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We analyze the critical properties and the entanglement scaling at the quantum critical points
of the spin-half XY model on the two-dimensional square-lattice bilayer and necklace lattice, based
on quantum Monte Carlo simulations on finite tori and for different subregion shapes. For both
models, the finite-size scaling of the transverse staggered spin structure factor is found in accord
with a quantum critical point described by the two-component, three-dimensional φ4-theory. The
second Rényi entanglement entropy in the absence of corners along the subsystem boundary exhibits
area-law scaling in both models, with an area-law prefactor of 0.0674(7) [0.0664(4)] for the bilayer
[necklace] model, respectively. Furthermore, the presence of 90◦ corners leads in both models to
an additive logarithmic term. We estimate a contribution of −0.010(2) [−0.009(2)] due to each 90◦

corner to the logarithmic correction for the bilayer [necklace] model, and compare our findings to
recent numerical linked cluster calculations and series expansion results on related models.

I. INTRODUCTION

The study of the entanglement in quantum many-body
systems has lead to new insights into the structure of
strongly correlated quantum states. One interesting di-
rection of current research in this respect is the identi-
fication of universal contributions to the scaling of the
bipartite entanglement entropy in quantum many-body
systems. For the special case of one-dimensional quan-
tum critical states, described by a conformal field theory,
it is well known for example, that the entanglement en-
tropy S asymptotically scales as S = c ln(l)/3 with the
subregion size l1,2. Here, the central charge c provides a
universal number, which furthermore also relates to the
number of degrees of freedom, e.g., for bosonic free the-
ories. For higher-dimensional quantum systems, similar
universal contributions to the entanglement entropy scal-
ing require to consider corrections beyond the leading
scaling form, which in most generic cases is set by the
“area-law” scaling of the entanglement entropy S with
the extend of the boundary that separates a subregion
from the rest of the system3–5. For two-dimensional sys-
tems, on which we shall focus here, this leading asymp-
totic behavior reads S = al, in terms of the length l of
the subregion’s boundary, with a non-universal area-law
prefactor a that depends explicitly on microscopic details
of the system under consideration.

Several distinct contributions to the subleading scal-
ing of S with l have been considered recently, related,
e.g., to topological order6,7 or the presence of Goldstone
modes8–10. Here, we consider in particular the case of a
quantum critical many-body system. For this case, there
has been obtained a growing body of evidence from both
numerical studies of various quantum many-body lattice
models, as well as field-theoretical calculations in the con-
tinuum limit, that an isolated corner in the subregion
boundary adds a logarithmic contribution, i.e., a term
cc(θ) ln(l), to the bipartite entanglement entropy11–23. In
order to obtain a lattice regularized version of such cor-

ner terms without introducing further lattice artifacts,
boundaries with θ = 90◦ corners may be most conve-
niently considered in numerical studies on finite square
lattices. On a more quantitative level, these calculations
provide strong evidence that the prefactor cc(θ) for a cor-
ner with opening angle θ to a high precision scales at least
in leading order proportional to the number of field com-
ponents N of the critical O(N) theory, with a prefactor
that appears to be a universal function of θ for all critical
φ4-theory cases considered thus far.

While for the cases of N = 1 and N = 3, support
for this observation has been provided by series and nu-
merical linked cluster expansions, as well as by quantum
Monte Carlo simulations,15,16,18–21 the case of N = 2 has
thus far not been addressed by quantum Monte Carlo
studies. Here, we complement recent results from series
expansion and numerical linked cluster studies21,22 on
several two-dimensional lattice models with O(2) symme-
try by a quantum Monte Carlo estimate of the θ = 90◦

corner term. In particular, we consider the case of the
quantum critical spin-half XY model on the square lat-
tice bilayer, which provides a basic model for probing the
entanglement properties at a quantum critical point with
an O(2) critical theory. For this model, we provide esti-
mates for both the leading area-law prefactor a as well
as the corner term cc(90◦), based on the second (α = 2)
Rényi24 entropy-based bipartite entanglement measure

