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The distribution of Yang-Lee zeros in the ferromagnetic Ising model in both two and three di-
mensions is studied on the complex field plane directly in the thermodynamic limit via the tensor
network methods. The partition function is represented as a contraction of a tensor network and is
efficiently evaluated with an iterative tensor renormalization scheme. The free-energy density and
the magnetization are computed on the complex field plane. Via the discontinuity of the magneti-
zation, the density of the Yang-Lee zeros is obtained to lie on the unit circle, consistent with the
Lee-Yang circle theorem. Distinct features are observed at different temperatures—below, above
and at the critical temperature. Application of the tensor-network approach is also made to the
q-state Potts models in both two and three dimensions and a previous debate on whether, in the
thermodynamic limit, the Yang-Lee zeros lie on a unit circle for q > 2 is resolved: they clearly do not
lie on a unit circle except at the zero temperature. For the Potts models (q = 3, 4, 5, 6) investigated
in two dimensions, as the temperature is lowered the radius of the zeros at a fixed angle from the
real axis shrinks exponentially towards unity with the inverse temperature.

PACS numbers: 05.10.Cc,05.50.+q,75.10.Hk

I. INTRODUCTION

More than half a century ago Yang and Lee proposed
a new approach for studying phase transitions in a gas
by examining the zeros of the grand partition function
in the complex fugacity plane1. In the thermodynamic
limit, these zeros, which shall be referred to as the Yang-
Lee zeros, may lie arbitrarily close to certain points on
the real axis, marking where phase transitions appear.
Inside a region clear of zeros, no phase transitions can
occur. Thus, the study of the location of the zeros in
the complex plane determines the transition points in
the real axis2. In a subsequent paper3, Lee and Yang
showed, among other things, that the zeros of the parti-
tion for the ferromagnetic Ising model lie on a unit circle
of the complex field (or more precisely the complex z-
plane, where z ≡ exp(−2βh) with β = 1/kBT and h
the external field), which is referred to as the Lee-Yang
theorem. The equation of the state can be obtained via
the knowledge of the distribution of the Yang-Lee zeros
on the unit circle. At very high temperatures, the zeros
do not cover the whole circle, but only the segment of
the arc around the angle θ = π. As the temperature is
lowered to the transition temperature Tc, the zeros move
and pinch the real axis at θ = 0, the field value (in this
case zero) of which corresponds to the phase transition
point.

The study of partition function zeros, as well as gen-
eralization of the circle theorem, has been extended to
higher spins and other models (whose list is hard to ex-
haust here)4–19 and has provided useful insights to phase
transitions, even in QCD20. The consideration of zeros in
the complex temperature plane was initiated by Fisher21

and these zeros are called Fisher zeros2,22,23. Proper-
ties of the distributions of zeros also give characterization
of first-order phase transitions24 as well as higher-order
phase transitions and scaling relations25. The Lee-Yang

theorem has its impact also beyond statistical physics;
it has incited mathematical theory connected with the
Laguerre-Pólya-Schur theory of linear operators, possi-
ble connection to the Riemann hypothesis on the zeta
functions26,27, and computational complexity of comput-
ing averages28, etc. Even though the Yang-Lee zeros lie
on the complex plane, their density was inferred from
the magnetization data in one experiment29, and very
recently it is found that the individual zeros of classical
Ising models can be detected by using a quantum spin as
a probe that couples to the classical spins30,31.

Yang-Lee zeros can be solved exactly on small system
sizes and the thermodynamic limit is inferred from ex-
trapolation. For most models, however, there is no an-
alytic expression for the distribution of the zeros and to
locate these zeros accurately in the thermodynamic limit
remains a challenge. It was known that computing av-
erages such as the magnetization exactly for even the
ferromagnetic Ising model on the complex plane is #P
hard28. Here we introduce the tensor network (TN) tech-
niques for computing the density of the Yang-Lee zeros
in the complex field plane directly in the thermodynamic
limit. The density is proportional to the discontinuity
of the magnetization on the complex plane3, and the
magnetization is computed with controlled approxima-
tions. Tensor network methods, including the density
matrix renormalization group (DMRG), matrix product
states (MPS), and other tensor product or tensor net-
work states, have become very useful numerical tools in
both classical and quantum spin systems32–37. In essence,
physical observables are expressed as contraction of a ten-
sor network. However, the contraction in two and higher
dimensions is a computationally hard problem, but it can
be approximated and the error can be controlled by re-
ducing truncation, such as during the real-space coarse-
graining or renormalization group (RG) procedure over
the tensors describing the system38–43. We note that
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the particular partition function zero closest to the pos-
itive real axis has been explored with TN for the one-
dimensional Schwinger model on a finite lattice44. But
for our purpose we use the method appropriate for the
infinite system to directly probe the density of zeros in
the thermodynamic limit.
In particular, we study ferromagnetic Ising and q-state

