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The Monte Carlo calculation of Rényi entanglement entropies Sn of interacting fermions suffers
from a well-known signal-to-noise problem, even for a large number of situations in which the in-
famous sign problem is absent. A few methods have been proposed to overcome this issue, such
as ensemble switching and the use of auxiliary partition-function ratios. Here, we present an ap-
proach that builds on the recently proposed free-fermion decomposition method; it incorporates
entanglement in the probability measure in a natural way; it takes advantage of the hybrid Monte
Carlo algorithm (an essential tool in lattice quantum chromodynamics and other gauge theories
with dynamical fermions); and it does not suffer from noise problems. This method displays no
sign problem for the same cases as other approaches and is therefore useful for a wide variety of
systems. As a proof of principle, we calculate S2 for the one-dimensional, half-filled Hubbard model
and compare with results from exact diagonalization and the free-fermion decomposition method.

PACS numbers: 03.65.Ud, 05.30.Fk, 03.67.Mn

I. INTRODUCTION

Topological and quantum-information aspects of con-
densed matter physics, broadly defined to include all
few- and many-body quantum systems, continue to gain
increasing attention from a variety of angles, with the
quantum-mechanical notion of entanglement playing a
central role1. Topological quantum phase transitions,
in particular, have been shown to bear a direct quanti-
tative connection to the so-called entanglement entropy
in both its Rényi and von Neumann forms, the entan-
glement spectrum, and other information-related quanti-
ties2. Thus, the computation of Rényi entanglement en-
tropies Sn is currently of vital importance to many fields
(see e.g.3–5), and the challenge of doing so in interacting
systems, particularly in strongly coupled regimes, must
be met.

To this end, a variety of Monte Carlo (MC) methods
have recently been put forward to calculate Sn efficiently
(see e.g.6–13). As we explain below, one of the crucial
steps common to many of the underlying formalisms is
the so-called replica trick4, which results in an expression
for Sn that consists of a ratio of two partition functions.
Generally speaking, partition functions themselves are
challenging objects to compute from the numerical stand-
point, as they typically involve terms that vary on vastly
different numerical scales. In the context of stochastic
calculations of Sn, it is now well understood that this
complication manifests itself as a signal-to-noise problem:
the direct estimation of the partition functions, followed
by the calculation of their ratio, leads to statistical un-
certainties that grow exponentially with the volume of
the (sub-)system considered (see e.g.9,11,12 for an expla-
nation).

In this work, we present an alternative lattice MC ap-
proach for the calculation of Sn. We use a specific case
of one-dimensional spin-1/2 fermions governed by the
Hubbard Hamiltonian as an example, which allows us
to compare our results with the exact solution as well as

with other MC methods, but the technique can be gen-
eralized to arbitrary systems, including those with gauge
fields and Fermi-Bose mixtures (as long as the so-called
sign problem is absent, as in any other MC calculation;
see e.g.14). To highlight the generality of our technique,
we carry out our calculations using the hybrid Monte
Carlo algorithm (HMC)15 (see16 for basic introductions
to HMC), which is the workhorse of lattice QCD, it is es-
sential in non-perturbative studies of gauge theories with
dynamical fermions and, more recently, has been used in
a variety of graphene studies17–20.

II. FORMALISM

For the following discussion, we put the system on a
d-dimensional spatial lattice of side Nx. Because we are
considering such a finite lattice, the single-particle space
is of finite size Nd

x . We then follow closely the formalism
of Ref.9.

The n-th Rényi entanglement entropy Sn of a sub-
system A of a given quantum system is defined by

Sn =
1

1− n
ln tr(ρ̂nA), (1)

where ρ̂A is the reduced density matrix of sub-system A
(i.e. the degrees of freedom of the rest of the system are
traced over). More concretely, for a system with density
matrix ρ̂, the reduced density matrix is defined via a
partial trace over the Hilbert space corresponding to the
complement Ā of our sub-system as

ρ̂A = trĀρ̂. (2)

In Ref.9, Grover derived an auxiliary-field path-integral
form for ρ̂A, from which he showed that Sn can be com-
puted using MC methods for a wide variety of systems.
We summarize those derivations next. In auxiliary-
field Monte Carlo methods one introduces a Hubbard-
Stratonovich field σ that decouples the fermion species,
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such that the usual density matrix ρ̂ can be written as a
path integral:

ρ̂ =
e−βĤ

Z
=

∫
DσP [σ] ρ̂[σ], (3)

for some normalized probability measure P [σ] deter-
mined by the details of the underlying Hamiltonian (for

more detail, see14). Here, Z = tr[e−βĤ ] is the partition
function, and ρ̂[σ] is an auxiliary density matrix corre-
sponding to noninteracting particles in the external field
σ. In analogy with this, Grover proved that one may
decompose the reduced density matrix as

ρ̂A =

∫
DσP [σ] ρ̂A[σ], (4)

where

ρ̂A[σ] = CA[σ] exp

−∑
i,j

ĉ†i [ln(G−1
A [σ ]− 11)]ij ĉj

 ,

(5)
and

CA[σ] = det(11−GA[σ ]). (6)

Here, we have used the restricted Green’s function
[GA[σ ]]ij , which corresponds to a noninteracting single-

particle Green’s function G(i, j) in the background field
σ but such that the arguments i, j only take values in
the region A (see Ref.9 and also Ref.21, where expres-
sions for the reduced density matrix of noninteracting
systems, based on reduced Green’s functions, were first
derived).

Using the above judicious choice of ρ̂A[σ], Grover ver-

ified that the expectation value of cjc
†
i in the auxiliary

noninteracting system reproduces the restricted single-
particle Green’s functions, as required. Therefore expec-
tation values of observables supported in the region A
are reproduced as well. This validates the expression on
the right-hand side of Eq. (4).

Using that expression, taking powers of ρ̂A results in
the appearance of multiple auxiliary fields, which we will
denote below collectively as {σ}. Seemingly an explicit
manifestation of the replica trick4, this approach allows
the trace of the n-th power of ρ̂A in Eq. (1) to be re-
cast as a multiple field integral over a product of fermion
determinants that depend collectively on all the {σ}. In-
deed, for a system of 2N -component fermions, using a
Hubbard-Stratonovich transformation that decouples all
of them, we obtain

exp
(
(1− n)Sn

)
=

∫
D{σ}P [{σ}]Q[{σ}], (7)

where the field integration measure, given by

D{σ} =

n∏
k=1

Dσk
Z

, (8)

is over the n “replicas” σk of the Hubbard-Stratonovich
auxiliary field. For convenience, we have included the
normalization

Z =

∫
Dσ

2N∏
m=1

detUm[σ] (9)

in the integration measure. The naive probability mea-
sure, given by

P [{σ}] =

n∏
k=1

2N∏
m=1

detUm[σk], (10)

factorizes entirely across replicas, and is therefore blind
to entanglement. This factorization is the main reason
why using P [{σ}] as a MC probability leads to (seem-
ingly) insurmountable signal-to-noise issues, as shown in
Ref.9; it is also why we call it naive (although that is by
no means our judgement of Ref.9). In Eq. (10), Um[σ]
is a matrix which encodes the dynamics of the m-th
component in the system, namely the kinetic energy and
the form of the interaction after a Hubbard-Stratonovich
transformation; it also encodes the form of the trial state
|Ψ〉 in ground-state approaches (see e.g. Ref.14), as is
the case in this work. We will take |Ψ〉 to be a Slater
determinant. In finite-temperature approaches, Um[σ]
is obtained by evolving a complete set of single-particle
states in imaginary time.

The quantity that contains the essential contributions
to entanglement is

Q[{σ}] =

2N∏
m=1

detMm[{σ}], (11)

where

Mm[{σ}] ≡
n∏
k=1

(
11−GA,m[σk]

)
×[

11 +

n∏
k=1

GA,m[σk]

11−GA,m[σk]

]
. (12)

In the above equation, we have used GA,m[σk], which is
a restricted Green’s function, as previously defined, but
where we now indicate the fermion component m and
replica field index k.

The product Q[{σ}] was identified as playing the role
of an observable in Ref.9, which is a natural interpre-
tation in light of Eq. (7), but which we will interpret
differently below. Note that, for n= 2, no matrix inver-
sion is required in the calculation of Q[{σ}]; for higher n,
however, there is no obvious way to avoid the inversion
of 11−GA,m[σk]. In turn, this would require some kind of

numerical regularization technique (see Ref.13) to avoid
the singularities in GA,m[σk], whose eigenvalues can be
very close to 0 and 1.