Sα(A) =
1

1− α
ln Tr[(ρA)α], (1)

where ρA denotes the reduced density matrix of the sub-
region (denoted A). In addition, we also consider the
quantum critical spin-half XY model a the square neck-
lace lattice (or incomplete bilayer), with in contrast to
the bilayer model has a finite spin exchange interaction
within only one of the two layers. We introduce both
these models and locate their quantum critical points
based directly on their magnetic properties in the follow-
ing Sec. II. This also allows us to confirm the expected
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FIG. 1. (Color online) Data collapse plot of the transverse
staggered spin structure factor Sxy within the quantum crit-
ical region of the bilayer (top panel) and the necklace (lower
panel) mode. The insets show the rescaled transverse stag-
gered spin structure factor as a function of g. Dashed lines
indicate the quantum critical points. Error bars in this figure
are below the symbol size.

critical exponents from a finite-size scaling analysis. In
Sec. III, we then present our computational scheme and
extract the entanglement entropy scaling coefficients for
S2 for both these models. These values are finally dis-
cussed in comparison to previous results in Sec. IV.

II. QUANTUM CRITICAL POINT

We consider in the following the spin-half XY-model on
the square-lattice bilayer, described by the Hamiltonian

H = J
∑
〈i,j〉

2∑
l=1

(
Sxi,lS

x
j,l + Syi,lS

y
j,l

)
+ J⊥

∑
i

(
Sxi,1S

x
i,2 + Syi,1S

y
i,2

)
, (2)

where i denotes the i-th unit cell containing two spin-
half degrees of freedom (associated to the two layers, l =
1, 2), and J (J⊥) the intra-layer (inter-layer) exchange
interaction.

In addition, we consider the spin-half XY-model on the
square necklace lattice (or incomplete bilayer), described
by the Hamiltonian

H = J
∑
〈i,j〉

(
Sxi,1S

x
j,1 + Syi,1S

y
j,1

)
+ J⊥

∑
i

(
Sxi,1S

x
i,2 + Syi,1S

y
i,2

)
, (3)

in which the inter-layer coupling has been turned to zero
in one of the layers. This corresponds to a square lattice
spin system with a local impurity spin attached to each
lattice site, i.e. a Kondo necklace-like model with XY
exchange interactions. The SU(2)-symmetric version of
this model has been considered previously using quantum
Monte Carlo methods, both with respect to ground state
properties25 and at finite temperatures26. In the follow-
ing, we denote by g = J⊥/J the ratio of the inter-layer
to the intra-layer exchange interactions for both models
considered here.

Both models exhibits a quantum phase transition at
a critical coupling ratio g = gc between a low-g phase
with long-range transverse antiferromagnetic order to a
large-g quantum disordered phase. The structure factor
corresponding to the order parameter for this transition
is given in terms of the transverse spin correlations as

Sxy =
1

N

N∑
i,j=1

εiεj〈Sxi Sxj + Syi S
y
j 〉. (4)

Here, the summations are performed over all spins on the
finite lattice, where εi = ±1, depending on the sublattice
to which spin i belongs on the bipartite lattices. We
consider in particular finite lattices of linear extend L,
containing N = 2L2 spins, employing periodic boundary
conditions in both lattice directions. For g < gc, Sxy/N
extrapolates to a finite value in the thermodynamic limit.
In Ref. 22, an estimate of gc = 5.460(1) was obtained for
the bilayer model from quantum Monte Carlo simula-
tions combined with a finite-size scaling analysis of the
spin stiffness ρS , employing the fact that at the quan-
tum critical point, ρS scales linear with L, reflecting a
dynamical critical exponent z = 1. Here, we confirm this
value of gc from calculations of the structure factor Sxy,
which allows us to verify explicitly also that the quantum
critical behavior is indeed in accord with the expected
three-dimensional O(2) universality class. For this pur-
pose, we performed quantum Monte Carlo simulations
employing the stochastic series expansion approach27 for
finite lattices with periodic boundary conditions, scaling
the inverse temperature 1/T = 4L with the linear system
size in order to probe ground state correlations. Near the
quantum critical point, the finite-size data exhibits con-
ventional finite-size scaling behavior,

Sxy/N = L−2β/νG(L1/ν(g − gc)/gc), (5)

with a scaling function G and critical exponents β and
ν, that for the three-dimensional O(2) universality class
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take on the values β = 0.3486(1) and ν = 0.6717(1), re-
spectively28. When performing simulations within the
critical region, the above scaling form implies a com-
mon crossing point of the various finite-size values of
the rescaled structure factor L2β/νSxy/N at the quan-
tum critical point, i.e. for g = gc. This fact allows us to
locate the quantum critical point as shown in the upper
inset of Fig. 1. We obtain a value of gc = 5.460(1), in
agreement with the previous estimate, based on the spin
stiffness22. Furthermore, the finite size data exhibits an
excellent data-collapse, confirming again the extracted
value of gc as well as the employed critical exponents
of the three-dimensional O(2) universality class, cf. the
main upper panel of Fig. 1.

