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Abstract
A 3d electron topological insulator (ETI) is a phase of matter protected by particle-number

conservation and time-reversal symmetry. It was previously believed that the surface of an ETI

must be gapless unless one of these symmetries is broken. A well-known symmetry-preserving,

gapless surface termination of an ETI supports an odd number of Dirac cones. In this paper we

deduce a symmetry-respecting, gapped surface termination of an ETI, which carries an intrinsic 2d

topological order, Moore-Read×U(1)−2. The Moore-Read sector supports non-Abelian charge 1/4

anyons, while the Abelian, U(1)−2, (anti-semion) sector is electrically neutral. Time-reversal sym-

metry is implemented in this surface phase in a highly non-trivial way. Moreover, it is impossible to

realize this phase strictly in 2d, simultaneously preserving its implementation of both the particle

number and time-reversal symmetries. A 1d edge on the ETI surface between the topologically-

ordered phase and the topologically trivial time-reversal-broken phase with a Hall conductivity

σxy = 1/2 carries a right-moving neutral Majorana mode, a right-moving bosonic charge mode and

a left-moving bosonic neutral mode. The topologically-ordered phase is separated from the surface

superconductor by a direct second order phase transition in the XY ∗ universality class, which is

driven by the condensation of a charge 1/2 boson, when approached from the topologically-ordered

side, and proliferation of a flux 4π (2hc/e) vortex, when approached from the superconducting

side. In addition, we prove that time-reversal invariant (interacting) electron insulators with no

intrinsic topological order and electromagnetic response characterized by a θ-angle, θ = π, do not

exist if the electrons transform as Kramers singlets under time-reversal.
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I. INTRODUCTION.

The past few years have seen impressive advances in our understanding of quantum

phases of matter endowed with a global symmetry. Particularly remarkable progress has

been made in the study of so-called symmetry protected topological (SPT) phases.1–22 SPT

phases are fully gapped states of matter which possess a global symmetry. When this

symmetry is present, an SPT phase cannot be connected to a trivial product state without

a phase transition. On the other hand, once the symmetry is broken, an SPT state may

be continuously deformed into a trivial product state. Therefore, SPT phases carry no

intrinsic topological order: they have no ground state degeneracy on a torus, support no

bulk excitations with fractional statistics and quantum numbers, and possess no long-range

entanglement.

Thus, viewed from the perspective of bulk excitations, SPT phases are trivial. However,

they possess highly unusual boundary states. In fact, the 0d boundary of a 1d SPT phase

is always gapless, the 1d edge of a 2d SPT phase is either gapless or spontaneously breaks

the symmetry, and the 2d surface of a 3d SPT is either gapless, spontaneously breaks the

symmetry or carries an intrinsic 2d topological order. Moreover, in all cases, the symmetry

on the boundary of a d-dimenional SPT phase is realized in a way that is impossible in a

strictly (d− 1)-dimensional system. The last fact makes SPT phases not only interesting in

their own right, but also places them in the context of a very broad question: “What are

the consistency conditions on symmetry implementation?”

The fact that a gapped symmetry-preserving termination of a 3d SPT phase may exist if

one allows for the possibility of intrinsic topological order on the surface has not been recog-

nized until the recent work of A. Vishwanath and T. Senthil.19 Ref. 19 proposed SPT phases

of interacting bosons in 3d with several symmetries and deduced their gapped, symmetry-

respecting topologically-ordered surfaces. To specify these surface phases one must identify

both the intrinsic topological order (anyon types, fusion rules and braiding statistics), as

well as the transformations of the anyons under the global symmetry. For instance, Ref. 19

proposed a 3d SPT phase of bosons protected by the symmetry, U(1) o T , with U(1) -

the particle-number conservation and T - time reversal.1 A symmetry-respecting gapped

surface of this phase supports a toric code topological order, whose anyons e and m both

carry charge 1/2 under the U(1) symmetry. Strictly in 2d, such charge assignment would

require the presence of a non-zero electrical Hall conductivity, σxy, and is, thus, incompati-

ble with time-reversal symmetry.19,23 However, on the surface of the 3d SPT phase, such a

toric code has σxy = 0 and preserves the full U(1)o T symmetry. An explicit coupled-layer

construction of this phase has appeared in Ref. 24.

Symmetry-respecting topologically-ordered surface states provide a convenient label for

their corresponding 3d SPT phases. This should be compared to the case of 2d SPTs, which

1 The semi-direct product o means that the anti-unitary time reversal operator T and the U(1) rotations

g do not commute, T −1gT = g−1.

2



are naturally labeled by their gapless edge conformal field theory (CFT). Unfortunately, our

understanding of CFTs (let alone more general gapless states) in 2d is far less complete

than in 1d: as a result, we are not presently in a position to characterize most 3d SPT

phases by their gapless surfaces. In contrast, our understanding of 2d topologically-ordered

phases is fairly well-developed. Moreover, much progress has recently been made in the

study of phases with intrinsic topological order that are, in addition, endowed with a global

symmetry; such states are refered to as “symmetry enriched topological” (SET) phases.24–28

By studying topologically-ordered terminations of 3d SPT phases one can learn which SET

phases are prohibited strictly in 2d.24 Conversely, given an intrinsic topological order and a

global symmetry G, one may search for a set of anyon transformation laws under G, which

is consistent with the fusion and braiding rules, but, nevertheless, cannot be realized strictly

in 2d. One may then be able to deduce a 3d SPT phase with the corresponding topological

order and symmetry implementation on its surface.29–34

Probably the most famous and one of the very few experimentally realized examples of

an SPT phase is provided by the 3d electron topological insulator (ETI).1,2,5–8 An ETI is a

phase of fermions (electrons), protected by particle-number conservation symmetry, U(1),

and time-reversal symmetry, T . An important point is that these two symmetries are linked

by the relation, T 2 = (−1)N , where N is the particle number. This relation is obeyed by

the standard transformation law for spinful electrons under time-reversal, T : cα → εαβcβ.

Thus, electrons are Kramers doublets. Conveniently, an ETI can be realized even with non-

interacting electrons. As long as the interactions are not too strong, an ETI surface respects

the U(1) and T symmetries and supports an odd number of gapless Dirac cones.2 It is well

known that such properties cannot be realized strictly in 2d.23,35–37 Note that the massless

Dirac theory is a rare example of a 2d CFT that is well-understood.

The fact that the ETI surface cannot be mimicked in a strictly 2d system is intimately

related to the electromagnetic response in the ETI bulk, which is characterized by the so-

called θ-angle, θ = π.38 The θ-angle is directly manifested in the Witten effect: a magnetic

monopole in the ETI bulk carries a half-odd-integer electric charge.38–40

If the interactions on the ETI surface are sufficiently strong, the U(1) or T symmetry

may become spontaneously broken and the Dirac cone will be gapped out. The same effect

is achieved by explicitly breaking the symmetry on the surface. For instance, if one breaks T
by coating the surface with a magnetic insulator, one obtains a fully gapped U(1)-preserving

state with no intrinsic topological order and a Hall conductivity, σxy = ±1/2. Alternatively,

one can break the U(1) symmetry, but preserve T , by coating the surface with an s-wave

superconductor. The resulting superconducting (SC) surface phase again supports no in-

trinsic topological order and possesses gapped Bogolioubov quasiparticle excitatations. A

curious property of the surface superconductor is that the vortices with flux Φ = π carry Ma-

2 Strictly speaking, if the chemical potential on the surface is away from the Dirac point, the surface will

be in a Fermi-liquid phase, which possesses a superconducting instability for arbitrarily weak attraction

in the BCS channel.
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0 1 2 3 4 5 6 7
1 1 i 1 i
f −1 −i −1 −i
σ eπi/4 −eπi/4 −eπi/4 eπi/4

σs̄ e−πi/4 −e−πi/4 −e−πi/4 e−πi/4

s̄ −i 1 −i 1
fs̄ i −1 i −1

Q 0 1/4 1/2 3/4 1 5/4 3/2 7/4

TABLE I: Moore-Read×U(1)−2 surface topological order of an ETI. The top section of the table

displays topological spins of the anyons. The anyon content can be embeded into an Ising×U(1)8×
U(1)−2 TQFT (see tables III, IV for notation). The Ising charge runs over {1, σ, f}, the U(1)8

charge m over integers modulo 8 (the corresponding anyon is also denoted as eimϕρ in the text),

and the U(1)−2 charge over {1, s̄}. The rows of the table list the Ising charge and the U(1)−2

charge, and the columns list the U(1)8 charge. Blank entries do not correspond to anyons in the

surface topological order. The bottom row displays the physical electric charge of the anyons Q,

which only depends on the U(1)8 charge m. The charge 1 fermion fe4iϕρ is the electron.

jorana zero modes and have (projective) non-Abelian statistics.41 (We follow the standard

convention, where flux Φ = 2π corresponds to Φ = hc/e).

Thus, we have a full understanding of both the symmetry-respecting, gapless surface

termination of an ETI and the symmetry breaking terminations. Elementary arguments

based on the Witten effect in the ETI bulk indicate that if the ETI surface is gapped

and symmetry-respecting, it must be topologically-ordered.23 Furthermore, as we show in

appendix A, the topological order must necessarily be non-Abelian. One may then wonder if

such a gapped symmetry-respecting ETI termination actually exists (at least, theoretically).

In this paper, we will deduce such a surface phase, providing a positive answer to the above

question. We note that the results derived by us here have been independently obtained in

Ref. 42.

We also note in passing that topologically ordered symmetry-respecting surface phases

have recently been deduced for a number of other 3d SPT phases of fermions, in particular,

for topological superconductors in class DIII.30,43–45

II. OVERVIEW.

We now give a brief overview of our construction and results. We start with the super-

conducting surface phase of an ETI and imagine “quantum disordering” it by proliferating

vortex defects. We will argue that the smallest vortex that can “condense” carries magnetic

flux, Φ = 4π. Proliferation of these vortices drives the system into a time-reversal symmetric

insulating phase with an intrinsic topological order, Moore-Read×U(1)−2. This topological

order is non-Abelian and supports 24 types of anyons, counting the electron (12, if we iden-

tify excitations differing by an electron). The U(1)−2 = {1, s̄} sector is Abelian; its single

non-trivial anyon, s̄, is an electrically neutral anti-semion (topological spin θ = −i). The
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0 1 2 3 4 5 6 7
1 1 l 1 l
f −1 −1
σ l l l l
σs̄
s̄ l 1 l 1
fs̄ −1 −1

TABLE II: Implementation of time-reversal symmetry in the Moore-Read×U(1)−2 surface topo-

logical order of an ETI. See table I for notation. Double-headed arrows mark topological sectors

interchanged by T . For topological sectors which are preserved by T the table specifies the Kramers

parity T 2 = ±1. Blank entries do not correspond to anyons in the surface topological order.