Potts models45 in both two and three dimensions. We
observe clearly that the magnetization has a dicontinu-
ity at the unit circle, consistent with the Lee-Yang circle
theorem for the Ising model. The distribution of the ze-
ros on the unit circle shows distinct features at different
temperature regimes: T > Tc, T = Tc and T < Tc. At
T > Tc the zeros occupy part of the circle and move along
it towards the real axis as T decreases. They pinch z = 1
at T = Tc and the difference with T < Tc is manifest in
the distribution of the zeros. From the density we ob-
tain good estimates for the magnetization-field exponent
δ for both two and three dimensions. For the q-state
Potts models in two and three dimensions our results
demonstrate that the zeros clearly do not lie on a unit
circle in the thermodynamic limit for q > 2 and T > 0, in
agreement with Kim and Creswick18, whose results were
questioned previously due to the small system sizes46.
Our results also show that the deviation from the unit
circle, in terms of the radius at a fixed angle, is decaying
exponentially with the inverse temperature β, consistent
with the fact that the location of the zeros shrinks to the
unit circle at zero temperature.
The remaining organization of the paper is as follows.

In Sec. II, we give a slightly more expanded but elemen-
tary introduction to the Yang-Lee zeros, and the readers
can skip it if they are already familiar with these ideas.
In Sec. III we review the RG algorithm that we employ
in this paper, with a detailed exposition of the thermo-
dynamic limit calculations of the free energy density. A
numerical RG process is applied to the Ising model in
both a square and cubic lattices, with computation of the
magnetization described in Sec. IV, to show the Yang-Lee
zeros on the complex plane. From the magnetization we
directly obtain the density of zeros along the unit circle.
In particular the distribution of the zeros at T = Tc is
used to estimate the magnetization-field exponent δ. For
T > Tc we study in Sec. V the ‘edge singularity’ of the
density of zeros. In Sec. VI we extend our results to the
Potts models, and we study the location of zeros in 2D
and 3D lattices. We conclude in Sec. VII.

II. YANG-LEE ZEROS: AN ELEMENTARY

INTRODUCTION

Here we give an elementary introduction to the Yang-
Lee zeros. Readers who are familiar with Yang-Lee zeros
can skip this section. If we consider a system of N Ising
spins with the Hamiltonian,

H = −
∑

〈i,j〉

sisj − h
∑

i

si, (1)

where si = ±1 is a classical variable and h is an external
field. The partition function at a temperature T = 1/β
(where we have set kB = 1) is

Z(β, h) = Tr(e−βH) = eNβh
N
∑

n=0

Pnz
n, (2)

where in the second equality we have re-arranged the con-
tribution to Z in terms of the number n of down spins
and their associated value Pn at zero field and we have
defined z ≡ exp(−2βh). Since Pn is independent of h
(and is real and positive), one can factorize the polyno-

mial P(z) ≡
∑N

n=0 Pnz
n = c0

∏N
n=1(z − zn), where zn’s

are the zeros of P(z), which are referred to as the Yang-
Lee zeros and c0 is a positive constant.
Lee and Yang proved that for any ferromagnetic Ising

model the zeros zn lie on a unit circle, namely zn = eiθn .
This is referred to as the Lee-Yang circle theorem3. The
consideration of the zeros and the Lee-Yang theorem was
generalized to other models and higher spins4–19.
How are the Yang-Lee zeros related to phase transi-

tions? The free-energy density is

f(β, h) = − lnZ(β, h)/(Nβ) (3)

= −h− ln c0
Nβ

− 1

Nβ

N
∑

n=1

ln(z − zn). (4)

In a region free of zeros, the free energy is analytic and
therefore there cannot be any singularity, and hence on
the real axis contained in this zero-free region, no phase
transitions occur. The Yang-Lee zeros close to the posi-
tive real axis of z signal the location of the phase transi-
tions. From the free energy, one can obtain the magneti-
zation (which in general has a complex value for complex
z),

m(β, h) = −∂f

∂h
= 1− 2z

N

N
∑

n=1

1

z − eiθn
. (5)

In the limit N → ∞, the zeros form a continuum on the
unit circle, with the density of zero per angle denoted
by g(θ). Since any complex zero zn has a corresponding
complex conjugate partner zn, the density of zero has the
symmetry that g(−θ) = g(θ), and, employing this, one
can re-rewrite the free-energy density as follows,

f(β, h) = −h− 1

β

∫ π

0

d θ g(θ) ln(z2 − 2z cos θ + 1),(6)

and the magnetization as follows

m(β, h) = 1− 4z

∫ π

0

dθ g(θ)
z − cos θ

z2 − 2z cos θ + 1
, (7)

which we have chosen the normalization that

∫ 2π

0

dθ g(θ) = 1. (8)



3

The thermodynamics of the system therefore can be de-
duced if the density of zeros g(θ) is known on the unit cir-
cle. We remark that, however, except in one dimension,
the analytic expression of g(θ) is generally not known.
But the Yang-Lee picture for phase transitions is very
visual and intuitive in terms of partition function zeros;
see e.g. Figs. 3, 5& 6. Approximation schemes such as
series expansion have been applied to the density53. Us-
ing an electrostatic analogy, Lee and Yang showed that
the density of zeros is related to the discontinuity of the
magnetization across the unit circle, i.e.,

g(θ) = − 1

4π
Re

(

lim
r→1+

m(z = r eiθ)− lim
r→1−

m(z = r eiθ)

)

.

