. Dicus for

useful discussions. We thank P. Laurell for collaboration on related work. R.L. was partially supported by National
Science Foundation (NSF) Graduate Research Fellowship award number 2012115499. R.L. and G.A.F. were supported
by ARO Grant No. W911NF-14-1-0579, NSF Grant No. DMR-0955778, and DARPA grant No. D13AP00052.
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Appendix A: Power Loss of Single Weyl Node

In this section, we provide some key steps in the derivation of Eq. (4), starting from Eq. (2). It is first helpful to
seperate the power into two terms, Pind and Pspon, depending if they describe induced transitions or spontaneous
transitions44. These two terms are given by (with ~ = 1)

Pind(µ, Te, TL) = −2π
∑

~q

∑

~pβ

∑

~kα

ǫα,β~k,~p
wαβ

q [f(ǫα~k )− f(ǫβ~p )]N
L(ωq)δ~k,~p+~q

δ(ǫα,β~k,~p
− ωq), (A1)

and

Pspon(µ, Te) = +2π
∑

~q

∑

~pβ

∑

~kα

ǫα,β~k,~p
wαβ

q [f(ǫα~k )− f(ǫβ~p )]N
e(ωq)δ~k,~p+~q

δ(ǫα,β~k,~p
− ωq). (A2)

We note that Pspon(µ, Te, Te) = Pind(µ, Te). As such, we only need to evaluate Pind
44. We now consider the limit

cs ≪ vF as discussed in the main text. In this limit, we can neglect inter-band transitions, i.e. α 6= β43. It is
instructive to consider each term in the α sum separately. For α = 1, using the delta function and the identity,
∫∞

0
dǫδ(ǫ− ǫα=1

~p+~q )g(ǫ) = g(ǫα=1
~p+~q ), we have

Pα=1
ind (µ, Te, TL) = −2π

∑

~q

∑

~p

∫ ∞

0

dǫ(ǫ − ǫ1~p)w
11
q [f(ǫ)− f(ǫ1~p)]N

L(ωq)δ(ǫ − ǫ1~p − ωq)δ(ǫ− ǫ1~p+~q). (A3)

We can rewrite δ(ǫ− vF p− ωq) as
1
vF
δ

(

p−
(

ǫ−cq
vF

)

)

to evaulate the p integral. This gives

Pα=1
ind (µ, Te, TL) = −2V π

D2

4ρv3F

4π(2π)

(2π)6

∫

dq

∫ ∞

cq

dǫ

∫ 1

−1

dx(ǫ − cq)2q4
(

1 +
(ǫ − cq) + vF qx

√

(ǫ − cq)2 + v2F q
2 + 2(ǫ− cq)vF qx

)

×[f(ǫ)− f(ǫ− cq)]NL(cq)δ

(

ǫ−
√

(ǫ − cq)2 + v2F q
2 + 2(ǫ− cq)vF qx

)

.

(A4)

After making the q integral dimensionless, we have (to lowest order in c
vF

)

Pα=1
ind (µ, Te, TL) ≈ −2V π

D2

4ρv8FβL

4π(2π)

(2π)6

∫ ∞

0

dy

∫ ∞

0

dǫ

∫ 1

−1

dxǫ2y3
(

1 +
ǫ+ yx

√

ǫ2 + y2 + 2ǫyx

)

∂f

∂ǫ
δ

(

ǫ−
√

ǫ2 + y2 + 2ǫyx

)

.

(A5)

The remaining delta function can be rewritten as δ
(

ǫ−
√

ǫ2 + y2 + 2ǫyx
)

= δ(x+ y
2ǫ )

1
y
. Using the delta function to

evalute the x integral, we find

Pα=1
ind (µ, Te, TL) = −2V π

D2

4ρv8FβL

4π(2π)

(2π)6

∫ 2ǫ

0

dy

∫ ∞

0

dǫǫ2y3
(

2− y2

2ǫ2

)

∂f

∂ǫ
= − D2

ρv8FβL(2π)
3

8

6

∫ ∞

0

dǫǫ6
∂f

∂ǫ
. (A6)

After integrating by parts and making the ǫ integral dimenionless, we have

Pα=1
ind (µ, Te, TL) =

V D2

ρv8Fπ
3
(kBTe)

6(kBTL)

∫ ∞

0

dxx6f(x− βeµ). (A7)