We are not aware of any previous estimate of the lo-
cation of the quantum critical point for the XY necklace
model, and thus performed a similar finite-size analysis
as for the XY bilayer model, with the resulting data-
collapse and crossing plots shown in the lower panel of
Fig. 1. From our analysis, we obtain as estimate of
gc = 2.7755(5) for the XY necklace model, and again
find excellent accord of the numerical data with the an-
ticipated three-dimensional O(2) universality class.

III. ENTANGLEMENT SCALING

After having established the value of the quantum crit-
ical coupling ratios and confirming the three-dimensional
O(2) universality class of the quantum phase transitions
on both lattice geometries, we next performed quantum
Monte Carlo simulations to extract the scaling proper-
ties of the second Rényi entroy S2 at these quantum crit-
ical points. In order to separate the logarithmic contri-
bution arising from corners in the subregion boundary,
we considered in each case two differently shaped sub-
region types, similarly to our procedure for the SU(2)-
symmetric Heisenberg bilayer case20. First, we consider a
bipartition of the toroidal simulation cell into two equally
sized cylindrical strips, both of size L/2 × L. The cir-
cumference of the subregion boundary in this case equals
l = 2L. The strip-like subregions exhibit smooth bound-
aries without any corners. In order to introduce corners
into the finite discrete-lattice subregion boundary in a
controlled, scalable way, we considered in addition the
case of a square subregion of size L/2×L/2, introducing
this way four 90◦ corners along the subregion boundary.
Upon increasing the linear system size L, we thus scaled
the subregion size in both cases such that the aspect-
ratio remained at a constant value. Any contribution to
S2 that depends only on the aspect-ratio thus reduces for
both considered subregions to a l-independent, constant
term. We refer to Refs.16,17 for a discussion of various
proposed functional forms of such aspect-ratio contribu-
tions to the entanglement entropy. For both subregion
types, we then calculated S2 for various boundary lengths
l, employing the extended ensemble sampling approach,
based on the replica trick29,30 within the stochastic se-
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FIG. 2. (Color online) Second Rényi entropy S2 as a function
of the subregion boundary length l at the critical coupling
ratio g = gc for strip and square shaped subregions. The
inset shows the residuals to a linear fit al + d of Sst

2 for strip
(st) shaped subregions boundary length l.

ries expansion quantum Monte Carlo representation of
Ref 31. We furthermore used the ”increment trick”29,31

to successively obtain the entanglement entropy upon
growing the subregion for an efficient sampling.

The results for the boundary length dependence of the
entanglement entropy S2 at the quantum critical point
for both subregion types are shown in Fig. 2 for both
the bilayer and the necklace lattice. We find that in
both cases, S2 exhibits a dominant area-law scaling. We
first considered the case of the XY bilayer model, for
which we considered system sizes from L = 8 to L = 20,
corresponding to boundary lenghs between l = 16 and
l = 40, respectively. As shown in the insets of Fig. 2, the
strip subregion data is well accounted for by the area-law.
From fitting the finite-size data for the strip subregions
to a linear scaling form, we obtain the area-law scaling
coefficient of a = 0.0674(7) for the bilayer model. One
notices also that the statistical uncertainty in our numer-
ical data increases with increasing subregion size. This
is due to the propagation of errors while employing the
incremental procedure to access larger subregion sizes.
We thus concentrated our computational resources to-
wards the lower four system sizes, where accurate results
for S2 are more readily accessible. Therefore, we consid-
ered for the necklace model systems sizes from L = 8 to
L = 14, corresponding to l = 16 and l = 28, respectively.
In our simulations we found it not feasible to extent the
considered system sizes to larger values of L, due to en-
hanced statistical uncertainties for the necklace model,
presumable due to the lower values of the critical cou-
pling strength gc in that model. From fitting the finite-
size data for the strip subregions to a linear scaling from,
we obtain a = 0.0664(4) for the quantum critical neck-
lace model. While this is not significantly different from
the above quoted value for the quantum critial bilayer
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FIG. 3. (Color online) Difference between the second Rényi
entropy ∆S2 = Ssq

2 − Sst
2 for square (sq) and strip (st) subre-

gions as a function of the subregion boundary length l (shown
on a log-linear scale) at the critical coupling ratio g = gc,
along with the best fit line (dashed line).

model, no univeral meaning is associated to the area-law
prefactor, as it depends on microscopic details.