Moore-Read sector is identical in its intrinsic topological order and anyon electric charges

to the famous electron quantum Hall state at ν = 1/2. It can be thought of as a subset of

the Ising×U(1)8 topological order consisting of the following anyons

Moore−Read :
eimϕρ , feimϕρ , m = 0, 2, 4, 6, Q = m/4

σeimϕρ , m = 1, 3, 5, 7, Q = m/4
(2.1)

Here, the labels {1, σ, f} run over the Ising sector and eimϕρ , m = 0 . . . 7, run over the U(1)8

sector (see tables III, IV for notation). Note that the Ising and U(1)8 sectors have the same

chirality, which is opposite to the chirality of the U(1)−2 sector. In eq. (2.1), Q denotes

the electric charge of the anyons. We list the topological spins of anyons of the Moore-

Read×U(1)−2 theory in table I. The non-Abelian anyons σeimϕρ and σeimϕρ s̄ have quantum

dimension
√

2 and are “descendants” of π-flux vortices of the surface superconductor. The

anyon fe4iϕρ has electric charge Q = 1 and braids trivially with all the other anyons of the

Moore-Read×U(1)−2 theory: it is identified with the physical electron.

Even though the intrinsic topological content of the surface state can be conveniently

expressed as a direct product of a Moore-Read theory and a neutral anti-semion theory, the

two sectors are linked by the time-reversal symmetry in a non-trivial manner. The action

of T on the anyons is,

T : σeimϕρ → σeimϕρ s̄, σeimϕρ s̄→ σeimϕρ , m = 1, 3, 5, 7

eimϕρ → eimϕρ , T 2 = +1, m = 0, 4

feimϕρ → feimϕρ , T 2 = −1, m = 0, 4

eimϕρ s̄→ eimϕρ s̄, T 2 = +1, m = 2, 6

feimϕρ s̄→ feimϕρ s̄, T 2 = −1, m = 2, 6

eimϕρ s̄→ feimϕρ s̄, feimϕρ s̄→ eimϕρ s̄, m = 0, 4

eimϕρ → feimϕρ , feimϕρ → eimϕρ , m = 2, 6 (2.2)

These tranformation rules are summarized in table II. For the anyons which are mapped to
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themselves under T , we have noted the “Kramers parity”, T 2.

The Moore-Read×U(1)−2 phase is separated from the superconducting surface phase by a

continuous surface phase transition in the XY ∗ universality class. A detailed understanding

of this transition, including the fate of vortices across the critical point, makes us confident

that the Moore-Read×U(1)−2 phase can be realized on the ETI surface. As already noted,

this phase transition is driven by the proliferation of flux 4π vortices, when approached from

the superconducting side. On the other hand, when approached from the topologically-

ordered side, the phase transition is triggered by the condensation of the charge 1/2 boson,

e2iϕρ s̄, which corresponds to the “elementary” field ψ of the XY model. The star in XY ∗

serves to remind that the local charge 2 Cooper pair order parameter cc is the fourth power

of the XY field, cc ∼ ψ4.

We will demonstrate that a strictly 2d state with the Moore-Read×U(1)−2 topological

content and electric charge assignments (2.1) must have σxy 6= 0, and so is incompatible with

time-reversal symmetry. However, as a surface phase of an ETI, the Moore-Read×U(1)−2

state is time-reversal invariant and carries σxy = 0; we will show that this is fully consistent

with the bulk electromagnetic response of an ETI. Further, if we give up either the time-

reversal symmetry or the U(1) symmetry, the Moore-Read×U(1)−2 phase can be realized

strictly in 2d (with the corresponding quantum numbers (2.1) or (2.2) under the unbroken

symmetry). This is obvious in the case when time-reversal is given up: to obtain a 2d

realization, stack together the well-known Moore-Read state of electrons with σxy = 1/2

and the U(1)−2 state of neutral bosons. Let us label the resulting 2d phase of matter, C1/2.

It is instructive to obtain the same 2d state, C1/2, in the following way. Imagine an ETI

slab with a large but finite thickness. Place the top surface of the slab into the topologically-

ordered symmetry-respecting phase and the bottom surface into the topologically trivial,

T -broken phase with σxy = 1/2. Since the bulk and the bottom surface of the slab have

no intrinsic topological order, the whole slab viewed as a 2d system carries the topological

order of the top surface and has a Hall-conductivity, σxy = 1/2. The identification of such a

slab with the 2d state C1/2 discussed above implies that the two systems have the same 1d

edge states. This means that an edge on the ETI surface between the Moore-Read×U(1)−2

phase and the σxy = −1/2 phase is identical to the edge of C1/2 and supports a right-moving

neutral Majorana mode f (with central charge c = 1/2), a right-moving bosonic charge

mode eiϕρ (c = 1), and a left-moving bosonic neutral mode s̄ (c = −1).

It may not be a priori obvious that a time-reversal invariant Moore-Read×U(1)−2 state,

with T acting according to (2.2) (and U(1) symmetry given up), can be realized in 2d.

However, such a state can be constructed by using an ETI slab, whose top surface is in

the topologically-ordered phase and the bottom surface in the superconducting phase. We

will propose a possible route to explicitly realize an equivalent 2d state within an exactly

solvable lattice model (see appendix F). This serves as an additional consistency check

on our construction. We will also argue that the edge on the ETI surface between the

topologically-ordered phase and the superconducting phase is generally gapped.

The fact that electrons transform as Kramers doublets under T plays an important role
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throughout our investigation of the surface properties of an ETI. This makes us wonder if

there are any non-trivial electron insulators in 3d with T 2 = +1. We know that there are

no such phases within the non-interacting realm.9,10 It is, however, not immediately clear

whether there is any true obstruction for such phases to exist once strong interactions are

present. More specifically, as we have already noted, ordinary ETIs with T 2 = (−1)N can

be distinguished from trivial electron insulators by their non-zero θ-parameter. We remind

the reader that the θ-variable is periodic modulo 2π and transforms as θ → −θ under

T . Thus, the distinct, time-reversal invariant values of θ are θ = 0 and θ = π. Trivial

electron insulators have θ = 0, while standard ETIs with T 2 = (−1)N have θ = π. At a

“classical level,” there is no connection between θ = π and T 2 = (−1)N , and so one might

ask if (interacting) time-reversal invariant electron insulators with θ = π and T 2 = +1

(and no bulk intrinsic topological order) exist. In this paper, we will show that the answer

to this question is negative: at the quantum level, θ = π is compatible with time-reversal

invariance only if T 2 = (−1)N . (This conclusion was independently reached in Ref. 43.)

Here, we do not rule out the existence of non-trivial interacting electron insulators with

θ = 0 and T 2 = +1. Note that a full classification of all 3d interacting electron topological

insulators with T 2 = (−1)N was recently proposed by Wang, Potter and Senthil.43 These

authors have argued that all the phases with θ = 0 are identical to SPT phases of neutral

bosons protected by time-reversal symmetry. Such bosonic SPT phases form a Z2
2 group

structure.19,21 Moreover, all the phases with θ = π can be obtained by combining the non-

interacting ETI with one of the θ = 0 phases, so Ref. 43 arrives at an overall Z3
2 classification

of interacting ETIs with T 2 = (−1)N .

This paper is organized as follows. In section III, we discuss the properties of the super-

conducting surface phase of an ETI. We pay particular attention to the statistics of flux-tubes

on the superconducting surface. Section IV A discusses the gapped symmetry-preserving

topologically-ordered phase obtained from the superconductor via the condensation of flux

8π vortices. This phase has 96 anyon types; we label it, T96. For pedagagoical reasons, we

find it simpler to discuss this “larger” phase, before turning to the Moore-Read×U(1)−2

phase obtained by condensing flux 4π vortices. Section IV B discusses the implementation

of time-reversal symmetry in the T96 phase. Section IV C discusses the phase transition

between the T96 phase and the superconducting surface phase in detail. Section IV D ob-

tains the “smaller” Moore-Read×U(1)−2 surface phase from the T96 phase by condensing a

bosonic anyon, which is a “descendant” of a flux 4π superconducting vortex. Section IV E

demonstrates the consistency of the topologically-ordered surface phases T96 and Moore-

Read×U(1)−2 with the Witten effect in the ETI bulk. Various loose ends are delegated

to the appendix. In particular, we draw the reader’s attention to appendix A, where we

prove that any symmetry-preserving gapped surface of an ETI must support a topological

order with non-Abelian excitations. We also point out appendix C, which demonstrates the

incompatibility of T 2 = +1 and electromagnetic response with θ = π.
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III. SUPERCONDUCTING SURFACE.

Our strategy will be to start with the superconducting surface of an electron topological

insulator, which preserves time-reversal symmetry but breaks particle number conservation.

We will then restore the particle number symmetry by “condensing” superconducting vor-

tices, obtaining a fully gapped time-reversal invariant topologically-ordered surface state.

To implement this strategy, we found that a useful technical innovation is to consider a

modified theory in which the U(1) symmetry is gauged. In the gauged theory the Abelian

statistical phases associated with vortex braiding are well defined. While we emphasize

that our ultimate object is to describe the ungauged vortex-condensed topologically-ordered

state, the gauged theory offers a convenient method for deducing the topological spins of

the anyons of the topologically ordered phase that are derived from vortices.

As a first step we need to understand the properties of the superconducting surface. We

infer these by coupling the single Dirac fermion on the surface to the superconducting order

parameter and solving the resulting Bogoliubov-de-Gennes (BdG) equation.41 In the absence

of vortices in the order parameter, the surface superconductor has the following excitations:

i) a gapped fermionic Bogolioubov quasiparticle f , which transforms as a Kramers doublet

under time-reversal symmetry; ii) a gapless Goldstone mode, which will play little role in

our discussion below.