After performing a similar calculating for Pα=−1
ind (µ, Te, TL), we find Pind is given by

Pind(µ, Te, TL) =
V D2

ρv8Fπ
3
(kBTe)

6(kBTL)

∫ ∞

0

dxx6
(

f(x− βeµ) + f(x+ βeµ)

)

. (A8)

The total power loss is then

P = − V D2

ρv8Fπ
3
(kBTe)

6(kBTe − kBTL)

∫ ∞

0

dxx6
(

f(x− βeµ) + f(x+ βeµ)

)

. (A9)
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Appendix B: Derivation of Transition Matrix Element

In this section we derive the transition matrix element in the case of weak zero-range disorder described by the
following potential

V (~r) =
u

2

∑

rj

δ(r − rj)(1 + σz). (B1)

This derivation generalizes the one in Ref.42 for graphene to three dimensional topological semimetals. We assume
that the concentration of disorder is low and can dress the electron-phonon vertex by scattering off a single impurity.
The exact transition matrix element is given by

M± = 〈k′|M0
±G(p)T̂ + T̂G(p)M0

± + T̂GM0
±G(p)T̂ |k〉 (B2)

where G(p) is the free electron Green’s function, T̂ is the scattering operator (or T̂ -matrix) for a single impurity. The
scattering operator to lowest order in disorder strength is taken to be the Fourier transformed impurity potential. We
now make some approximations of the free electron Green’s functions, similar to the ones made in Ref.42 for graphene.
As mentioned in the main text, this formalism has been successful in providing understanding experimental results of
electron cooling in graphene. We expect phonons with momentum kBT/cs, to dominate cooling. As such, we expect
the virtual electrons to have much larger momentum than incoming and outing going electrons (k, k′ ≪ p). This
allows one to approximate the electron Green’s function, when the virtual states have an energy ~vF p ≫ kBT, µ, as
G(p) = − 1

~vF p
. Plugging this into Eq. (B2), we find

|M±|2 = |M |2 =
πu2D2n0

4ρ~csv2F q
3
|〈k′|(~σ × ~q)z |k〉|2, (B3)

where n0 is the impurity concentration. Here, the summing over impurities is done after squaringM±
66. For simplicity,

we use the angular average of |〈k′|(~σ × ~q)z|k〉|2 which is q2/2. If µ ≫ kBT , we can approximate the sum over k and
k′ as ν(µ)2

∫ ∫

dǫdǫ′. The power loss is then

P = ν(µ)2u2
∑

~q

(

|M+|2ωq

∫

dǫf(ǫ)(1− f(ǫ+ ωq))N
ph
q + |M−|2(−ωq)

∫

dǫf(ǫ)(1− f(ǫ− ωq))(N
ph
q + 1)

)

. (B4)

Evaluating the remaining ǫ integral, we have (defining the mean free path, l =
vf

2πu2n0ν(µ)
),

P =
V πν(µ)D2k4b
ρ(~cs)3vF l

π4

30
(T 4

e − T 4
L). (B5)

Appendix C: Phonon Self-Energy in a Magnetic Field

In this section we derive the imaginary part of the phonon self-energy in a magnetic field. The Green’s function
(for a given chirality, χ) for a Weyl semimetal described the Hamiltonian in the main text is given by68

Gχ(ω,~k,~k⊥) = ie−k2
⊥
l2B
∑

λ=±

∞
∑

n=0

(−1)n

Eχ
n

((Eχ
nγ0 − λvF (kz − χb)γ3){P−Ln(2k

2
⊥l

2
B)− P+Ln−1(2k

2
⊥l

2
B)}+

2λvF (~k⊥ · ~γ⊥)L1
n−1(2k

2
⊥l

2
B))

1

ω + µ− λEχ
n
, (C1)

where Lα
n are the generalized Laguerre polynomials, P± = 1

2

(

1± isign(eB)γ1γ2
)

and

Eχ
n = vF

√

(kz − χb)2 + 2n
|eB|
c
. (C2)

Following Ref.85, we rewrite our Green’s function in a mix of real-space and momentum space coordinates. The partial
Fourier transform of the Green’s function is given by

G(ω, kz, ~r⊥) = V⊥

∫

d~k⊥
(2π)2

ei
~k⊥·~r⊥Gχ(ω, kz, ~k⊥). (C3)
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The inverse partial Fourier transform is