(9)
Since the free-energy density is expressed in terms of the
zero density, other thermodynamic quanities in addition
to the magnetization and the susceptibility, such as the
specific heat and the entropy density can also be obtained
once the density is known. Our numerical calculation,
to be discussed below, is based on the above relation be-
tween the magnetization and the density and is to obtain
the latter via evaluation of the magnetization directly
on the complex plane with the tensor network methods.
We remark that we shall loosely refer to the real part of
the magnetization as the magnetization when no confu-
sion arises, as the imaginary part of the magnetization is
never needed in our discussions.
More than a decade after the results by Lee and Yang3,

Fisher initiated the study of the zeros defined on the com-
plex temperature plane, i.e., the so-called Fisher zeros21.
Analyzing the behavior of Yang-Lee and Fisher zeros also
allows characterization of first-order phase transitions24

as well as second and higher-order phase transitions and
scaling relations25. The interest of Lee-Yang-like theo-
rem for partition function zeros goes beyond statistical
physics, such as in mathematics26,27 and computational
complexity28. But further detailed explanation on these
will take us awry from the main purpose of this work
and the readers are referred to the cited references and
more references therein for further discussions. This sec-
tion serves as a brief and elementary introduction to the
Lee-Yang zeros that we shall explore in later sections.

III. FREE ENERGY FROM TENSOR

RENORMALIZATION

The partition function Z = Tr exp{−βH} of a classi-
cal system with local interactions can be expressed as a
contraction of a tensor network of low rank and of low
dimensions. The expectation 〈O〉 of local observables O,
〈O〉 = Tr (O exp{−βH})/Z, is then a ratio of contrac-
tions of two TNs. This efficient representation serves as
the starting point for a coarse-graining process for com-
puting physical observables from the tensor. The con-
traction of a TN is in general a hard problem, and nu-
merical approximations are in order47. In recent years a

number of schemes have been proposed to approximate
Z in an efficient manner; see e.g. Refs.37,48 and refer-
ences therein. The RG process consists of a decimation
of the lattice at each step and such decimation process
is iterated, which gives rise to efficient and accurate pre-
dictions of thermodynamic quantities, even close to the
phase transitions.
Let us take for example the Ising model with nearest-

neighbor interaction and a local field,

H =
∑

Hi,j =
∑

〈i,j〉

[−sisj −
h

nb
(si + sj)] (10)

where 〈i, j〉 represents the nearest-neighbor pair i and j,
nb is the number of neighbors, nb = 2d for square (d = 2)
and cubic (d = 3) lattices. Its partition function Z can
be expressed as a tensor network; the explicit description
of the tensors forming the network are obtained straight-
forwardly from the Hamiltonian,

Z = Tr exp(−βH) = Tr
∏

〈i,j〉

exp{−βHi,j} (11)

can be decomposed as the tensor trace of the product of
identical tensors T ,

Z = tTr
∏

TT . . . T, (12)

where tTr denotes the tensor trace, i.e., summing over all
degrees of freedom, and each tensor T (lying on each of
the edges of, e.g., the square lattice, see Fig. 1) has the
expression

T =

(

exp{β + h/d} exp{−β}
exp{−β} exp{β − h/d}

)

(13)

The product operation transforms the tensor network
into a number by contracting i.e. summing over all the
corresponding degrees of freedom of neighboring sites.
Each tensor T has rank 2 and is located on an edge of the
square lattice. For convenience of an RG iteration that
directly preserves the square and cubic lattice structure
of the tensors, we shall instead construct new tensors A
that are located on each site and the trace of them is to
sum over degrees of freedom on edges. To do this, we
first use a simple decomposition (such as singular-value
decomposition) of each tensor T as

Ti,j =
∑

µ

Ui,µVj,µ, (14)

and then we form on each vertex a new tensor A from
the contraction of four tensors (chosen from U or V ) in
the square lattice

Au,d,l,r =
∑

i

Ui,uVi,dVi,lUi,r. (15)

(For the simple cubic lattice, A will be a rank-6 ten-
sor obtained from six U or V tensors.) Therefore, the
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FIG. 1. (Color online) The free energy of a classical lattice
system is expressed as a Tensor Network, and evaluated using
a RG iterative process. (a) The Tensor T of rank 2 is obtained
from the Hamiltonian (see Eq. 13 in the text). By means
of a decomposition (b), tensors U and V are obtained, and
combined (c) to form tensor A. An RG step over the square
lattice consists in the coarse grain of a set of tensors into a
single site tensor. I.e. combining two tensors horizontally
(d), a new tensor A is created (e). After truncation, the new
tensor (f) is used again in an iterative process.