The superconducting vortices have the following properties: a vortex with odd vortic-

ity carries a single Majorana zero mode, while a vortex with even vorticity carries no zero

mode. In our notation, a vortex with vorticity k carries magnetic flux Φ = πk once the U(1)

particle number symmetry is gauged. (The presence/absence of zero-modes is independent

of whether the U(1) symmetry is gauged.) Thus, the ground state of a vortex with even

vorticity is unique, as are the excited states, which can be obtained by adding Bogolioubov

quasiparticles. Note that the state obtained by adding an odd number of Bogoliubov quasi-

particles to such an “even” vortex is not a Kramers doublet, since the vorticity breaks the

time-reversal symmetry: the time-reversal partner has the opposite vorticity.

As for vortices with odd vorticity, the presence of the Majorana zero mode implies that two

such vortices separated by a large distance have a 2-fold degenerate ground state, obtained by

either leaving empty or filling the complex fermion zero mode formed out of the two Majorana

zero modes. The physics is analogous to that in a px + ipy superconductor (however, we will

discuss an important distinction shortly). Thus, vortices with odd vorticity have non-Abelian

statistics. If the U(1) symmetry is not gauged, this statistics is only “projective,” since the

logarithmic interactions between vortices make the Abelian part of the exchange statistics

ill-defined. On the other hand, if the U(1) symmetry is gauged, the Abelian part of the

exchange statistics becomes meaningful. We now gauge the U(1) symmetry with a weakly

fluctuating electromagnetic gauge field Aµ to expose this Abelian part of the statistics. This

procedure is only a technical trick - ultimately, we are interested in the physics in the absence

of the fluctuating electromagnetic field.

A classical solution to the Maxwell’s equations for a static flux Φ flux-tube on the z = 0
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FIG. 1: An ETI slab (pink) with the top surface in a T -preserving superconducting phase (blue)

and the bottom surface in a T -broken insulating phase with σxy = 1/2 (orange). The entire slab

viewed as a 2d system is a px+ipy superconductor, as can be deduced from the presence of the chiral

Majorana edge mode f . A vortex on the superconducting surface will have its magnetic field (red)

spread into the bulk of the slab. As a whole, the flux-tube piercing the slab has Ising statistics

(see table III). The intrinsic vortex statistics associated with the T -invariant superconducting

surface can be deduced by subtracting out the contribution of the bottom surface, which gives the

restricted Ising×U(1)−8 vortex theory in table V.

surface of a semi-infinite topological insulator has the form,

~B =
Φ

2π

(x, y, |z|)
r3

(3.1)

Thus, the flux is spread out in the bulk of the insulator (and in the vacuum outside),

but localized on the surface. This spreading out of the flux leads to a 1/r “diamagnetic”

interaction between flux-tubes. This interaction decays quickly enough to make the flux-tube

statistics well-defined.3

To determine the Abelian part of the flux tube statistics we use the following argument.

First, let us recall that another surface termination of the electron topological insulator

is provided by a fully gapped state with no intrinsic topological order, which preserves

the particle-number symmetry, but spontaneously (or explicitly) breaks the time-reversal

symmetry and carries a Hall-conductivity σxy = ±1/2. Such a state can be obtained by

applying a Zeeman field on the surface, which induces a mass term for the surface Dirac

fermion. As can be easily checked by solving the BdG equation on the surface,46 the edge

between the superconducting phase and the σxy = −1/2 phase carries a single gapless chiral

3 Strictly speaking, the statistical interaction and the diamagnetic interaction decay at the same rate.

9



Majorana mode (central charge c = 1/2). The chirality is right-moving (counter-clockwise)

for a superconducting droplet in a σxy = −1/2 phase.

Now, imagine a slab of the topological insulator with thickness d in the z direction much

greater than the lattice spacing a (see Fig. 1). We further take the length and width of

the slab to be much greater than d. We take the top surface of the slab to be in the

superconducting phase and the bottom surface in the σxy = 1/2 phase, with the sign of σxy
defined, as usual, relative to the ẑ axis (i.e. the Hall-conductivity is σH = −1/2 with respect

to the outward normal −ẑ of the insulator surface). The edge of the slab will carry a single

right-moving Majorana mode. The slab viewed as a 2d system is identical to a px + ipy
superconductor. Indeed, let us start with a non-interacting electron topological insulator

slab and explicitly break the particle-number symmetry on the top surface and time-reversal

on the bottom surface. The slab is a 2d non-interacting superconductor with no global

symmetries (except the particle-hole symmetry of the BdG equation) - i.e. it belongs to

class D. According to the classification of Refs. 9,10, non-interacting 2d phases in class D

are labeled by an integer n and are equivalent to n copies of a px + ipy superconductor.

A system in phase n supports n right-moving Majorana modes on the edge. Therefore,

our slab with a single Majorana mode on the edge, viewed as a 2d system, is a px + ipy
superconductor.

Now, let us gauge the U(1) particle-number symmetry and consider a flux-tube piercing

our 2d slab. As already mentioned, for a magnetic field configuration satisfying the classical

Maxwell equations, the magnetic flux on the superconducting surface is concentrated in the

vortex core, but is spread out in the bulk of the slab and on the bottom (insulating) surface.

The exact details of the flux distribution, except its smoothness in the bulk and on the

bottom surface, will play no role in our discussion below; for instance, instead of using the

solution to Maxwell’s equations, we can just impose a flux distribution which is uniform

along the z direction and has a characteristic radius R � a. We can now ask about the

statistics of the flux-tubes piercing the slab. If the distance between the flux-tubes is much

larger than their radius, we can view the system as two-dimensional. The statistics then

become identical to statistics of flux-tubes in a gauged px + ipy superconductor. These were

discussed in Refs. 47–52 and are identical to those in the Ising anyon model, which we briefly

review below.

Recall that the Ising anyon model has the following anyon types: 1, σ, f . The fusion rules

are f × f = 1, σ × σ = 1 + f and σ × f = σ. The topological spins θ and the quantum

dimensions d are listed in Table III. The topological spins determine the mutual (full braid)

statistics of quasiparticles a and b fused in channel c to be Mab
c = θc

θaθb
. (Here and below

we always give statistics for a counter-clockwise exchange). The mutual statistics can also

be expressed through the R symbols as Mab
c = Rab

c R
ba
c , where Rab

c denotes the phase picked

up during an exchange of anyons a and b fused in channel c. For a 6= b, Rab
c does not have

a gauge-invariant meaning (while Mab
c does), but for a = b, Raa

c gives the self-statistics of

anyons a (fused in channel c). We list these self-statistics Raa
c in Table III.

Returning to the excitations of a px + ipy superconductor, fermionic Bogolioubov quasi-
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anyon d θ R
1 1 1 R11

1 = 1

f 1 −1 Rff
1 = −1

σ
√

2 eπi/8
Rσσ

1 = e−πi/8

Rσσ
f = e3πi/8

σ × σ = 1 + f , σ × f = σ, f × f = 1

TABLE III: Ising topological order: quantum dimensions d, topological spins θ, self-statistics R

and fusion rules.

anyon, l ∈ Zn d θ

eilυ 1 eπil
2/n

eil1υ × eil2υ = ei(l1+l2)υ

TABLE IV: Topological order U(1)n with general (even) integer n. Anyons are labeled by an

integer l (modulo n); we also denote the corresponding anyon as eilυ. Anyon fusion is given by

addition modulo n. The topological spins θ are listed; all anyons are Abelian: quantum dimension

d = 1.

particles naturally belong to the f sector. Flux-tubes with odd vorticity belong to the σ

sector, while flux-tubes with even vorticity belong to the 1 sector or the f sector (as already

noted, for an even flux tube, one can toggle between these sectors by exciting a Bogolioubov

quasi-particle). Note that given an even flux-tube (e.g. with flux 2π) in a 2d system, the

flux can continuosly shrink to pass through a single plaquette, becoming invisible. Thus, an

even flux-tube has to lie in the same sector as excitations with no flux, i.e. precisely 1 or f .

Thus, we know the statistics of flux-tubes passing through the entire 2d slab. Clearly,

these statistics are sensitive to the σxy = 1/2 phase that we placed on the bottom surface

of the slab. In particular, they explicitly break the time-reversal symmetry. If we instead

placed the σxy = −1/2 phase on the bottom surface, the slab as a whole would behave as a

px − ipy superconductor and the statistics would be time-reversal conjugates (i.e. complex

conjugates). We would now like to separate out the contribution to the flux-tube statistics

coming from the top (superconducting) surface. This contribution should be i) time-reversal

invariant, ii) independent of what phase the bottom surface is in.

Consider the effective action for the slab as a whole, Sslab, describing the motion of

flux tubes and Bogolioubov quasiparticles. On one hand, as already noted, this motion is

governed by the Ising anyon theory Sslab = SIsing. On the other hand, we may decompose

Sslab as,

Sslab = Stop[jv, jf ] + Sbulk[A] + Sbottom[A] (3.2)

Here, Stop, Sbulk and Sbottom are the actions for the top surface, bulk and bottom sur-

face, respectively. jv and jf are the vortex and Bogolioubov quasiparticle currents on the

top surface. The bulk and the bottom surface are affected during the vortex motion only

through the electromagnetic gauge field Aµ, which we take to be a classical, adiabatically

varying background field, slaved to the vortex coordinates. Thus, to compute Sbulk[Aµ] and
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Sbottom[Aµ] we may integrate the electrons out. The bulk response gives the usual Maxwell

term

Sbulk ∼
∫
d3xdτF 2

µν (3.3)

This term contributes to the aforementioned 1/r diamagnetic interactions between the flux

tubes and is irrelevant for our purposes. For the bottom surface we obtain an effective

Chern-Simons (CS) action,

Sbottom = − ik
4π

∫
bottom

d2xdτ εµνλAµ∂νAλ, k = 1/2 (3.4)

at level k = σxy = 1/2. We note that as far as the bulk electromagnetic response of the

electron topological insulator is concerned, it is often stated that a θ term,

Sθ = − iθ

32π2

∫
bulk

d3xdτ εµνλσFµνFλσ (3.5)

with θ = π is present. However, in the absence of monopoles in the bulk, this θ term reduces

to a CS term on the boundary,

Sθ = − iθ

8π2

∫
bound

dSµεµνλσAν∂λAσ (3.6)

In Eq. (3.2) we choose to incorporate this boundary term into the actions for the top and

bottom surfaces Stop and Sbottom. Indeed, for the choice θ = π, the action for the bottom

surface in Eq. (3.4) is precisely given by the boundary contribution in Eq. (3.6). On the

other hand, the action for the top surface Stop is more complicated (in fact, due to the

presence of non-perturbative vortex configurations carrying Majorana zero modes, the top

surface cannot be described by a simple quadratic theory for the gauge field Aµ), however,

whatever the form of this action, the bulk θ-term is accounted for in it.