G(ω, kz, ~k⊥) =
1

V⊥

∫

d~r⊥e
−i~k⊥·~r⊥G(ω, kz , ~r⊥). (C4)

The hybrid real-space/momentum-space Green’s function is then

Gχ(ω,~k,~r⊥) = i
V⊥
2π

1

4l2B
e
−

r2
⊥

4l2
B

∑

λ=±

∞
∑

n=0

(−1)n

Eχ
n

(

(Eχ
nγ0 − λvF (kz − χb)γ3){P−Ln

(

r2⊥
2l2B

)

− P+Ln−1

(

r2⊥
2l2B

)

}−

2i
vF
l2B
λ(~r⊥ · ~γ⊥)L1

n−1

(

r2⊥
2l2B

)

)

1

ω + µ− λEχ
n
. (C5)

The total Green’s function for both chiralities is then

G(ω, kz, ~r⊥) =
∑

χ=±

Gχ(ω, kz, ~r⊥)Pχ
5 . (C6)

It is convenient to introduce the spectral function

A(ω, kz, ~r⊥) =
1

2πi
(Gµ=0(ω − iǫ, kz, ~r⊥)−Gµ=0(ω + iǫ, kz, ~r⊥)) =

∑

χ=±

Aχ(ω, kz, ~r⊥)Pχ
5 , (C7)

where

Aχ(ω, kz, ~r⊥) = i
V⊥
2π

1

4l2B
e
−

r2
⊥

4l2
B

∑

λ=±

∞
∑

n=0

(−1)n

Eχ
n

(

(Eχ
nγ0 − λvF (kz − χb)γ3){P−Ln

(

r2⊥
2l2B

)

− P+Ln−1

(

r2⊥
2l2B

)

}−

2i
vF
l2B
λ(~r⊥ · ~γ⊥)L1

n−1

(

r2⊥
2l2B

)

)

δ(ω − λEχ
n ), (C8)

as done in Ref.68. The spectral function and Green’s function are related by

G(iωn, kz, ~r⊥) =

∫ ∞

−∞

dωA(ω, kz , ~r⊥)

iωn + µ− ω
. (C9)

As discussed in the main text, the phonon self-energy to one-loop order is given by

ΠPh(B, ~q, iωn) =
g2(~q)

βV

∑

ipm

∑

~k

Tr[γ0G(~k, ipm)γ0G(~k + ~q, ipm + iωn)], (C10)

where the trace is over spinor indicies. After performing the Matsubara sum and analytically continuing (iωn → Ω+iη)

ΠPh(B, ~q,Ω) =
g2(~q)

V

∫

dω

∫

dω′ne(ω − µ)− ne(ω
′ − µ)

ω − ω′ − Ω− iη

∑

~k

Tr[γ0A(~k, ω)γ0A(~k + ~q, ω′)]. (C11)

We are only concerned with the imaginary part of the phonon self-energy. Using the identity 1
a+iη

= P( 1
a
) + iπδ(a)

(when a is real), we have

ImΠPh(B, ~q,Ω) = g2(~q)

∫

dω

(

ne(ω − µ)− ne(ω − Ω− µ)

)
∫

dkz
2π

∫

d2k⊥
(2π)2

Tr[γ0A(~k, ω)γ0A(~k + ~q, ω − Ω)]. (C12)

Switching to the real-space/momentum space spectral function via Eq. C4, we have

ImΠPh(B, ~q,Ω) =
g2(~q)

V 2
⊥

∫

dω

(

ne(ω−µ)−ne(ω−Ω−µ)
)
∫

dkz
2π

∫

d2r⊥Tr[γ
0A(kz , ω, ~r⊥)γ

0A(kz+qz, ω−Ω,−~r⊥)]e−i~q⊥·~r⊥ .