In ground-state approaches, the size of Um[σ] is given
by the number of particles of the m-th species present in
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the system. In finite-temperature approaches, the size is
that of the whole single-particle Hilbert space (i.e. the
size of the lattice). The size of GA,m[σk], on the other
hand, is always given by the number of lattice sites en-
closed by the region A. Note that, separating a factor of
Zn in the denominator of Eq. (7), an explicit form can be
identified in the numerator as the result of the so-called
replica trick4 (namely a partition function for n copies of
the system, “glued” together in the region A).

III. OUR PROPOSED METHOD

In analogy to the right-hand side of Eq. (7), we in-
troduce an auxiliary parameter 0 ≤ λ ≤ 1 and define a
function Γ(λ; g) via

Γ(λ; g) ≡
∫
D{σ}P [{σ}] Q[{σ};λ], (13)

where we have replaced the dependence of Q[{σ}] on the
coupling g by setting

g → λ2g, (14)

which defines Q[{σ};λ]. Using this definition, it follows
immediately that Γ(λ; g) satisfies two important con-
straints with physical significance: For λ = 0, we find

1

1− n
ln Γ(0; g) = S(0)

n , (15)

where S
(0)
n corresponds to a noninteracting system. In-

deed, at λ = 0 the quantity Q[{σ};λ] does not depend
on {σ} and factors out of the integral. Thus, regardless
of the value of g, the function Γ(0; g) corresponds to the
Rényi entropy of a noninteracting system, which can be
trivially computed with the present formalism. Indeed,
there is no path integral when interactions are turned
off, such that the noninteracting result can be computed
with a single Monte Carlo sample using the formalism
by Grover mentioned above. It is worth noting at this
point that the Rényi entropy of a noninteracting system
has received substantial attention in the last few years.
Much is known about this quantity for a variety of sys-
tems, in particular in connection with area laws and their
violation22.

For λ = 1, on the other hand, Γ(λ; g) yields the entan-
glement entropy of the fully interacting system:

1

1− n
ln Γ(1; g) = Sn. (16)

Thus, both of these reference points are physically mean-
ingful, one of them is comparatively trivial to obtain, and
obtaining the other one is our objective.

Using Eq. (13),

∂ ln Γ

∂λ
=

∫
D{σ}P̃ [{σ};λ] Q̃[{σ};λ] (17)

where

P̃ [{σ};λ] =
1

Γ(λ; g)
P [{σ}] Q[{σ};λ], (18)

and

Q̃[{σ};λ] =

2N∑
m=1

tr

[
M−1
m,λ[{σ}]

∂Mm,λ[{σ}]
∂λ

]
. (19)

Crucially, the dependence on the parameter λ enters only
through the matrix Mn, and it is in this way that we pro-
pose to include the entanglement-related correlations in
the sampling procedure, which is to be carried out using
P̃ [{σ};λ] as a probability measure. When an even num-
ber 2N of flavors is considered, and the interactions are
attractive, det2N U [σ] and Q[{σ}, λ] are real and posi-
tive semidefinite for all σ, which means that there is no
sign problem and P̃ [{σ};λ] above is indeed a well-defined,
normalized probability measure.

More concretely, our proposal to calculate Sn is to take
the noninteracting λ = 0 point as a reference and com-
pute Sn using

Sn = S(0)
n +

1

1− n

∫ 1

0

dλ 〈Q̃[{σ};λ]〉, (20)

where

〈X〉 =

∫
D{σ}P̃ [{σ};λ] X[{σ}]. (21)

In other words, we obtain an integral form of the inter-
acting Rényi entropy that can be computed using any
MC method, in particular HMC15. The latter combines
molecular dynamics (MD) of the auxiliary fields (defin-
ing a fictitious auxiliary conjugate momentum) with the
Metropolis algorithm, and thus enables simultaneous
global updates of all the auxiliary fields {σ}. As it well
known, HMC is a highly efficient sampling strategy, par-
ticularly when gauge fields are involved (see e.g.14,15).
The integration of the MD equations of motion requires
the calculation of the MD force, which is given by the
functional derivative of P̃ [{σ};λ] with respect to {σ},
which can be calculated from Eq. (18).

Our proposal is akin to the so-called coupling-constant
integration approach of many-body physics, but it differs
in that we have strategically introduced the λ dependence
only in the entanglement-sensitive determinant Q[{σ};λ]
of Eq. (11).