From Eq. (3.2) we isolate the action for the top surface alone:

Stop[jv, jf ] = SIsing[jv, jf ]− Sbottom[A] (3.7)

(Here we’ve dropped the non-topological bulk Maxwell term). It is convenient to rewrite the

action for the bottom surface in terms of the vortex currents. The gauge field Aµ is slaved

to the vortex currents and for well-separated vortices, we may write εµνλ∂νA
bottom
λ = πjv,µ.

Enforcing this constraint with a Lagrange multiplier aµ we obtain,

Stop = SIsing[jv, jf ] +

∫
d2xdτ

[
i

8π
εµνλAµ∂νAλ + iaµ

(
1

π
εµνλ∂νAλ − jvµ

)]
(3.8)

Integrating over the (now unconstrained) gauge field Aµ, we obtain the desired action for
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the top surface,

Stop = SIsing[jv, jf ] +

∫
d2xdτ

(
−8i

4π
εµνλaµ∂νaλ − iaµjvµ

)
(3.9)

The second term in Eq. (3.9) is a CS theory for the gauge field aµ at level k = −8, U(1)−8.

The vortex carries charge 1 under the CS field aµ. The CS term contributes an extra phase

to the Abelian statistics of vortices, in addition to the statistics coming from the Ising action

in the first term. We can, thus, think of our vortices as embedded in an anyon model which

is a direct product, Ising × U(1)−8.

We remind the reader that a general U(1)n anyon model (with n - even) has |n| distinct

anyon types, which we denote here by eilθ, l = 0 . . . |n| − 1.4 One may think of l as an

integer modulo |n|. The anyons have Abelian fusion rules: eil1θ × eil2θ = ei(l1+l2)θ and

topological spins θl = eπil
2/n. As with all Abelian anyons, the topological spins are equal to

the self-statistics, Rll
2l = θl.

Now, from Eq. (3.9), we associate flux tubes on the surface of an ETI with anyons of

the Ising × U(1)−8 theory as follows. Labeling the vorticity as k, flux tubes with k - odd

correspond to σeikθ anyons, while flux-tubes with k - even correspond to eikθ and feikθ

anyons. Here, 1, σ, f labels run over the Ising part and eikθ - over the U(1)−8 part. The

Bogolioubov quasiparticle (electron) lies in the zero flux sector and is just f . As noted

before, the U(1)−8 charge coincides with the vorticity. Note that the vorticity (flux) on the

surface of an ETI is conserved unless a monopole of Aµ passes through the surface. For now,

we do not consider such monopole events, thus, for the present purposes it is appropriate to

think of the vorticity label k as an integer, rather than an integer modulo 8. The statistical

properties, however, are periodic under k → k + 8 (i.e. flux Φ→ Φ + 8π). This is different

from a strictly 2d system, where as we mentioned, the statistical properties of flux-tubes

must be invariant under Φ→ Φ + 2π.

We note that not all anyon types of the Ising × U(1)−8 theory are realized by the flux

tubes on the surface. Namely the eikθ, feikθ anyons with k-odd and σeikθ anyons with k -

even are absent. We will refer to the allowed anyon types together with their fusion and

braiding rules as the “restricted” Ising × U(1)−8 theory. We note that the allowed anyon

types are analogous to those of the Moore-Read (Pffafian) state, whose quasiparticles form

a subset of the Ising × U(1)+8 theory.

The topological spins θ of the allowed flux-tubes are listed in Table V. Here we use

the fact that the topological spin θ of an anyon in the product theory is the product of

topological spins of the constituents. The same holds for the R matrix elements. The R

matrix elements describing the self-statistics of σeikθ flux-tubes are, thus, Rσkσk
12k

= e−πi(k
2+1)/8

and Rσkσk
f2k

= e−πi(k
2−3)/8. (Here and below, we will use the short-hand notation αk = αeikθ).

Since all the other flux-tubes are Abelian, their self-statistics is just given by the topological

4 The exponential notation derives from the 1d edge theory of the 2d TQFT; for present bulk purposes it

is a pure labeling scheme.
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0 1 2 3 4 5 6 7
1 1 −i 1 −i
f −1 i −1 i
σ 1 −1 −1 1

TABLE V: Topological spins θ of flux-tubes on the surface of an ETI. The statistics of flux-tubes

are identical to those of anyons in an Ising×U(1)−8 theory. The Ising content {1, σ, f} is specified

in the row label and the U(1)−8 content, which is identical to the vorticity k, in the column label (in

the text we also label the U(1)−8 content as eikθ). The blank anyons are not allowed. The statistics

are invariant under k → k + 8. Vortices transform under time-reversal according to Eq. (3.10).

spin.

Let us now discuss the transformations of our flux-tubes under time-reversal symmetry.

Since we have inferred the statistical properties by starting with a 2d slab whose lower surface

explicitly broke T , time-reversal symmetry is not manifest in the labeling that we are using

for the flux-tubes. Nevertheless, we can work out the action of time-reversal symmetry

by noting that i) T maps flux-tubes with vorticity k to flux-tubes with vorticity −k, ii)

topological spins of time-reversal partners must be complex-conjugates. These requirements

uniquely fix the action of time-reversal symmetry to be:

T : σeikθ → σe−ikθ, k − odd

eikθ → e−ikθ, feikθ → fe−ikθ, k ≡ 0 (mod 4)

eikθ → fe−ikθ, feikθ → e−ikθ, k ≡ 2 (mod 4) (3.10)

Furthermore, the trivial zero flux sector 1 is a Kramers singlet, while the Bogolioubov

quasiparticle f is a Kramers doublet. As already noted, all the other flux-tubes carry no

additional degeneracy. One can check that the fusion rules and braidings are consistent

with the time-reversal symmetry (3.10). To gain some intuition about the transformation

properties (3.10), we discuss several explicit examples.

First, let us consider the flux 2π vortex e2iθ. It has topological spin (self-statistics)

θ12 = −i. According to Eq. (3.10), the time-reversal partner of this vortex is a flux −2π

vortex fe−2iθ, whose topological spin is θf−2 = i, which is the complex conjugate of θ12 , as

required. Note that the time-reversal partners e2iθ and fe−2iθ are mutual semions and fuse

to the fermion f , which is a Kramers doublet. We show in Appendix B that two mutual

semions, which are mapped into each other by time-reversal symmetry, actually, must fuse

to a Kramers doublet fermion. The fact that the fusion product must be a fermion is easy to

see as the mutual statistics of two anyons a and b fused in channel c is Mab
c = θc/(θaθb). If

a and b are time-reversal partners, θaθb = 1, so mutual semionic statistics implies θc = −1.

Note that the result of Appendix B also works when the time-reversal partners a and b are

non-Abelian, assuming that these have semionic statistics in some specific Abelian channel

c and that c transforms into itself under T .
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There actually exists a simple explicit example of a 2d topologically-ordered state where

two mutual semions transform into each other under time-reversal symmetry and fuse to

a fermion, which is a Kramers doublet. This state is just a toric code where the mutual

semions e and m are time-reversal partners and fuse to a Kramers doublet fermion f . We

will discuss this toric code in more detail in appendix G.

Now, let us turn our attention to flux ±π vortices σeiθ and σe−iθ. These time-reversal

partners both have topological spin θσ±1 = 1 and fuse according to σeiθ × σe−iθ = 1 + f .

When fused in channel 1, the two flux-tubes have bosonic mutual statistics and, thus, give

rise to a Kramers singlet 1. On the other hand, when fused in channel f , they have semionic

mutual statistics and give rise to the Kramers doublet f , in accordance with the result of

Appendix B. Now, let us consider the self-statistics of σeiθ. This flux-tube fuses with itself

to give σeiθ × σeiθ = e2iθ + fe2iθ. On the other hand, its time-reversal partner σe−iθ fuses

with itself as σe−iθ × σe−iθ = e−2iθ + fe−2iθ. Now recall that the fusion products transform

under T as e2iθ ↔ fe−2iθ and fe2iθ ↔ e−2iθ. The self-statistics Rσ1σ1
12

=
(
R
σ−1σ−1

f−2

)∗
= e−πi/4

and Rσ1σ1
f2

=
(
R
σ−1σ−1

1−2

)∗
= eπi/4 are consistent with this.

Before we conclude this section, we would like to stress that the restricted Ising×U(1)−8

theory that we discussed in this section describes the statistical properties of flux-tubes on

the superconducting surface of an ETI. It does not, at least in the present context, describe

the symmetry-respecting topologically-ordered surface of an ETI, which is the subject of

the next section (see, however, Refs. 57,58 and the discussion in the conclusion). In the

absence of a dynamical external electromagnetic field, the superconducting surface has no

intrinsic topological order and its vortices are not local excitations. The introduction of a

weakly fluctuating electromagnetic gauge field is just a useful technical trick on route to

exposing the properties of the symmetry-respecting surface with intrinsic topological order.

We will see that one version of this topological order contains all the anyons of the restricted

Ising × U(1)−8 theory, as well as some additional anyons.

IV. SYMMETRY-RESPECTING SURFACE TOPOLOGICAL ORDER.

A. Vortex Condensation.

We are now ready to quantum disorder the surface superconductor by proliferating vor-

tex defects. As a result, we will obtain an insulating time-reversal-respecting surface with

intrinsic topological order.

As a first step, we switch off the fluctuating electromagnetic field Aµ that was introduced

in the previous section. We, nevertheless, continue to label the surface vortices by their any-

onic type (statistics) in the gauged theory. We use the following prescription for condensing

vortices. We will justify this prescription in section IV C. Only Abelian vortices (those with

quantum dimension d = 1) with bosonic self-statistics (as flux-tubes) can condense. The

minimal Abelian bosonic vortex has flux 4π - it is e4iθ in the notation of the previous sec-

tion. Although we understand how to condense this vortex, we find it conceptually simpler
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to begin by condensing a flux 8π vortex e8iθ. The reason for this is that e8iθ has trivial

mutual statistics with all the other excitations. On the other hand, e4iθ has semionic mutual

statistics with odd vortices. We will come back to discuss the condensation of e4iθ in section

IV D, but for now, focus on condensing e8iθ.