(C13)
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There are two different real-space integrals that need to be evaluated. They are as follows
∫ ∞

0

d2rei~q⊥ ·~r⊥Ln

(

r2

2l2B

)

Ln′

(

r2

2l2B

)

e
− r2

2l2
B = 2πl2B(−1)(n+n′)e−

q2
⊥

l2
B

2 Ln′−n
n

(

q2⊥l
2
B

2

)

Ln−n′

n′

(

q2⊥l
2
B

2

)

, (C14)

and
∫

d2rei~q⊥·~r⊥
r2⊥
2l2B

L1
n−1

(

r2

2l2B

)

L1
n′−1

(

r2

2l2B

)

e
− r2

2l2
B = 2πl2n′(−1)(n+n′)e−

q2
⊥

l2
B

2 Ln′−n
n−1

(

q2⊥l
2
B

2

)

Ln−n′

n′

(

q2⊥l
2
B

2

)

. (C15)

After performing the trace, we are left with three terms that group by their Laguerre polynomials and the imaginary
phonon self-energy can be written as sum of two terms, I1 + I2. The first term is

I1 =
g2(~q)

4π2l2B

1

8π2

∑

n,n′

∑

χ,λ,λ′

∫ ∞

−∞

dkz
2π

∫

dω
sinh(βΩ

2 )

cosh(β Ω
2 ) + cosh(β(ω − µ− Ω

2 ))

1

Eχ
n (kz)E

χ
n′(kz + qz)

×
(

[Eχ
n (kz)E

χ
n′(kz + qz) + λλ′v2F (kz − χb)(kz + qz − χb)] + svFχ[λ

′Eχ
n(kz)(kz + qz − χb) + λ(kz − χb)Eχ

n′(kz + qz)]

)

×δ(ω − Ω− λ′Eχ
n′(kz + qz))δ(ω − λEχ

n (kz))e
−

q2
⊥

l2
B

2 (Ln−n′

n′ (
q2⊥l

2
B

2
)Ln′−n

n (
q2⊥l

2
B

2
) + Ln−n′

n′−1 (
q2⊥l

2
B

2
)Ln′−n

n−1 (
q2⊥l

2
B

2
)).

(C16)

The second term is

I2 =
g2(~q)

4π2l2B

1

π2

v2F
l2B

∑

n,n′

∑

χ,λ,λ′

∫ ∞

−∞

dkz
2π

∫

dω
sinh(β Ω

2 )

cosh(βΩ
2 ) + cosh(β(ω − µ− Ω

2 ))

1

Eχ
n (kz)E

χ
n (kz + qz)

×δ
(

ω − Ω− λ′Eχ
n′(kz + qz)

)

δ(ω − λEχ
n (kz))λλ

′n′e−
q2
⊥

l2
B

2 Ln′−n
n−1

(

q2⊥l
2
B

2

)

Ln−n′

n′

(

q2⊥l
2
B

2

)

. (C17)

After shifting the kz in the integral by bχ, doing the ω integral and summing over chirality, we find,

I1 = 2
g2(~q)

4π2l2B

1

8π2

∑

n,n′

∑

χ,λ,λ′

∫ ∞

−∞

dkz
2π

sinh(β Ω
2 )

cosh(βΩ
2 ) + cosh(β(λEn(kz)− µ− Ω

2 ))

1

En(kz)En′(kz + qz)

×δ(λEn(kz)− Ω− λ′En′(kz + qz))

(

(En(kz)En′(kz + qz) + λλ′v2F (kz)(kz + qz)

)

e−
q2
⊥

l2
B

2

×
(

Ln−n′

n′

(

q2⊥l
2
B

2

)

Ln′−n
n

(

q2⊥l
2

2

)

+ Ln−n′

n′−1

(

q2⊥l
2
B

2

)

Ln′−n
n−1

(

q2⊥l
2
B

2

)

)

, (C18)

and

I2 = 2
g2(~q)

4π2l2B

1

π2

v2F
l2

∑

n,n′

∑

λ,λ′

∫ ∞

−∞

dkz
2π

sinh(βΩ
2 )

cosh(β Ω
2 ) + cosh(β(λEn(kz)− µ− Ω

2 ))

1

En(kz)En(kz + qz)

×δ(λEn(kz)− Ω− λ′En′(kz + qz))λλ
′n′e−

q2
⊥

l2
B

2 Ln′−n
n−1

(

q2⊥l
2
B

2

)

Ln−n′

n′

(

q2⊥l
2
B

2

)

. (C19)

We observe that due to the hyperbolic functions, the cooling power will be suppressed exponentially in terms of αn.
We thus focus on the contribution of the lowest Landau level to the cooling power. The only term to contribute from
the lowest Landau level is I1 due to the vanishing of the Laguerre polynomials (Ln(x) with n < 0 is defined to be
zero68). For n = 0, the first term becomes,