Equation (20) is our main result and defines our
method. An essential point is that the expectation that
appears above is taken with respect to the probabil-
ity measure P̃ [{σ};λ] , which incorporates the correla-
tions that account for entanglement. In stark contrast
to the naive MC probability P [{σ}], which corresponds
to statistically independent copies of the Hubbard-
Stratonovich field, this distribution does not display the
decoupling responsible for the signal-to-noise problem
mentioned above.
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In practice, using Eq. (20) requires MC calculations

to evaluate 〈Q̃[{σ};λ]〉 as a function of λ, followed by

numerical integration over λ. We find that 〈Q̃[{σ};λ]〉
is a smooth function of λ that vanishes at λ = 0 and
presents most of its features close to λ = 1 (further details
below). We therefore carry out the numerical integra-
tion using the Gauss-Legendre quadrature method23. It
should also be pointed out that the stochastic evaluation
of 〈Q̃[{σ};λ]〉, for fixed subregion A, can be expected to
feature roughly symmetric fluctuations about the mean.
Therefore, after integrating over λ, the statistical effects
on the entropy are reduced (as we show empirically in
the Results section).

A few remarks are in order regarding the auxiliary pa-
rameter λ. First, we could have performed the replace-
ment g → λ2g everywhere, i.e. not only inQ but also in P
(and its normalization Z). This would have led to three
terms in the derivative of PQ with respect to λ, two of
which would come from P (recall P is normalized) and
feature different signs and a rather indirect connection
to Sn (recall P factorizes across replicas). Our approach
avoids this extra complication by focusing on the entan-
glement part of the path integral (i.e. Q). Second, we
could have used λx instead of λ2, where x does not have
to be an integer (although it would be rather inconve-
nient to make it less than 1). This is indeed a possibility
and it allows for further optimization than pursued here.
In the remainder of this work we set x = 2, as above.
Finally, the required calculations for different values of
λ are completely independent from one another and can
therefore be performed in parallel with essentially perfect
scaling (up to the final data gathering and quadrature).

IV. RELATION TO OTHER METHODS

Our approach is very similar to the temperature-
integration method of Ref.6, but is closer in nature to
the ratio trick (and similar) of Refs.7,12. As above, the
calculation starts from the replica trick of Calabrese and
Cardy4, i.e.

exp((1− n)Sn) =
ZA,n
Zn

, (22)

where ZA,n is the partition function of n copies of the
system “glued” together in the region A. Typically, ZA,n
and Zn can be very different from each other in magni-
tude, particularly if Sn is large (as is typically the case
for large sub-system sizes). Therefore, computing the
above partition functions separately (and stochastically)
and then attempting to evaluate the ratio is likely to
yield a large statistical uncertainty. A way around this
problem is to use the ratio (or increment) trick, whereby
one introduces auxiliary ratios of the partition function
corresponding to systems whose configuration spaces are

only marginally dissimilar. In other words, one writes

exp((1−n)Sn) =
ZA,n
Zn

=
ZA,n
ZA−1,n

ZA−1,n

ZA−2,n

· · ·
Z2,n

Z1,n

Z1,n

Zn
,

(23)
where the auxiliary ratios ZA−i,n/ZA−i−1,n are chosen
to correspond to subsystems of similar size and shape
(e.g. such that their linear dimension differs by one lat-
tice point). In this way, each of the auxiliary ratios can
be expected to not differ significantly from unity. With
enough intermediate ratios, calculations can be carried
out in a stable fashion at the price of calculating a po-
tentially large number of ratios.

In the method we propose here, the parameter λ plays
the role of the varying region size A of the ratio trick.
Indeed, using Eq. (20), we may schematically write

exp
(

(1−n)(Sn − S(0)
n )
)

=

1∏
λ=0

exp
(

∆λ 〈Q̃[{σ};λ]〉
)
,

(24)
where any discretization ∆λ of the exponent inside
the product yields a telescopic sequence of ratios as in
Eq. (23). As long as 〈Q̃[{σ};λ]〉 is regular in λ, which
we find to be the case, our auxiliary factors can be made
to be arbitrarily close to unity at the cost of (at most)
linear scaling in computation time.