We claim that the proliferation of e8iθ vortices gives rise to a topologically-ordered state

with the following properties.

i) The particle number conservation symmetry is restored.

ii) An electric charge 1/4 Abelian bosonic anyon eiφ appears in the spectrum. This charge

“quantum” is dual to the flux 8π of the condensing vortex.

iii) Vortices with vorticity 0 ≤ k < 8 emerge out of the superconductor as electrically

neutral anyons, with the same fusion and braiding rules, which they possessed as flux-tubes.

We continue to label the resulting anyons as σeikθ, k = 1, 3, 5, 7, and eikθ, feikθ, k = 0, 2, 4, 6.

As the flux 8π vortex, e8iθ, is condensed, k is now truly an integer modulo 8. Note that the

zero vorticity sector gives rise to the vacuum anyon 1 and a neutral fermion f , which is the

descendant of the Bogolioubov quasiparticle.

iv) The charge 1/4 boson eiφ has mutual statistics e−iπk/4 with the {1, σ, f}eikθ anyons.

All the anyons of the topologically-ordered state can be obtained by fusing the descen-

dants of vortices with some number m of charge 1/4 bosons, eimφ. Thus, the anyon content

of the surface topologically-ordered state is given by

T96 :

eimφeikθ, θ = e−πik
2/8e−πimk/4, 0 ≤ m ≤ 7, k = 0, 2, 4, 6, Q = m/4

feimφeikθ, θ = −e−πik2/8e−πimk/4, 0 ≤ m ≤ 7, k = 0, 2, 4, 6, Q = m/4

σeimφeikθ, θ = e−πi(k
2−1)/8e−πimk/4, 0 ≤ m ≤ 7, k = 1, 3, 5, 7, Q = m/4

(4.1)

Here we’ve also listed the topological spin θ and electric charge Q of the anyons. We note

that e8iφ is a charge 2 boson, which braids trivially with all the other anyons. We identify this

boson with the electron Cooper pair. Since the Cooper pair is a local bosonic microscopic

excitation, we do not count e8iφ as a separate anyon. We further observe that fe4iφ is a

charge 1 fermion, which braids trivially with all the other anyons. It is the only anyon with

this property, we, therefore, identify it with the physical electron c. The surface topological

order obtained has 96 anyons, counting the electron, and 48 anyons if we identify anyons

which differ by an electron. The latter count is relevant for computing the ground state

degeneracy of the system on a (solid) torus. We label the present topological order as T96.

In section IV D we will discuss a phase transition which reduces the number of anyons by a

factor of 4.

We can write the following “schematic” Lagrangian for the topologically-ordered surface,
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Ltopo = LIsing[jθ, jf ] +
−8i

4π
εµνλaµ∂νaλ − iaµjθµ

+
i

4π
εµνλα

T
µK∂ναλ − iαTµJµ −

i

4
Aµj

φ
µ (4.2)

with αµ = (α1
µ, α

2
µ), Jµ = (jφµ , j

θ
µ) and K = −

(
0 8

8 0

)
. The first line in Eq. (4.2) is

identical to the effective action for flux-tubes in the superconducting phase, Eq. (3.9), with

the renaming of the vortex current jv into jθ. The second line encodes the mutual e−πi/4

statistics between the eiφ anyons, whose current is denoted by jφ, and eiθ. This mutual

statistics is represented with the aid of a two-component CS gauge-field αµ. We also include

the coupling of the electromagnetic gauge field Aµ to the charge 1/4 anyons eiφ. It is easy

to see that the “Abelian part” of the statistics, which is encoded in Eq. (4.2) with the

aid of three CS gauge fields, a, α1, α2, can equally well be represented with just two CS

gauge-fields, β = (β1, β2) as,

Ltopo = LIsing[jθ, jf ] +
i

4π
εµνλβ

T
µK

′∂νβλ − iβTµ Jµ −
i

4
Aµj

φ
µ (4.3)

with K ′ =

(
8 −8

−8 0

)
. We next define eiϕρ = eiφe−iθ and rewrite all the anyons in terms

of eiϕρ and eiθ:

T96 :
eimϕρeikθ, feimϕρeikθ, k +m− even, 0 ≤ m ≤ 7, 0 ≤ k ≤ 7, Q = m/4

σeimϕρeikθ, k +m− odd, 0 ≤ m ≤ 7, 0 ≤ k ≤ 7, Q = m/4

(4.4)

Below, will use the two anyon labelings (4.1) and (4.4) interchangeably. We note that eiϕρ

carries electric charge 1/4, thus the subscript. In the language of the CS theory (4.3) the

relabelling generates an SL(2,Z) transformation,(
jφ
jθ

)
=

(
1 0

−1 1

)(
jρ
j̃θ

)
(4.5)

where jρ, j̃θ are the currents corresponding to eiϕρ and eiθ in the new “basis.” Eq. (4.3) then

becomes,

Ltopo = LIsing[j̃θ − jρ, jf ] +
i

4π
εµνλβ̃

T
µ K̃∂ν β̃λ − iβ̃Tµ J̃µ −

i

4
Aµj

ρ
µ (4.6)

with K̃ =

(
8 0

0 −8

)
and J̃ = (jρ, j̃θ). We see that the eiϕρ sector is described by a U(1)8

CS theory, while the eiθ sector - by the U(1)−8 CS theory, and the two sectors are decoupled
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anyon, m ∈ Z8, k ∈ Z8 θ Q

eimϕρeikθ, k +m− even ei(m
2−k2)/8 m/4

feimϕρeikθ, k +m− even −ei(m2−k2)/8 m/4

σeimϕρeikθ, k +m− odd ei(m
2−k2+1)/8 m/4

TABLE VI: Surface topological order T96 obtained from the surface superconductor by proliferating

the flux 8π vortex. The anyons of T96 can be embedded into an Ising×U(1)8 × U(1)−8 TQFT.

{1, σ, f} labels the Ising sector; eimϕρ , 0 ≤ m ≤ 7 - the U(1)8 sector; and eikθ, 0 ≤ k ≤ 7 - the

U(1)−8 sector. The table lists the topological spin θ and the electric charge Q of the anyons. The

anyon fe4iϕρe4iθ is the physical electron. An alternative labeling of the anyons is given in Eq. (4.1),

with the correspondence, eiϕρ = eiφe−iθ. Transformation properties of anyons under T are given

in Eq. (4.8). The simpler topological order Moore-Read×U(1)−2 in table I is obtained from T96

topological order by condensing the neutral boson e4iθ; the semion s̄ in table I is identified with

e2iθ.

in the Abelian part of the theory. Thus, we can think of the surface topological order (4.4),

T96, as embedded into the Ising × U(1)8 × U(1)−8 theory. The subset of the anyons of the

latter theory allowed on the surface, coincides precisely with the anyons, which are local

with respect to the electron c = fe4iφ = fe4iϕρe4iθ.

We note that in the absence of time-reversal symmetry, the topological order T96 can

certainly be realized in a strictly 2d fermion system (i.e. it is a legal topological order).

Further, one can implement this topological order in 2d keeping the global particle-number

symmetry and the anyon charge assignments (4.4). Indeed, begin by forming a layer with

Ising×U(1)−8 topological order built out of electrically neutral, bosonic degrees of freedom.

Label the anyons in this “bosonic” topological order as {1, σ, f}eikθ. Next, make another

layer, where electrons are bound into charge 2 molecules and these molecules form a bosonic

ν = 1/8 Laughlin state. This gives a U(1)8 topological order with anyons eimϕρ carrying

electric charge m/4. The Hall conductivity of this layer is σxy = 1
8

(2e)2

h
= 1

2
e2

h
. The topo-

logical order of the two layers taken together is Ising × U(1)8 × U(1)−8 × {1, c}. The last

factor in the above product encodes the fact that we are dealing with a system made out

of electrons c. Now, condense the (bosonic) anyon e4iϕρe4iθfc. This identifies c ∼ fe4iϕρe4iθ

and confines all the anyons in Ising×U(1)8×U(1)−8 that have non-trivial mutual statistics

with fe4iϕρe4iθ. The result is a phase whose intrinsic topological order and anyon charges

are identical to that of T96 ETI surface phase. However, unlike the T96 surface phase, which

is time-reversal invariant and so has an electrical Hall conductivity σxy = 0 and thermal

Hall conductivity κxy/T = 0, the present 2d state has σxy = 1/2 and κxy/T = 1/2, and so

necessarily breaks the time-reversal symmetry. In fact, we can identify this 2d state with an

ETI slab, where the top surface is in the symmetry-respecting topologically-ordered phase

and the bottom surface is in the topologically trivial σxy = 1/2 phase. This identification

yields the properties of the edge between the topologically-ordered surface phase and the

σxy = −1/2 surface phase. The edge carries a right-moving neutral Majorana (c = 1/2)

mode f , a right-moving bosonic (c = 1) charge mode ϕρ and a left-moving bosonic (c = −1)
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neutral mode θ. The edge action is given by,

L = f(∂τ − ivf∂x)f +
8i

4π
∂τϕρ∂xϕρ −

8i

4π
∂τθ∂xθ −

i

π
εµνAµ∂νϕρ

+ Vρρ(∂xϕρ)
2 + Vθθ(∂xθ)

2 + Vρθ∂xθ∂xϕρ (4.7)

The edge carries an overall electrical conductance G = 1/2 and chiral central charge

c− = 1/2, consistent with the difference of electrical and thermal Hall conductances of the

topologically-ordered surface phase and the σxy = −1/2 surface phase, which it separates.

We have shown that the surface topological order T96 can be realized strictly in two

dimensions if we give up the time-reversal symmetry. In appendix F we will also argue that

it can be realized strictly in 2d if we give up the particle-number symmetry, but keep the

time-reversal symmetry. We will also prove in section IV E that there is no 2d realization,

which preserves both of these symmetries. However, first we discuss how the time-reversal

symmetry is implemented in the topologically-ordered surface phase.