I1 = 2
g2(~q)

4π2l2B

1

8π2
2
∑

λ

∫ ∞

−∞

dkz
2π

sinh(β Ω
2 )

cosh(β Ω
2 ) + cosh(β(λvF kz − µ− Ω

2 ))
δ(−Ω− λvF qz)e

−
q2
⊥

l2
B

2 . (C20)

After evaluating the kz integral, we arrive at our final expression for the imaginary part of the phonon self-energy,

Im[ΠPh(~q,Ω)] =
∑

λ=±

g2(~q)Ω

8π5vF l2B
δ(−Ω− λvF qz)e

−
q2
⊥

l2
B

2 . (C21)
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Plugging Eq. (C21) into Eq. (C26) (at zero lattice temperature), we have

PB = −
∑

s,λ=±

∑

~q

∫

dωω2Ne(ω)
g2(~q)

8π5vF l2B
δ(−ω − λvF qz)e

−
q2
⊥

l2
B

2 sδ(ω − scsq), (C22)

Using one of the delta functions to evaluate the ω integral, we find

PB = −
∑

s,λ=±

V

∫ Λ

0

dq

(2π)3

∫ π

0

dθ sin θ

∫ 2π

0

dφc2q4Ne(scq)
g2(~q)

8π5vF l2B
δ(−scsq − λvF q cos θ)e

−
q2 sin θ2l2

B
2 s, (C23)

Evaluating the φ integral, we have

PB = −
∑

s,λ=±

V

∫

ωD
c

0

dq

(2π)2

∫ 1

−1

dxc2sq
3Ne(scsq)

g2(~q)

16π5v2F l
2
B

δ(x+ λs
cs
vF

)e−
q2(1−x2)l2

B
2 s. (C24)

Here we have taken the cutoff, Λ, to be the Debye wavelength, ωD

cs
. Using the last delta function to evaluate the x

integral, we find

PB = −
∑

s,λ=±

scV D2

8π5v7F l
2
B4ρβ

5

∫ β
vF ωD

c

0

dy

(2π)2
y4

1

e
s c
vF

y − 1
e
−

y2(1−( c
vF

)2)l2
B

2β2v2
F , (C25)

PB = −
∑

λ=±

cV D2

8π5v7F l
2
B4ρβ

5(2π)2
(
vF
c
)5

∞
∑

k=0

(− l2B
2v2

F
β2

vF
c
)k

k!

∫

TD
Te

0

dzzk+4

(

2

ez − 1
+ 1

)

. (C26)

Here we have used the fact that Ne(−z) = −1−Ne(z) and assumed c
vF

≪ 1. We can approximate the first term in
the integral as

∫

TD
Te

0

dzzk+4 2

ez − 1
≈
∫ ∞

0

dzzk+4

(

2

ez − 1

)

= 2η(k + 5)Γ(k + 5), (C27)

as for large z, the integrand is small. We then have

PB = −
∑

λ=±

cV D2

8π5v7F l
2
B4ρβ

5(2π)2
(
vF
c
)5

∞
∑

k=0

(− l2B
2v2

F
β2

vF
c
)k

k!

(

2η(k + 5)Γ(k + 5) +
1

(k + 5)
(
TD
Te

)k+5

)

. (C28)

Assuming Te

TD
≪ 1 and performing the trivial summing over λ, we have

PB = − cV D2

4π5v7F l
2
B4ρβ

5(2π)2
(
vF
c
)5(

TD
Te

)5
∞
∑

k=0

(− l2B
2v2

F
β2

vF
c

TD

Te
)k

k!(k + 5)
. (C29)

We assume that
l2B

2v2
F
β2

vF
c

TD

Te
≪ 1, which is a physically reasonable limit. For example, taking Te = 30 Kelvin,

lB
2~vF

= 1200 Kelvin (the magnetic energy scale), vF
c

= 100, and TD = 140 Kelvin, we find
l2B

2v2
F
β2

vF
c

TD

Te
≈ .15. Using

the fact that
l2B

2v2
F
β2

vF
c

TD

Te
≪ 1, we only keep the first term in the sum. We then arrive at our expression for the power

loss (after restoring factors of ~) in the presence of an external magnetic field,

PB = − V D2ω5
D

320π7v2F l
2
B4ρc

4
. (C30)
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