V. RESULTS

We test our algorithm by computing the second Rényi
entropy S2 for one-dimensional, ten-site, half-filled Hub-
bard models with periodic boundary conditions. The
Hamiltonian we used is

Ĥ = −t
∑
s,〈ij〉

(
ĉ†i,sĉj,s + ĉ†j,sĉi,s

)
+ U

∑
i

n̂i↑n̂i↓, (25)

where the first sum includes two fermion flavors s =↑, ↓
and nearest-neighbor pairs. To carry out our tests, we
implemented a symmetric Trotter-Suzuki decomposition
of the Boltzmann weight, with an imaginary-time dis-
cretization parameter τ = 0.05 (in lattice units). The
full length of the imaginary-time direction was at most
β = 5 (i.e. we used 100 imaginary-time lattice points).
The interaction factor in the Trotter-Suzuki decomposi-
tion was addressed, as anticipated in a previous section,
by introducing a replica auxiliary field σ for each power
of the reduced density matrix. This insertion was ac-
complished via a Hubbard-Stratonovich transformation,
which we chose to be of a continuous but compact form
(see Ref.14).

Figure 1 plots 〈Q̃[{σ};λ]〉 as a function of both λ and
the subregion size LA for four values of the coupling.
We note that surfaces corresponding to weak couplings
show much less fluctuation in both parameters than their
strong-coupling counterparts. This uniformity implies
that for weakly coupled systems, even at large LA, a
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coarse λ discretization may yield good estimates of Sn.
Conversely, strongly coupled systems are, not unexpect-
edly, more computationally demanding.

U/t = 0.5

U/t = 1.0

U/t = 2.0

U/t = 4.0

 0
 0.2

 0.4
 0.6

 0.8
 1

LA/L

 0
 0.2

 0.4
 0.6

 0.8
 1

λ

-4

 2

 8

 14

 20

-dS2/dλ

FIG. 1: (color online) Hybrid Monte Carlo results for the
source with U/t = 0.5, 1.0, 2.0 and 4.0 (from bottom to top
at λ = 1) as functions of the parameter λ and the region size
LA, for Nx = 10 sites.

For small subsystems, in addition to relatively small
variation, the majority of the deviation from the nonin-
teracting entropy is accumulated at large λ and appears
with mostly uniform signature. Much to the contrary, for
larger subsystems, intermediate values of λ correspond
to a region of parameter space that contributes opposite-
sign corrections to the entropy, which yields increasing
uncertainty as a function of the subsystem size. This
effect is most clearly seen for the curve corresponding
to the case where the subregion constitutes the entire
system. In that case, S2 is zero regardless of the cou-
pling, which means that the integral over λ must van-
ish. This happens by a precise cancelation that must be
captured by the numerical integration procedure. Given
that the features of 〈Q̃[{σ};λ]〉 are roughly concentrated
in 0.5 < λ < 1, we chose the Gauss-Legendre quadrature
method to carry out the integral in a precise fashion. Us-
ing Nλ = 20 points in the interval [0, 1] (i.e. 40 points
in the defining interval [−1, 1] using an even extension
of the integrand), we find that, for the parameter values
studied here, the systematic effects associated with λ are
smaller than the statistical uncertainty.

Our experience, as detailed above, indicates that the
features of 〈Q̃[{σ};λ]〉 are generic: they vary in ampli-
tude with the coupling but are largely insensitive to the
overall system size, and generally behave in a benign way
as a function of λ and the sub-system size. Therefore the
λ integration does not contribute to the scaling of the
computation time vs. system size beyond a prefactor.
Next, we present our results upon integrating over λ as
detailed above.

A. Comparison with exact diagonalization results
and a first look at statistical effects

In Fig. 2, we show results for a system of size L = Nx`,
where Nx = 10 sites and ` = 1 is the lattice spacing (as in
conventional Hubbard-model studies). Our results cover
couplings U/t = 0.5, 1, 2, and 4, and subsystems of size
LA = 1 − 10, which we compare to the results of Ref.9.
The agreement is quite satisfactory.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  0.2  0.4  0.6  0.8  1

S
2
(L

A
)

LA/L

U/t = 0.5
U/t = 1.0
U/t = 2.0
U/t = 4.0

FIG. 2: (color online) Results for the ten-site Hubbard model
with U/t = 0.5, 1.0, 2.0, and 4.0 (solid lines from top to bot-
tom). The results for the noninteracting case are shown with
a dashed line. Hybrid Monte Carlo answers with numerical
uncertainties for 7,500 decorrelated samples, shown with error
bars. Exact-diagonalization results of Ref.9 shown with lines,
except for the U/t = 4.0 case, where the lines join the central
values of our results and are provided to guide the eye.