partition function of the Ising model on a square lattice
involves a single tensor A repeated in the infinite lattice,
and is an exact representation of the partition function
of the system, which is then evaluated via an RG itera-
tive process to be described below. The basic structure
of an RG process to compute Z is a partition of the lat-
tice into small plaquettes. At each step, plaquettes are
coarse-grained to obtain an effective lattice of smaller
size. In the limit of many iterations of this process, pla-
quettes become invariant upon further renormalization
step. At this effective thermodynamic limit we can eas-
ily evaluate the free energy per site or local observables
using a single plaquette. While the general picture of
RG methods is essentially equivalent but differs in the
specific algorithmic implementations, in this paper we
employ the higher-order tensor RG (HOTRG)49, which
among other schemes has shown accurate evaluation of
physical observables. The basic ingredient of the algo-
rithm is presented in Fig. 2, where a pair of tensors A
is coarse-grained into a single tensor Ã. In practice, the
coarse-graining procedure will be done iteratively for the
horizontal direction followed by the vertical direction in
the 2D square lattice, and similarly for the three direc-
tions in the 3D simple cubic lattice.
From the RG flow one directly obtains approximations

to the free energy per site50

f =
−1

Nβ
logZ. (16)

Before starting the RG, we have a TN representing the
Ising model in a square lattice with initial equal tensors
A(0); as we perform the RG contraction numerically, we
keep the tensors under machine representation factoriz-
ing A(0) at each step as follows,

A(0) = |α0|Ã(0). (17)

A Ã(1)=
W

W+

A Ã(1)=
W

W+

FIG. 2. (Color online) The HOTRG algorithm proceeds at
each step combining 2 tensors along a preferred direction, and
extracting unitaries on the combined indices. These unitaries
W are truncated and inserted in order to reduce the dimen-
sion of the auxiliary indices. This prevents an explosion of
the number of parameters required, while keeping accurate
approximations to Z. Similar operations are required either
for 2D lattices (top, with tensors of rank 4) and for 3D lattices
(bottom, tensors of rank 6).

From this the RG process effectively shrinks the lattice
sites by half and produces a sequence of new tensors
A(1), A(2)..., and each of these tensors is also factorized
accordingly to bound the numerical values similar to the
above Eq. (17). Let us define

G(0) ≡ ln |α0| (18)

and the corresponding G(n). The partition function in
the TN picture then reads

Z ≡ [A(0)]N = eNG(0)

[Ã(0)]N , (19)

where we have defined the notation [A]N to indicate a
contraction of tensor network described by A over N
sites. By applying an RG step over Ã(0) we have

Z ≡ eNG(0)

[A(1)]
N

2 = eNG(0)

e
N

2 G(1)

[Ã(1)]
N

2 (20)

where Ã(1), after a single RG step, spans a smaller lattice
or more precisely half the lattice with N/2 sites. This
process can be iterated and the free energy per site can be
written as a function of all the prefactors G(k) as follows,

− β f =

n
∑

k=0

G(k)

2k
+

1

N
ln{[Ã(n)]N/2n}, (21)

where n the total number of RG steps that has been
carried, and the second term vanishes exponentially for
large n. Notice that without truncation the dimension
of each index of the tensor Ã will increase exponentially
with n, and the common practice is to limit the maximal
dimension to some number denoted by Dcut

41. One can
increase Dcut to see whether the computed observables
converge. By the above procedure, we thus obtain the
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free energy per site (at any complex field h value) solely
from the evaluation of the prefactors G(k) along the RG
flow. In our calculations, the estimation of the free energy
converges after only a few RG steps (typically n ∼ 20).
We note that previous application of the tensor network
methods for f has been focused on real h values and high
precision for observables has been obtained33,34.
Would the TN methods work for complex field val-

ues? We use the above method to perform a calculation
of the free energy per site f on the complex plane de-
fined by z = exp{−2βh}. The result is shown in Fig. 3
for the Ising model in a 2D square lattice, for illustra-
tion, at two different temperatures. For any tempera-
ture, one always observes the minimum of f at exactly
the unit circle, a verification of the Lee-Yang theorem.
For T < Tc, the minimum of f is located exactly along
the unit circle, with a uniform density for any value of
θ with z ≡ r exp(i θ) at r = 1. By increasing T above

Tc = 2/ log(1 +
√
2), the values of f around the positive

real axis start to increase, and no discontinuity is ob-
served near θ = 0 at the unit circle; observe that the dark
region recedes from the real axis close to unity. From the
point of view of the magnetization (to be discussed in
the next section), this translates into the disappearance
of phase transition at this high temperature. These re-
sults demonstrate how tensor network methods can be
useful in the study of partition function zeros, via the
free energy f on the complex plane, obtained after an
efficient RG contraction process. In the next section we
shall show that the computation of magnetization leads
to a more precise probe of the location of zeros and their
density.

IV. MAGNETIZATION AND DENSITY OF

YANG-LEE ZEROS IN THE ISING MODEL

While one can obtain physical quantities directly from
the derivatives of the free energy, the RG algorithms also
provide a direct approach to compute expectation values
of local observables such as the energy and magnetiza-
tion. In order to compute the magnetization we define a
new tensor B

Bu,d,l,r =
∑

i

miUi,uVi,dVi,lUi,r (22)

where m1 = +1 and m−1 = −1, accounting for the local
magnetization on a single site. Thus, calculations of the
single site magnetization imply evaluation of the expres-
sion

m =
1

Z
Tr(sie

−βH) ≡ 1

Z
〈M〉, (23)

involving two contractions of a TN: one contraction com-
putes the norm Z (using exactly the tensors defined for
the calculation of the free energy), while the second con-
traction differs from the first one by only the single site
tensor defined in Eq. (22) at only one site. We note