For square subregions, we expect in addition to the
leading area-law a logarithmic contribution to the entan-
glement scaling, due to the presence of the four corners
along the subregion boundary. However, based on the
finite-size data accessible to our numerical study, it is
not feasible to reliably extract this logarithmic contri-
bution from a direct fit to the square subregion data.
In fact, we found that for square subregions on the re-
stricted available l-range, the S2 data may be fit within
the statistical uncertainty also to a linear l-scaling. In
order to estimate therefore the prefactor of the loga-
rithmic term due to the presence of the four corners
in the square subregion, we instead followed the proce-
dure from Ref. 20, and considered directly the differ-
ence ∆S2 = Ssq

2 − Sst
2 between the second Rényi en-

tropies for the square (sq) and strip (st) subregions.
This quantity is directly accessible within the quantum
Monte Carlo simulations, using the fact that ∆S2 =
Ssq2 −Sst2 = − ln(Z[Asq, 2, T ]/Z2)+ln(Z[Ast, 2, T ]/Z2) =
− ln(Z[Asq, 2, T ]/Z[Ast, 2, T ]), where Z denotes the ther-
mal partition function of the total lattice system, and
Z[A, 2, T ] the replica-trick ensemble partition function31

for subregions A = Ast or Asq, respectively. Our data for
∆S2 for both the bilayer and necklace model is shown
in Fig. 3 as a function of ln(l) for the lower four sys-
tem sizes. While the data still exhibits statistical un-
certainties, it fits well for both models to a linear de-
pendence ∆S2 = 4 × cc(90◦) ln(l) + ∆d. The resulting
value of 4 × cc(90◦) = −0.039(7) for the bilayer model
implies a contribution to the logarithmic entanglement
scaling of S2 of cc(90◦) = −0.010(2) for each 90◦ cor-
ner for the bilayer model, while for the necklace lattice
model, we obtain values of 4× cc(90◦) = −0.037(7), and

cc(90◦) = −0.009(2), respectively. Both values of cc(90◦)
compare rather well among each other, in accord with the
expectation, that the corner contribution to the entangle-
ment scaling exhibits a universal character. It should be
noted that the above error bars on the fitting parameters
account for the statistical uncertainties in our quantum
Monte Carlo data, but do not reflect possible systematic
deviations due to further sub-leading finite-size correc-
tions in the l-scaling of the entanglement entropy (cf.
also our previous discussion in Ref. 20).

IV. DISCUSSION

Based on quantum Monte Carlo calculations of the
transverse spin correlations, we identified the quantum
critical points of the spin-half XY model on the square
lattice bilayer and necklace lattice. Our result for the
critical coupling ratio for the bilayer model agrees with
a previous estimate based on the spin stiffness and
furthermore exhibits finite-size scaling in accord with
a three-dimensional O(2) critical φ4-theory universality
class, as does our finite-size data for the necklace
model. At the quantum critical points, we extracted
the scaling prefactors of the dominant area-law in the
second Rényi bipartite entanglement entropy, as well
as the additional logarithmic term from 90◦ corners
in the subregion boundary, with consistent values for
the two different models. Our results for the scaling
prefactor furthermore compare well to a recent estimate
of cc(90◦) = −0.0111(1) from numerical linked cluster
calculations22, obtained for various two-dimensional
O(2) quantum critical spin systems. They are also
consistent within the statistical uncertainty with the
values of −0.0125(6) and −0.0127(13), reported from
series expansions21. Given that the employed compu-
tational approaches access this contribution through
a rather different analysis (finite systems (here) vs.
thermodynamic-limit linked-cluster calculations), we
consider our results to add further support for a possible
universal character of such corner terms in the bipartite
entanglement measure. For the future, it will be impor-
tant to apply similar methods also to quantum phase
transitions that reside outside the conventional φ4-
theory framework, e.g. the XY∗ universality class32,33,
accessible in specifically designed quantum many-body
systems34.
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