To better understand the size of the statistical effects,
we also show how our results vary with the number of MC
samples in Fig. 3. In Fig. 3 we see that the 25,000 sam-
ples collected were well beyond what was needed: half as
many would have already given excellent results. These
results show that, by including entanglement-sensitive
contributions into the probability measure, our approach
circumvents the signal-to-noise problem mentioned in the
introduction. Below we elaborate more explicitly on sta-
tistical effects and said problem, and show concrete nu-
merical examples of how it arises in practice.

In Fig. 4, we show the overall statistical uncertainty
∆S2 in our estimates of S2 as a function of the number
of samples Ns, for the coupling strengths and subsystem
sizes studied above. ∆S2 was computed by using the
envelope determined by the MC statistical uncertainties
in 〈Q̃[{σ};λ]〉 as a function of λ. While ∆S2 grows with

the sub-system size, its N
1/2
s scaling remains constant as

the number of samples is increased.
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FIG. 3: (color online) Second Rényi entropy (scaled to the
noninteracting result) as a function of the number of samples
Ns for coupling U/t = 0.5, 2.0, and 4.0 shown top to bottom.
Within a few thousand samples, we observe that the results
have stabilized to within 1-2%.

B. Comparison with naive free-fermion
decomposition method

Figure 5 again shows our results for the ten-site Hub-
bard model using 7,500 decorrelated samples for each
value of λ, this time compared with the naive free-fermion
decomposition method using 75,000 samples. Such an in-
creased number of samples for the naive method was cho-
sen to provide a more fair comparison with our method,
considering that the latter requires a MC calculation for
each value of λ. We used 20 λ points but, as explained
in more detail below, roughly half of the λ points require
only a small number of samples.

The statistical uncertainties for the naive method do
not encompass the expected answers for many of the
points, which is a symptom of an “overlap” problem, i.e.
the probability measure employed bears little correlation
with the observable, as mentioned above (see also Ref.24).
This is the same issue as the signal-to-noise problem re-
ferred to above.

To illustrate this situation more precisely, we show in
Fig. 6 a histogram of Q[{σ}] [see Eq. (7)] for U/t = 2.0
and LA/L = 0.8. Even using a logarithmic vertical scale,

 0.1

 1

 100  1000  10000  100000

∆
S

2
N

s
1
/2

/S
2
(0

)

Ns

U/t = 0.5

 0.1

 1

 10

 100  1000  10000  100000

Ns

U/t = 2.0

 1

 10

 100  1000  10000  100000

Ns

U/t = 4.0

FIG. 4: (color online) Relative statistical uncertainty of the
second Rényi entropy (propagated from the standard devia-
tion in the uncertainties on its λ derivative) as a function of
the number of samples Ns for couplings U/t = 0.5, 2.0, and
4.0 shown top to bottom. The symbols and colors correspond
to those utilized in Fig. 3.

the distribution displays a long tail that extends across
multiple orders of magnitude. We find that the distri-
bution is approximately of the log-normal type (i.e. its
logarithm is approximately distributed as a gaussian, as
shown in the inset of Fig. 6); this is the challenge faced
when attempting to determine the average of Q[{σ}] with
good precision implementing the free-fermion decompo-
sition of Ref.9 at face value. Moreover, we expect these
features to worsen in larger systems, higher dimensions,
and stronger couplings, as the matrices involved become
more ill-conditioned.

Notably, it is the logarithm of the expectation value of
Q[{σ}] that determines the entanglement entropy, which
could then be obtained using the cumulant expansion.
However, it is a priori entirely unknown whether such an
expansion would converge, i.e. we do not know to what
extent this distribution deviates from gaussianity.