B. Time-reversal symmetry.

We have already discussed how the particle-number symmetry is implemented in the

topologically-ordered surface state T96: the U(1)8 sector carries the electric charge, while

the Ising and U(1)−8 sectors are electrically neutral. Now, let us discuss how the time-

reversal symmetry is implemented. We take the charge 1/4 boson, eiφ, to transform into

itself under T with T 2 = +1. As for the anyons descendant from the vortex excitations of

the superconductor, they keep their transformation properties (3.10). One subtlety is that

the descendant of the flux 4π vortex, e4iθ, now transforms into itself, T : e4iθ → e−4iθ ∼ e4iθ.

In principle, this anyon can become either a Kramers singlet or a Kramers doublet. As we

show in Appendix D, both options are allowed and correspond to two distinct surface states,

separated by a surface phase transition. Here, for simplicity, we take e4iθ to be a Kramers

singlet. Thus, the full transformation properties become:

T : σeimφeikθ → σeimφe−ikθ, k = ±1,±3

eimφeikθ → eimφeikθ, T 2 = +1, k = 0, 4

feimφeikθ → feimφeikθ, T 2 = −1, k = 0, 4

eimφeikθ → feimφe−ikθ, feimφeikθ → eimφe−ikθ, k = ±2

(4.8)

For anyons, which transform into themselves under time-reversal, we’ve indicated whether

the anyon is a Kramers singlet or a Kramers doublet. Note that the descendant of the

Bogolioubov quasiparticle, f , is naturally a Kramers doublet, as is the electron e4iφf . The

transformation rules (4.8) can be easily rewritten in the eiϕρ , eiθ basis.
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It is easy to see that the time-reversal transformations above are consistent with fusion

and braiding rules. Indeed, the effective action in the topologically-ordered phase differs from

the flux-tube action for the superconducting surface only by the second line in Eq. (4.2).

Now, under T , eiφ → eiφ, while the vortex descendants transform as aeikθ → be−ikθ. This

means that the currents jφ and jθ in Eq. (4.2) transform oppositely under time-reversal.

Thus, letting the CS gauge-fields α1 and α2 transform oppositely, we see that the second line

in Eq. (4.2) is manifestly time-reversal invariant. Moreover, we already checked the “hidden”

time-reversal symmetry of the flux-tube action for the superconducting surface (first line in

Eq. (4.2)). Hence, the surface topological order obtained is time-reversal invariant.

C. Back to the superconductor.

In this section we show that starting with the symmetry-preserving topologically-ordered

surface phase T96 described above, we can drive a surface phase transition back to the

superconducting phase. The statistics of flux-tubes in this superconductor exactly match

those described in section III. This justifies the procedure we used in section IV A for

condensing the flux 8π vortex.

The transition from the topologically-ordered phase to the superconductor is driven by

condensing the charge 1/4 boson eiφ. This anyon transforms trivially under T , hence its

condensation does not break T . However, since it carries charge, the resulting phase will be

a superconductor. The physical, local, Cooper pair order parameter cc is identified with the

8’th power of eiφ.

Note that eiφ braids non-trivially with all the flux-tube descendants aeikθ, a ∈ {1, σ, f}
with k 6= 0. Thus, in the absence of an external gauge field, all the anyons aeikθ with k 6= 0

will be confined by the condensation. (We will shortly see that these excitations correspond

to superconducting vortices, so their confinement is actually only logarithmic). The only

stable truly deconfined excitation will be the f -fermion, which after the condensation be-

comes identified with the electron, c = fe4iφ ∼ f . Hence, the resulting superconducting

state carries no intrinsic topological order.

Next, let’s gauge the global U(1) symmetry. Now, upon the condensation of eiφ, the

anyons aeikθ will bind a finite flux Φ = πk such that the Aharonov-Bohm phase eiΦ/4 picked

up by eiφ upon going around aeikθ compensates the mutual statistics e−iπk/4 between eiφ and

aeikθ. The resulting flux-tubes will be deconfined. Note that since aeikθ is electrically neutral,

the attached magnetic flux does not alter its statistics. Recall that in section IV A, we chose

the aeikθ anyons to have the same statistics as the flux-tubes in the superconductor. Thus,

all the properties of the eiφ-condensed phase exactly match those of the superconducting

surface. The above arguments are formalized in Appendix E using the standard particle-

vortex duality.

We expect the transition between the topologically-ordered and superconducting surface

phases to be in the XY ∗ universality class. The field ψ of the XY field-theory is just

ψ = eiφ. The star in XY ∗ serves to remind that the physical Cooper pair order parameter
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corresponds to the operator ψ8. Note that here we are assuming that the phase transition

occurs at fixed surface electron density.

Since the topologically-ordered and superconducting surface phases are separated by a

continuous transition in the XY ∗ universality class, we expect that the edge between them

can be gapped out. Indeed, imagine that the XY ∗ transition is driven by changing a

parameter g in the Hamiltonian. Now, slowly tune g as a function of e.g. the x coordinate

on the surface, interpolating between the two phases. Since the low-energy physics can

be described by the XY field-theory, and since conventional bosonic superfluids (or XY

magnets) generally possess no gapless edge states, we expect a gapped interface.

Now recall that the interface between the topologically-ordered and σxy = −1/2 surface

states is gapless and described by the action (4.7). Now imagine condensing the eiφ = eiϕρeiθ

anyon in the topologically-ordered region, driving a phase transition to the superconductor.

What happens to the edge? The perturbation cos(φ) = cos(ϕρ + θ) now becomes allowed in

the edge theory (4.7). This perturbation is capable of gapping out the ϕρ, θ modes, leaving

the chiral Majorana mode f . Thus, we recover the familiar edge between the superconducting

and σxy = −1/2 surface phases.

D. Reduced topological order.

The shear number of anyons in the surface topologically-ordered state T96 that we’ve

constructed is displeasing. In this section, we show that one can drive a surface phase

transition out of T96 into a different topologically-ordered state, which preserves the time-

reversal and particle number conservation symmetries, but has fewer anyons.

The phase transition is driven by condensing the bosonic anyon e4iθ. This anyon is

neutral and transforms trivially under time-reversal symmetry. Thus, its condensation does

not break the global symmetries. In the condensed phase, all the anyons that have nontrivial

mutual statistics with e4iθ will be confined, and all the excitations differing by e4iθ will be

identified, leaving,

Moore−Read×U(1)−2 :
eimϕρeikθ, feimϕρeikθ, m = 0, 2, 4, 6, k = 0, 2

σeimϕρeikθ, m = 1, 3, 5, 7, k = 0, 2

(4.9)

We see that in the eiθ sector, only the anti-semion s̄ = e2iθ survives the phase transition:

the condensation reduces U(1)−8 → U(1)−2, where U(1)−2 = {1, s̄}. Thus, the topological

order in the condensed phase can be thought of as a subset of the Ising × U(1)8 × U(1)−2

theory. In fact, it is precisely the subset which is local with respect to the electron, c =

fe4iϕρe4iθ → fe4iϕρ . Furthermore, we recall that the ordinary Moore-Read state is given

by the subset of the Ising × U(1)8 theory which is local with respect to the electron fe4iϕρ ,

see Eq. (2.1). Thus, the intrinsic topological order in the condensed phase is identical to

Moore− Read×U(1)−2. This state has twice as many anyons as the Moore-Read state: 24,
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if we count the electron, and 12, if we don’t. Topological spins of the anyons are listed in

table I.

In fact, the charge quantum numbers in the condensed phase are also identical to those

of Moore− Read × U(1)−2 (with the antisemion s̄ = e2iθ being electrically neutral). As

for the time-reversal symmetry, its action can be deduced directly from the transforma-

tion properties in the T96 phase (4.8), and is given in Eq. (2.2) and table II. Note that

although the topological content is a direct product, the time-reversal transformations mix

the Moore− Read and U(1)−2 parts.

We observe that the reduced topologically-ordered phase Moore− Read × U(1)−2 has

no neutral bosons that can be condensed to further decrease the number of anyons, while

preserving the particle-number symmetry.

We have described a route where the Moore− Read × U(1)−2 phase is obtained from

the surface superconductor by first condensing the flux 8π vortex e8iθ and then condensing

the anyon e4iθ, descendant from the flux 4π vortex. One can, alternatively, go directly

from the surface superconductor to the Moore− Read × U(1)−2 phase by condensing the

flux 4π vortex e4iθ. The reverse transition from the Moore− Read × U(1)−2 state to the

superconductor is obtained by condensing the charge 1/2 boson, e2iφ = e2iϕρ s̄. This confines

all the anyons, except for f , which becomes identified with the electron c = e4iϕρf ∼ f . The

phase transition is again in the XY ∗ universality class, but the Cooper pair order parameter

is now given by the fourth power of the XY -field.

Note that the edge between the Moore− Read × U(1)−2 and the σxy = −1/2 surface

phases still has the structure (4.7). The edge between the Moore− Read × U(1)−2 phase

and the superconducting phase is generally gapped.

E. Witten effect.

In this section we show that states with the same topological content and charge quantum

numbers as the T96 and Moore− Read× U(1)−2 phases discussed above cannot be realized

strictly in 2d without breaking the time-reversal symmetry. We then demonstrate that time-

reversal invariant realizations of these phases on the surface of an ETI are consistent with

the Witten effect in the ETI bulk.

Given a lattice system with particle-number symmetry, we can always couple it to a

weakly-fluctuating compact electromagnetic gauge field Aµ. For a 2d lattice system, we can

then consider instanton events in the coupled theory where the magnetic flux through the

plane changes by 2π. During such an event, flux 2π is nucleated through a single plaquette

of the lattice (say at the origin) and then allowed to expand to a smooth distribution. The

instanton event is a local process. Thus, it cannot affect the Berry’s phase picked up by a

distant quasiparticle upon encircling the origin. However, the instanton event clearly changes

the Aharonov-Bohm phase picked up by a charge Q quasiparticle by e2πiQ. Therefore, during

the insanton event, an anyon must be excited whose mutual statistics with the charge Q

quasiparticle compensates this Aharonov-Bohm phase. More precisely, the instanton must
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nucleate an anyon a, such that for any anyon b, e2πiQbMab = 1, where Mab is the mutual

statistics of anyons a and b.