ℜ(z)
-1 -0.5 0 0.5 1

ℑ
(z
)

-1

-0.5

0

0.5

1

ℜ(z)
-1 -0.5 0 0.5 1

ℑ
(z
)

-1

-0.5

0

0.5

1

FIG. 3. (Color online) Free energy per site f in the com-
plex plane defined by z = exp (−2hβ) for β = βc (top) and
β = βc/2 (bottom), as obtained from Tensor Network calcu-
lations with Dcut = 10. Darker regions around the unit circle
correspond to minimum values of f . For β < βc this mini-
mum does not contact the real axis at z = 1. The central
region possesses very large values of free-energy density and
is removed so to enhance contrast around the unit circle.

that due to the complex field, the magnetization m is
not necessary real and nor restricted in the range [−1, 1].
Along the RG process, 〈M〉 is balanced by a prefactor
|αk|, obtained from the RG flow from Z, and that keeps
the numerical process bounded at each step. We use the
ratio Eq. (23) along the RG procedure to ensure conver-
gence, which normally takes about 50 steps. Performing
two contractions after the RG has converged, we obtain
a direct measurement of the magnetization in the state
represented by the TN. This allows a complete study of
the magnetization for all complex values of the magnetic
field h.
For the Ising model on the 2D square lattice, only two

exact solutions of m are known in the complex plane51:
(i) the seminal solution at z = 1,

m(z = 1) =

[

1 + x2

(1 − x2)2
(1− 6x2 + x4)

1
2 )

]

1
4

(24)

and (ii) on the opposite side of the unit circle, at z = −1,

m(z = −1) =

[

(1 + x2)2

1− x2
(1 + 6x2 + x4)−

1
2 )

]
1
4

(25)
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x
0.1 0.2 0.3 0.4

m
(x
)

0.8

0.85

0.9

0.95

1

1.05

z = 1, exact

z = -1, exact

z = 1, D=15

z = -1, D=15
x

0.1 0.2 0.3 0.4

ǫ

10 -10

10 0

FIG. 4. (Color online) Magnetization as a function of x ≡
exp (−2β) at the points z = 1 and z = −1 for the 2D Ising
model. Solid lines are obtained from the analytical expres-
sions in Eqs. (24) and (25), and marks are obtained using
Tensor Networks with Dcut = 15. While the precision de-
creases around the transition point, it remains below 10−4 for
this choice of Dcut (see inset).

with x ≡ exp (−2β). We use these exact analytic results
to benchmark the performance of the RG contraction. In
Fig. 4 we present calculations of m vs. x at points z = 1
and −1, and from comparison with the exact results, we
find that the error of m (as evaluated for different Dcut)
is bounded below 10−4, even close to the transition point.
This clearly demonstrates that TN methods can provide
an accurate picture of the magnetization for complex val-
ues of the magnetic field. We remark that close to a
phase transition, numerical accuracy can be improved
by increasing the bond dimension (Dcut). Furthermore,
more sophisticated RG algorithms can be employed49,52.
Eqs. (24) and (25) already provide useful information re-
garding the properties of the model and the partition
function zeros. According to Eq. (24), at z = 1 (or equiv-
alently h = 0) there is a critical value of x (or equivalently
kBTc ≡ 1/βc) beyond which no magnetization is present,
showing a phase transition. This transition for the 2D
Ising model appears at βc = ln (1 +

√
2)/2. At θ = π,

however, m always increases with the temperature (with
a value becoming larger than unity increasingly), and a
divergence builds up here in the local magnetization at
very large temperature T . This buildup of divergence
also implies the buildup of partition function zeros; see
Eq. (27) and further discussions below.
In Fig. 5 we plot for the 2D Ising model the magneti-

zation in the complex z plane. It shows a discontinuity
only at exactly the unit circle. For the magnetization
at two different temperatures we can observe how the
temperature affects this discontinuity. For T < Tc this
discontinuity appears all along the unit circle, even close
to the positive real axis. However, at a higher temper-
ature T > Tc, the discontinuity around θ = 0 vanishes,

1

ℑ(z)

0.5
0

-0.5
-11

0.5
0

ℜ(z)

-0.5
-1

0

-1

1

m
(z
)

1

ℑ(z)

0.5
0

-0.5
-11

0.5
0

ℜ(z)

-0.5
-1

-1

0

1

m
(z
)

FIG. 5. Magnetization per site in the complex plane defined
by z = exp{−2βh}, as obtained from the TRG with Dcut = 8,
for the Ising model on the 2D square lattice. The temperature
is fixed at β = βc (top) and β = βc/2 (bottom). A disconti-
nuity in m appears only at points on top the unit circle, and
for a range of angles θ that changes with the temperature.

and a smooth region emerges around there close to the
positive real axis.