The log-normality referred to above has been associ-
ated with the auxiliary field representation of the inter-
action. In such external fields σ, the orbitals of the trial
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FIG. 5: (color online) Hybrid Monte Carlo results (solid) for
the ten-site Hubbard model with U/t = 0.5, 2.0, and 4.0
with numerical uncertainties for 7,500 decorrelated samples
(for each value of λ) compared with results from the naive
free-fermion decomposition method (crosses with dashed error
bars) with 75,000 decorrelated samples.

wavefunction diffuse much like electrons in a disordered
medium, and the stronger the interaction (or the lower
the temperature) the heavier the tail becomes in the dis-
tribution of Q[{σ}]. This effect was noticed relatively re-
cently in Ref.24, and it appears to be quite ubiquitous. It
was then shown, phenomenologically, that many signal-
to-noise problems are characterized by the heavy tail of
a lognormal distribution (see also, Ref.25).

C. Statistical behavior as a function of coupling,
region size, and auxiliary parameter

In Fig. 7 we show the statistical distribution of our re-
sults for the λ derivative, for several couplings. The dis-
tributions we observe are approximately gaussian (they
decay faster than linearly in a log scale), except for the
strongest coupling we studied U/t = 4.0 where, not un-
expectedly, the distribution becomes more asymmetric
and develops heavier tails relative to its weaker-coupling
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FIG. 6: (color online) Distribution of the observable Q[{σ}]
of the naive free-fermion decomposition method [implemented
via Eq. (7)] for U/t = 2.0 and LA/L = 0.8. Note that Q[{σ}]
is a non-negative quantity. The long tail (main plot; note
logarithmic scale in vertical axis) extends beyond the range
shown and is approximately a log-normal distribution, i.e.
lnQ[{σ}] is roughly distributed as a gaussian (inset).

counterparts.
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FIG. 7: (color online) Histogram showing the statistical dis-
tribution of our results for dS2/dλ for LA/L = 0.8, λ ' 0.83,
and U/t = 0.5, 1.0, 2.0, 4.0. The results for different couplings
have been shifted for display purposes, but the scale is the
same for each of them. This illustrates that, even though
our method addresses the original signal-to-noise issue, strong
couplings remain more challenging that weak couplings.

In Fig. 8 we plot the statistical distribution of our re-
sults for the λ derivative at fixed region size and cou-
pling, but varying λ. As claimed above, the chosen
parametrization requires considerably less MC samples
at low λ than at high λ, as the width of the distributions
is much smaller for the former than for the latter.

Finally, in Fig. 9 we show the same distribution as
above, but as a function of subregion size. As expected,
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FIG. 8: (color online) Histogram showing the statistical dis-
tribution of our results for dS2/dλ for LA/L = 0.8, λ ' 0.225,
0.369, 0.833, 0.991, and U/t = 2.0. The results for different
couplings have been shifted for display purposes, but the scale
is the same for each of them. This illustrates that low values
of λ require less samples than larger ones in order to deter-
mine 〈Q̃[{σ};λ]〉 with good precision.

large subregions are more challenging, but the overall
shape of the distributions is very well controlled: it is
close to gaussian in that its tails decay faster than linearly
in a log scale.
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FIG. 9: (color online) Histogram showing the statistical dis-
tribution of our results for dS2/dλ for LA/L =0.1, 0.3, 0.5,
0.8, λ ' 0.83, and U/t = 2.0. The results for different cou-
plings have been shifted for display purposes, but the scale is
the same for each of them.

VI. SUMMARY AND CONCLUSIONS

In this work, we have put forward an alternative MC
approach to the calculation of the Rényi entanglement
entropy of many-fermion systems. As an essential fea-
ture of our method, we compute the derivative of the
entanglement entropy with respect to an auxiliary pa-
rameter and integrate afterwards. We have shown that
such a derivative can be computed using a MC approach
without signal-to-noise issues, as the resulting expres-
sion yields a probability measure that does not factor
across replicas and accounts for entanglement in the MC
sampling procedure in a natural way. The subsequent
numerical integration can be carried out efficiently via
Gauss-Legendre quadrature.

As a proof of principle, we have presented results for
S2 for the 1D Hubbard model at half filling for different
coupling strengths and compared with answers obtained
by exact diagonalization. Our calculations show that the
statistical uncertainties are well controlled, as we have
shown in numerous plots and histograms. Although we
have not run into numerical stability issues in our tests,
we anticipate that those may appear in the form dis-
cussed in Ref.13. Our approach is just as general as the
one proposed in Ref.9. In particular, it can be straight-
forwardly generalized to finite temperature as well as to
relativistic systems, in particular those with gauge fields
such as QED and QCD, or any SU(N) gauge theory.
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