Now suppose that the T96 phase (with its anyon charge assignments) could be realized

strictly in 2d. Applying the above reasoning, we conclude that one of the anyons e−2iϕρ or

fe2iϕρe4iθ has to be nucleated during an instanton event, which changes the magnetic flux

by 2π. These anyons differ by an electron c = fe4iϕρe4iθ and carry electric charge Q = ∓1/2.

But an instanton event must preserve the electric charge! Now, in general, it is possible

that the compensating electric charge is present as a Hall polarization charge, QH = σxy,

carried by the nucleated flux 2π. However, if we assume that the system is time-reversal

invariant, the Hall conductivity σxy must vanish. Thus, the phase T96 cannot be realized

in 2d with both time-reversal and particle-number symmetries preserved. The same holds

for the Moore− Read × U(1)−2 phase, where an identical argument shows that the charge

∓1/2 anyons e−2iϕρ or fe2iϕρ must be created during an instanton event.

How is the above paradox resolved when the T96 (or the Moore− Read× U(1)−2 phase)

is realized on the surface of an ETI? To answer this question we have to recall that the

electromagnetic response of an ETI contains a θ-term (3.5), with the θ-angle, θ = π.38 For

a 3d insulator with no intrinsic topological order and a finite θ-angle, a magnetic monopole

with flux 2πm in the bulk of the insulator acquires an electric charge Q = n + θm
2π

, with n

- an integer. This phenomenon is known as the Witten effect.39 The fractional part of the

monopole electric charge is fixed by θ, while the integer part n corresponds to the freedom

of adding electron excitations on top of the monopole. Thus, magnetic monopoles in the

bulk of an ETI carry a half-odd-integer electric charge. In contrast, magnetic monopoles in

vacuum carry an integer electric charge.

An event where the magnetic flux through the ETI surface changes by 2π corresponds to

a magnetic monopole tunneling through the surface. Let us start with a neutral magnetic

monopole in vacuum and let it tunnel through the ETI surface, acquiring an electric charge

1/2 in the process. There must be a compensating electric charge −1/2 left on the surface.

If the surface is in the T96 phase, the monopole leaves behind the anyon e−2iϕρ as it passes

through, which carries the required charge −1/2. On the other hand, if the monopole

acquires an electric charge −1/2 as it tunnels through the surface, it leaves behind the

fe2iϕρe4iθ anyon with charge 1/2. The excited anyons in the two cases differ by a physical

electron, as do the monopoles in the ETI bulk. We conclude that the surface topological

order that we’ve deduced is fully consistent with the Witten effect in the bulk of an ETI.

V. CONCLUSION.

In this paper we have deduced a gapped symmetry-respecting surface phase of an electron

topological insulator. This phase carries an intrinsic Moore-Read×U(1)−2 topological order.

We have argued that this phase can be obtained from the superconducting surface phase

through a direct second order phase transition involving proliferation of flux 4π vortices.

It would be extremely interesting to identify possible microscopic interactions on the ETI
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surface that may be sympathetic to such vortex condensation. This would be the first step

to a long-term goal of realizing such a symmetry-preserving topologically-ordered surface

phase experimentally.

The Moore-Read×U(1)−2 topological order is non-Abelian, supports 24 anyon types (12-

modulo the electron) and has a total quantum dimension D =
√

32 (D = 4, modulo the

electron). It is interesting whether a “simpler” symmetry-preserving topologically-ordered

surface termination of an ETI exists. For instance, one may wonder if some Abelian topo-

logical order can be realized on the surface, as is the case for topological insulators of

bosons.19,23,24 However, as is shown in appendix A, the symmetry-preserving termination

of an ETI must necessarily be non-Abelian. We can then ask if a non-Abelian topologi-

cal order with a smaller number of anyons or a smaller total quantum dimension than the

Moore-Read×U(1)−2 state may be admissible.

Actually, a different topologically-ordered ETI termination with just 12 anyons (6-modulo

the electron) has been proposed in Ref. 57 and independently in Ref. 58. In terms of its

intrinsic topological order, this phase is identical to the “restricted” Ising×U(1)−8 braided

tensor category, discussed in section III, however, the anyons are endowed with electric

charge quantum numbers and the time-reversal symmetry is implemented differently. Using

an exactly-soluble 3d Walker-Wang model, the authors of Ref. 58 have demonstrated that

this topological order can appear as a surface termination of some non-trivial T -invariant

3d electron insulator with θ = π. Is the resulting 3d phase continously connected to the

standard (non-interating) ETI? Actually, the Walker-Wang model of Ref. 58 comes in four

variations, giving rise to four distinct bulk phases whose restricted Ising×U(1)−8 surface

topological orders differ slightly in their implementation of U(1) and T symmetries. The

four bulk phases differ by SPT phases of neutral bosons protected by T .19,21 Out of these

four electronic phases, two are known to be distinct from the non-interacting ETI, while it

has been argued that one of the remaining two must be connected to the non-interacting

ETI.58 Unfortunately, it is at present not clear which one. Furthermore, according to the

full classification of all interacting ETIs proposed in Ref. 43, these four phases exhaust

topological insulators with θ = π, while T -protected SPT phases of neutral bosons exhaust

topological insulators with θ = 0.
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Appendix A: Surface topological order must be non-Abelian.

In this section, we demonstrate that any symmetry-respecting gapped surface of an ETI

must support a topological order, which is non-Abelian. Consider a thick slab of an ETI.

Imagine inducing the putative gapped symmetry-respecting phase on the top surface and the

topologically trivial T -breaking phase with electrical Hall conductivity σxy = 1/2 and ther-

mal Hall conductivity κxy/T = 1/2 on the bottom surface. Since the top surface preserves

T , it carries σxy = 0, κxy = 0. The slab as a whole, therefore, has σxy = 1/2, κxy/T = 1/2.

The fractional value of σxy immediately implies that the slab, viewed as a 2d system, must be

topologically ordered.59,60 Furthermore, since neither the bulk of the system nor the bottom

surface is topologically ordered, the topological order of the slab is carried solely by the top

surface. To show that this topological order is non-Abelian, we observe that any electronic

insulator with fractional κxy/T must possess non-Abelian anyon excitations.

First note that any bosonic system with Abelian topological order must have an integer

κxy/T . Indeed, such systems can be described by Abelian Chern-Simons theory61 and so

possess bosonic edge states with integer chiral central charge c = κxy/T . Now, suppose we

have an electronic insulator with Abelian topological order: let’s show that it also must

carry an integer κxy/T . As will be further discussed in appendix F, we can extend the

“fermionic” topological order to a “bosonic” topological order by gauging the fermion parity

symmetry. The anyons of the resulting bosonic topological order conisist of the anyons of

the original electronic system and the π-fluxes. Now, in an insulator we can construct an

“elementary” π-flux by smearing the magnetic flux over a large area. The properties of this

flux can then be described by the effective action for the electromagnetic field, Eq. (F1),

with k = σxy. In particular, as shown in appendix F, the elementary fluxes have Abelian

statistics with topological spin θ = eπiσxy/4. Furthermore, all the other flux excitations can

be built by fusing one of the anyons of the original electronic system with the elementary

π-flux. Therefore, if the original anyons are Abelian, all the π-fluxes are also Abelian, and

the resulting bosonic topological order is Abelian. Thus, κxy/T must be an integer.

Appendix B: Mutual semions, which are time-reversal partners.

In this appendix we demonstrate that if two anyons a and b have mutual semion statistics

and are mapped into each other by time-reversal symmetry then they must fuse to a fermion

c, which is a Kramers doublet. (This result was independently obtained in Refs. 42,58). Note

that if a and b are Abelian anyons then their fusion product c is unique. On the other hand,

if a and b are non-Abelian, we assume that we are considering a fusion channel c, with

c-Abelian and c transforming into itself under T . The fact that c must be a fermion was

already explained in section III. We now argue that c must be a Kramers doublet.
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Consider two anyons a and b in some region of two-dimensional space. Once we’ve

specified the channel c, in which a and b are fused, the only degrees of freedom remaining

are the spatial coordinates ~xa and ~xb of a and b. We can then write the wave-function of

the two-anyon system as ψ(~xa, ~xb). The semionic statistical interaction between a and b

can be implemented by requiring ψ(~xa, ~xb) to have a branch-cut in the ~r = ~xa − ~xb plane

starting at the origin and running to infinity. The sign of ψ changes as ~r crosses the branch-

cut. Different choices of the branch-cut path are gauge-equivalent, however, once a choice

is made, one must work with wave-functions in the corresponding Hilbert space. Here we

choose a branch cut along the positive-x axis.

We would now like to implement the time-reversal symmetry, which transforms the anyons

a and b into each other, i.e. ~xa ↔ ~xb. Under a simple complex-conjugation, followed

by an interchange of the anyon positions ψ(~xa, ~xb) → ψ∗(~xb, ~xa), the branch-cut in the

~r = ~xa − ~xb plane is transformed to run along the negative-x axis. To return the branch-

cut to its original position, we must follow the above transformation by a gauge-rotation,

ψ(~xa, ~xb)→ sign(ya − yb)ψ(~xa, ~xb). The full time-reversal operation then becomes,

T : ψ(~xa, ~xb)→ sign(ya − yb)ψ
∗(~xb, ~xa) (B1)

and we find T 2 = −1. Thus, the fusion product of a and b must transform as a Kramers

doublet under T .

Appendix C: Fermion topological insulators with T 2 = +1 and θ = π do not exist.

In this appendix we show that electromagnetic response with θ = π is incompatible with

T 2 = +1. (This result was independently obtained in Ref. 43). Suppose we have a time-

revesal invariant insulator with θ = π and no intrinsic topological order in the bulk. Let us

recall that at a finite θ angle, a monopole of flux m carries an electric charge q = n+ θm
2π

, with

n - an arbitrary integer. At θ = π single monopoles carry a half-odd-integer charge. Under

time-reversal an excitation (q,m) with charge q and flux m transforms as (q,m)→ (q,−m).

In particular, dyons (1/2, 1) and (1/2,−1) are time-reversal partners. These time-reversal

partners fuse to the electron, (1, 0). We would like to show that the electron is a Kramers

doublet.