The RG method presented above can be extended to
the study of higher dimensional lattices. Using a tensor
network structure resembling that of the spin lattice, the
connectivity of each component increases and the rank
of the tensors becomes larger at higher lattice dimen-
sions. Thus, the computational cost associated to the
RG process (which depends directly on the rank and di-
mension of the tensors) is larger, and we can only reach
smaller bond dimensions (and hence less precision) using
the same resources, compared to 2D. For the Ising model
in a simple 3D cubic lattice the tensors have rank 6, and
are obtained in a similar way to the 2D case, resulting in
the tensor

Au,d,l,r,f,b =
∑

i

Ui,uVi,dVi,lUi,rUi,fVi,b. (26)
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Using the HOTRG procedure combining two tensors of
rank 6 at each step, the 3D lattice gets contracted to a
single tensor. The magnetization in the complex plane is
obtained also similarly as in 2D and is plotted in Fig. 6.

1

ℑ(z)

0.5
0

-0.5
-11

0.5
0

ℜ(z)

-0.5
-1

1

0

-1

m
(z
)

1

ℑ(z)

0.5
0

-0.5
-11

0.5
0

ℜ(z)

-0.5
-1

1

0

-1m
(z
)

FIG. 6. Following Fig. 5, magnetization per site m in the
complex z plane for the Ising model on the 3D simple cubic
lattice. Two temperatures are fixed, β = βc (top, Dcut =
5) and β = βc/2 (bottom, Dcut = 9). Above the critical
temperature, the discontinuity of m turns into a smooth slope
around the positive real axis.

How do we then obtain the density of the zeros? The
Lee-Yang theorem states that for the ferromagnetic Ising
models, the partition function zeros lie on a unit circle in
the complex z plane. The density of zeros g(θ), for any
θ along the unit circle reiθ with r = 1 is related to the
discontinuity of the magnetization3,53,

lim
r→1+

Re(m)− lim
r→1−

Re(m) = −4πg(θ). (27)

From our calculations we observe how the magnetiza-
tion shows a discontinuity at the unit circle, and how
this discontinuity changes with the temperature. For
the Ising model, we observe that limr→1+ Re(m) =

θ
0 0.5 1 1.5 2 2.5 3

m
(θ
)

0

0.5

1

1.5

2

2.5

β=2β
c

β=β
c

β=β
c
/4

FIG. 7. (Color online) Magnetization m(r → 1−) for the
2D Ising model using the TN TRG with bond dimension
Dcut = 45. Via the relation between the magnetzation and
the density (28), the main features of the density of Yang-Lee
zeros are obtained in a range of temperatures. For T < Tc, a
uniform distribution of zeros is obtained along the unit circle.
At T = Tc, a drop in the density near the positive real axis
marks the presence of a phase transition. For T > Tc, a gap
around the real axis appears and no zeros are found up to a
critical value θe.

− limr→1− Re(m) and hence

lim
r→1−

Re(m) = 2πg(θ). (28)

Using Eq. (27) or Eq. (28) we can thus directly relate
our calculation of m to the density of zeros along the
unit circle. Confirming the Lee-Yang theorem, our re-
sults show that the density g(θ) is zero around the real
axis for T > Tc, and thus forms a gap of zero density
for θ < θe, where θe the smallest value of θ below which
no zeros occur. As the temperature increases, the zeros
move towards θ = π, and the density there keeps in-
creasing with temperature, which is what was revealed
by Eq. (25). At precisely T = Tc the density at the point
z = 1 drops to zero, indicating the temperature threshold
of the existence of phase transitions. We plot in Fig. 7
the density g(θ) for three different temperatures around
Tc. The density of zeros is flat below Tc, and exactly
at T = Tc we observe a drop in the density around the
real axis. An entirely different behavior for the zeros is
observed at T > Tc.
At the critical temperature T = Tc the relation be-

tween the magnetization and the external field implies
the following scaling relation of the density of the zeros,

g(θ) ∼ |θ|δ (29)

where δ is the magnetization-field critical exponent. In
Fig. 8 we plot the density at T = Tc, where we observe
the detailed drop of the density at exactly z = 1, and the
inset shows the estimation of the exponent. From these
calculations we obtain an estimation of δ = 15.0(2) in
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θ
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FIG. 8. (Color online) Magnetization along the unit circle
(r → 1−) for different values of θ at exactly β = βc. Via the
relation between the magnetization and the density (28), the
inset shows the relation log(m) vs log(θ) following the relation

g ∼ |θ| 1δ , with a value of δ(Dcut = 30) = 15.0(2) (for the Ising
model in 2D, δ = 15).

agreement with the 2D Ising magnetic exponent δ = 152.
Proceeding in a similar way for the higher dimensional
lattice, we use in our calculations an estimated critical
temperature Tc = 4.5115454–56 for the 3D Ising model
in a simple cubic lattice. Plotting the density at this
temperature (see Fig. 9) we obtain the critical exponent
δ = 4.8(3) from the relation g ∼ |θ|δ (for a 3D Ising
model in a simple cubic lattice δ = 4.789(2)).

V. EDGE SINGULARITIES AT T > Tc

The structure of the density of zeros changes dramat-
ically at temperatures above Tc, as a gap with no zeros
on the unit circle opens up around θ = 0, and it increases
with the temperature. The density of the Yang-Lee ze-
ros vanishes for θ < θe and becomes non-zero starting at
an edge value θe

53. The value θe can be directly deter-
mined from the density obtained using the TN method,
and has strong dependence with the temperature. From
the magnetization we obtain the value of θe(T ), depicted
in Fig. 10 for 2D square and 3D simple cubic lattices,
as a function of the temperature T normalized to their
respective Tc. While not exactly equal, these two curves
show similar features as they both increase rapidly after
Tc and then have a slower progression at larger temper-
atures.
In addition to θe, there is also a global movement of

zeros away from θ = 0 towards the opposite side of the
unit circle θ = π as the temperature increases. In Fig. 11
we plot the density obtained around the unit circle as
a function of θ for a 2D square lattice. Eventually at a
sufficiently large temperature, the density will accumu-
late mostly at θ = π and diverge as T → ∞. This is

θ
0 0.05 0.1 0.15 0.2 0.25 0.3

m
(θ
)

0.3

0.4

0.5

0.6

0.7

0.8

ln(θ)
-2.5 -2 -1.5

ln
(m

)

-0.6

-0.4

-0.2

FIG. 9. (Color online) For an ising model in a cubic lattice,
the magnetization and hence the density of Yang-Lee zeros
at the estimated critical temperature Tc = 4.51154 along the
unit circle in the complex plane is plotted using a bond dimen-
sion Dcut = 14. Via the relation between the magnetization
and the density (28), it is observed that this density is zero at
the real axis θ = 0, and increases along the unit circle. The
inset shows the calculation of the critical exponent δ = 4.8(3)
from the relation g ∼ |θ|δ (for a 3D Ising model in a cubic
lattice δ = 4.789(2)).

also verified by the diverging behavior of m at z = −1 in
Eq. (25).
The most striking feature in the behavior of the zeros

is the edge singularity in 2D: as θ approaches θe from
above, the density of zeros becomes diverging53. For in-
creasing values of T , the density on the unit circle evolves
as illustrated in Fig. 11. This singularity at θe has been
identified as a critical point11, and as a non-unitary re-
alization of conformal symmetry13. It is characterized as
follows,

g(θ) ∼ (θ − θe)
σ, for θ > θe, (30)

where θe is the position of the divergence at each temper-
ature. One expects a reduction of accuracy near a critical
point, especially for this edge-singularity critical point,
and we only obtain an estimated value of σ = −0.1(1),
consistent with the value from conformal field consider-
ations σ = −1/613. A different picture appears in the
study for the 3D simple cubic lattice. There is no di-
vergence of the density and σ is positive57; see Fig. 6b.
However, due to small Dcut we can use and the noisy
data from the density, we do not obtain a good estimate
of σ.

VI. YANG-LEE ZEROS IN THE POTTS MODEL

WITH A COMPLEX FIELD

In the preceding sections we have presented a method
to obtain properties of the partition function zeros for
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T/Tc
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θ
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1.5

2D square

3D simple cubic

FIG. 10. (Color online) Location of the partition function
zero closest to the positive real axis, as measured by the an-
gle θe. Results for the 2D square lattice (using Dcut = 20)
and for a 3D simple cubic lattice (using Dcut = 10) are shown,
normalized by their respective Tc. The location of the edge
singularity θe is shifted towards θ → π for increasing temper-
atures.

θ
0.8 1 1.2 1.4 1.6 1.8 2

m
(θ
)

0

0.5
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FIG. 11. (Color online) Density of zeros for the 2D Ising
model at different temperatures above the critical value Tc,
as computed with TN and Dcut = 45. A gap of zeros appears
around the real axis for a range of θ, e.g., up to a value of
0.8 for β = βc/3. This gap extends to θe, the edge singularity
with a high density of zeros. The value of θe moves towards
θ = π as the temperature is increased. Inset: At β = 0.2,
estimation of the exponent µ = −0.1(1).

lattice models, focusing on the Ising model in two and
three dimensions. This approach can indeed be applied
to any model for which we have a TN description, and
especially in classical models where the tensors are read-
ily obtained directly from the Hamiltonian expression, as
explained in the Ising models above. For illustration, we

θ
0 0.5 1 1.5 2 2.5 3

r

1

1.01

1.02

1.03

1.04

1.05

1.06

q=3
q=4
q=5
q=6

FIG. 12. (Color online) The location of the zeros for the
2D q-state Potts model using polar coordinates, as obtained
with Dcut = 20. At the corresponding critical temperature
βc = log(1+

√
q) for each q, the locus of zeros lies outside the

unit circle. The location of zeros is shown for the Potts model
with q = 3 . . . 6, where the distance changes with θ showing a
maximum value at θ = π for all q.

shall consider the q-state Potts models on the square and
simple cubic lattices.
The tensor network description of the q-state Potts

model is obtained from

H =
∑

〈i,j〉

[1− δ(σi, σj)]− h
∑

i

δ(σi, t) (31)

where σ = 0, . . . q− 1 and t ∈ [0, q− 1] but can be chosen
to be 0 for simplicity. The transition temperature of the
q-Potts model was found to be at βc = log(1 +

√
q)45.

Following similar considerations as in previous sections,
we obtain a tensor network of an initial bond dimension q
on the square lattice (as well as the simple cubic lattice),
where tensors are located at the vertices of the lattice.
The TRG method is directly applied to this tensor struc-
ture. We compute the magnetization

m =
1

Z
Tr

(

M e−βH
)

, (32)

where Z = Tr exp(−βH) and

M =
1

N

∑

i

δ(σi, t). (33)

Similar to the explanation for the magnetization in the
Ising model (23), the compuation of the magnetization
in the Potts model is also a ratio between two tensor-
network contractions. The density of zeros is also ob-
tained by searching for discontinuity in the real part of
the magnetization on the complex plane.
The exact location of Yang-Lee zeros of the Potts

model has attracted attention as we lack the equivalence
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FIG. 13. (Color online) Distance to the unit circle ∆r in the
complex plane at the point θ = π for the 2D q-state Potts
model. A bond dimension Dcut = 20 is used, and distances
are shown for a number of temperatures β. Increasing the
value of q increases the distance ∆r, but decreases at higher
temperatures. However, this plot suggests that only in the
limit T = 0 the zeros reach the unit circle.

of the unit circle theorem for this model. Their loca-
tion has been mostly estimated from finite-size extrapo-
lation18,58. An interesting feature of these findings is that
for the Potts model for q > 2 the zeros were believed to
lie outside the unit circle. Upon increasing the tempera-
ture, the zeros move further away from the unit circle as
the gap around real positive axis opens. However, these
previous results based on finite-size extrapolation were
questioned46, and calculations directly in the thermody-
namic limit were not available.

Our approach explained earlier enables us to probe di-
rectly the thermodynamic limit and to resolve the debate.
In Fig. 12 we plot the location of zeros (obtained via the
discontinuity in the magnetization) for the Potts model
at β = βc, for different values of q. We clearly observe
how the locus of zeros is outside the unit circle, at a vari-
able distance dependent on θ and q. We have verified that
our results have little dependence on the bond dimension
(for Dcut & 20), and this shows that the RG schemes,
such as the HOTRG, do provide efficient method to ac-
cess the thermodynamic limit. These results are in good
agreement with those in18, providing a complete picture
of the locus of zeros at any θ in a precise way. As a con-
sequence of the large though finite correlation length at
q > 4 (of a few thousand sites59), we use a larger bond
dimension to achieve similar precision level for any value
of q. As we observe in Fig. 12, the farthest zero is located
at θ = π in agreement with previous finite-size study18.
In Fig. 13 we show the movement of the zeros located at
this point as measured by ∆r = |r − 1|, as we lower the
temperature (i.e., increase β). At the limit T = 0 the
zeros lie on the unit circle, but this limit is reached only

θ
0 0.5 1 1.5 2 2.5 3

r

0.98

1

1.02

1.04

1.06

1.08

1.1

q=4
q=3

FIG. 14. (Color online) The location of the zeros for the
q = 3, 4 Potts model using polar axis in the 3D simple cubic
lattice, as obtained up to Dcut = 12. At their respective
critical temperatures60 the locus of zeros lie clearly outside
the unit circle.

exponentially slowly with the inverse temperature, at a
similar rate (∆r ∼ e−4.2(2)β), for any q and other values
of θ (not shown here).
In three dimensions, previous finite-size study was lim-

ited to very small system sizes such as 3 × 3 × 358, but
the zeros do not lie on the unit circle. What is their fate
in the thermodynamic limit? Again we use TN methods
to directly probe the zeros in this limit. In Fig. 14 we
show the locus of zeros for q = 3, 4 Potts model in the
3D simple cubic lattice. These zeros are computed at the
critical temperature T = Tc from Ref.60, and we clearly
see that they are located outside the unit circle in the
complex z plane (except at θ = 0).

VII. CONCLUSIONS

We have employed the tensor renormalization meth-
ods to investigate the properties of the free energy and
the distribution of the partition function zeros (i.e. the
Yang-Lee zeros) in the complex field (analagous to the
fugacity) plane. From the position and the density of
Yang-Lee zeros one can determine important properties
of the phase transitions of spin systems. While the loca-
tion of the zeros was rigorously established by Lee and
Yang for the Ising model, their distribution has not been
established precisely. We have demonstrated that the
tensor network methods provide useful tools to access
such information on the complex plane.
We have presented results for the density of zeros along

the unit circle in the plane of complex z = exp{−2βh}
in both 2D and 3D Ising models, showing different char-
acteristics of the density at different temperatures com-
pared to the critical temperature. In particular from
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the distribution of zeros at Tc we have extracted the
magnetization-field critical exponent. At higher temper-
atures we have determined how the singularity edge θe
moves with the temperature and estimated the singular-
ity exponent. All the results are in good agreement with
those from other techniques.

Going beyond the Ising models, we have also exam-
ined the q-state (with q > 2) Potts model in both two
and three dimensions, where fewer analytic results were
known. We found that in the thermodynamic limit the
Yang-Lee zeros from these small system sizes do not lie
on the unit circle except at the zero temperature, and

the approach to the unit circle from high temperatures
is exponentially close as the inverse temperature. This
resolves a previous debate about whether the conclusion
that the zeros are not on the unit circle is indeed correct
in the thermodynamic limit or simply due to the finite-
size effect. Possible future directions include the appli-
cation and generalization of the approach here to other
models for probing both Yang-Lee and Fisher zeros.
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