Recall that the θ angle does not affect the statistical interaction between dyons. So, to

understand the statistical interaction, we may start with θ = 0 and continuously tune θ

to any desired value (e.g. θ = π). Thus, the statistical interaction between (1/2, 1) and

(1/2,−1) at θ = π is the same as the statistical interaction between (0, 1) and (1,−1) at

θ = 0. Now, the statistical interaction between (0, 1) and (1,−1) is actually the same as the

statistical interaction between (0, 1) and (1, 0) (all at θ = 0), since the monopole-monopole

interaction is not statistical. Thus, (1/2, 1) and (1/2,−1) interact statistically like a charge

and a monopole.

The statistical interaction between a charge and a monopole is described by the
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Hamiltonian,62

H =
1

2Mq

(~pq − ~A(~xq − ~xm))2 +
1

2Mm

(~pm + ~A(~xq − ~xm))2 (C1)

with ~A(~x) - the vector potential of a monopole (∇× ~A(~x) = r̂
2r2

). One may use a particular

gauge choice,

~A(~x) =
1− cos θ

2r sin θ
ϕ̂ (C2)

Here, for concreteness, the non-relativistic limit has been taken; however, the argument

does not rely on the specific form of the Hamiltonian, but rather on the form of the covariant

derivatives. This form may be derived by starting with the Maxwell action with monopole

and charge sources, integrating out the gauge-field and then expanding the result in charge

and monopole velocities.

According to our discussion above, we may think of the charge and the monopole in

Eq. (C1), as the (1/2,−1) and (1/2, 1) dyons, respectively. Since these are mapped into

each other by time-reversal symmetry, we set Mq = Mm. Note that when the monopole

is placed at the origin, a charge moving around a curve C, picks up a Berry’s phase eiΩ/2,

where Ω is the solid angle subtended by C. On the other hand, if the charge is placed at

the origin, a monople moving around the curve C, picks up a Berry’s phase e−iΩ/2. This is

consistent with time-reversal symmetry, which interchanges the charge and monopole, i.e.

(1/2,−1) and (1/2, 1).

Let us now find an explicit expression for an operator which implements the time-reversal

symmetry, interchanging the charge and the monopole. Under simple complex conjugation

C : ψ(~xq, ~xm) → ψ∗(~xq, ~xm), followed by exchange of charge and monopole coordinates,

S : ψ(~xq, ~xm)→ ψ(~xm, ~xq), we find,

SC : ~pq − ~A(~xq − ~xm)→ −~pm − ~A(~xm − ~xq) = −
(
~pm + ~̃A(~xq − ~xm)

)
(C3)

~pm + ~A(~xq − ~xm)→ −~pq + ~A(~xm − ~xq) = −
(
~pq − ~̃A(~xq − ~xm)

)
(C4)

with
~̃A(~x) = ~A(−~x) =

−1− cos θ

2r sin θ
ϕ̂ (C5)

We observe that ~̃A is just a gauge transform of ~A,

~̃A(~x) = ~A(~x) +∇α(~x) (C6)

with

eiα(~x) = e−iϕ (C7)

Thus, to restore the Hamiltonian (C1) to its original form, we must perform a gauge transfor-

mation, U : ψ(~xq, ~xm)→ eiα(~xq−~xm)ψ(~xq, ~xm). Hence, the form of the time-reversal operator
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is T = USC. It is easy to check that T 2 = −1. Thus, every bound state of (1/2,−1) and

(1/2, 1) dyons at θ = π is a Kramers doublet. Since this bound state is the electron, we

arrive at the desired conclusion. We note that our argument is completely insensitive to

presence/absence of any rotational/translational symmetry and depends only on the form

of the statistical interaction between dyons.

Appendix D: Changing Kramers parity of the e4iθ anyon.

In this appendix we show that there are two possible realization of the T96 phase on the

surface of the electron topological insulator that differ by the action of T 2 on the e4iθ anyon.

The two phases are separated by a surface phase transition.

First, let us construct a strictly 2d Z8 gauge theory with a global particle-number sym-

metry and time-reversal. We would like the Z8 charges, eiφ̃, to carry physical electric charge

1/4 and transform trivially under T and the Z8 fluxes, eiθ̃, to be electrically neutral and

transform under T as eiθ̃ → e−iθ̃. Moreover, we would like the anyon e4iθ, which transforms

into its own topological sector e4iθ → e−4iθ ≡ e4iθ to be a Kramers doublet. We now give an

explicit construction of this state using the standard Chern-Simons K-matrix approach.

The Z8 topological order can be described with a mutual Chern-Simons theory,

LZ8 =
i

4π
εµνλa

T
µK∂νaλ − iaTµJµ −

i

2π
εµνλAµt

T∂νaλ (D1)

where K = −

(
0 8

8 0

)
. Here, a = (a1, a2) is a pair of CS gauge fields and J = (jφ̃, jθ̃), is a

pair of corresponding currents. jφ̃ is the current of Z8 charges, eiφ̃, and jθ̃ is the current of

Z8 fluxes, eiθ̃. t is the charge vector, which we take to be t = (0, 2). We are thinking of the

Z8 state as a strictly “bosonic” topological order made out of Cooper pairs, so entries of t

are even integers. The quasiparticles then carry physical electric charges K−1t = (1/4, 0),

i.e. eiφ̃ carries charge 1/4 and eiθ̃ is neutral. We take the fields to transform under time

reversal as,

jφ̃µ → λµj
φ̃
µ , j θ̃µ → −λµj θ̃µ, (D2)

a1
µ → λµa

1
µ, a2

µ → −λµa2
µ (D3)

with λ = (1,−1,−1). This means that the Z8 charges transform into themselves under

time-reversal, while Z8 fluxes transform into anti-fluxes. It is actually more convenient to

discuss the time-reversal transformations in the edge theory,

Ledge =
1

4π
∂tχ

TK∂xχ− ∂xχTV ∂xχ (D4)

with χ = (φ̃, θ̃). Here, we’ve switched to real time t from imaginary time τ . We take χ to
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transform under time-reversal (in real time) as,

T : φ̃→ −φ̃, θ̃ → θ̃ +
π

8
(D5)

Since T is anti-unitary, this implies,

T : eiφ̃ → eiφ̃, eiθ̃ → e−iπ/8e−iθ̃ (D6)

Under T 2,

T 2 : eikθ̃ → eikπ/4eikθ̃ (D7)

Note that e8iθ̃ transforms trivially under T 2 as is necessary for an operator in the topolog-

ically trivial sector. For k 6= 4 in Eq. (D7), the phase factor eikπ/4 in the transformation

properties does not carry a physical significance, since the time-reversal partners eikθ̃ and

e−ikθ̃ are in distinct topological sectors. However, for k = 4, e4iθ̃ and e−4iθ̃ are in the same

topological sector. Eq. (D7) then implies that e4iθ̃ is a Kramers doublet. Thus, we have

constructed a Z8 state with the desired symmetry properties.

Next, imagine starting with the ETI surface in the topologically-ordered T96 phase with

e4iθ being a Kramers singlet. Let’s glue on a Z8 phase constructed above onto the surface.

Next, condense the anyon eiφe−iφ̃. This anyon is electrically neutral and transforms trivially

under T , so the condensation preserves all symmetries. The deconfined anyons are the same

as in Eq. (4.1), except with the replacement eikθ → eikθ
′
= eikθeikθ̃. The resulting topological

order is identical to T96. The transformation properties under T are also identical, except

e4iθ′ is now a Kramers doublet.

Appendix E: eiφ condensation in the topologically-ordered surface phase.

In this appendix we formalize the argument of section IV C using the standard particle-

vortex duality. We begin with the effective theory of the topologically-ordered surface,

Eq. (4.2). We wish to condense the eiφ particle. We write the conserved current of eiφ as

jφµ = 1
2π
εµνλ∂νbλ. On a lattice, bµ would be a 2πZ valued variable. One can enforce this

integer-valued constraint by adding a term ibµj
8
µ to the action and summing over all integer

values of j8
µ. Physically, j8

µ is the current of the vortex in eiφ. As eiφ carries charge 1/4,

the vortex has flux Φ = 8π. We will explicitly confirm this identification below. The phase

where eiφ is condensed corresponds to the worldlines jφµ proliferating. Correspondingly, the

vortex worlines j8
µ will be supressed. With the above remarks in mind, the effective action

becomes,

Ltopo = LIsing[jθ, jf ] +
−8i

4π
εµνλaµ∂νaλ − iaµjθµ

− 8i

2π
εµνλα

1
µ∂να

2
λ −

i

2π
εµνλα

1
µ∂νbλ − iα2

µj
θ
µ + ibµj

8
µ −

i

4 · 2π
εµνλAµ∂νbλ (E1)
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We can integrate over α1 in Eq. (E1). This gives a constraint, bµ = −8α2
µ. The resulting

action becomes,

Ltopo = LIsing[jθ, jf ] +
−8i

4π
εµνλaµ∂νaλ − iaµjθµ

−iα2
µ(jθµ + 8j8

µ) +
i

π
εµνλAµ∂να

2
λ (E2)

Let us discuss the dynamics of the action (E2) in the phase where eiφ is condensed. As al-

ready remarked, in this phase the fluctuations of j8
µ will be supressed. We also assume that

the anyons aeikθ remain gapped through the phase transition, so the fluctuations of jθµ are su-

pressed as well. Thus, in the absence of an external electromagnetic field Aµ, the gauge field

α2
µ will be gapless. (The gapless fluctuations will be governed by a kinetic term (εµνλ∂να

2
λ)

2

in the action, which we’ve dropped in our schematic exposition.) The corresponding photon

is identified with the superfluid Goldstone mode, since the physical electromagnetic current

is given by JEMµ = − 1
π
εµνλ∂να

2
λ. The current jθ is minimally coupled to α2, while j8 car-

ries charge 8 under α2. Hence, we identify jθ with the elementary superconducting vortex

and j8 with the vorticity 8 vortex. Thus, eiφ condensation “restores” the flux 8π vortex

as a stable excitation. As long as Aµ is switched off, the superconducting vorticies will be

logarithmically confined by the gapless gauge field α2.

Once a dynamical electromagnetic field Aµ is introduced, α2 becomes gapped (the Gold-

stone mode is eliminated). We can then integrate over α2 in Eq. (E2) to obtain a constraint,

jθµ + 8j8
µ = 1

π
εµνλ∂νAλ, i.e. jθ binds flux Φ = π and j8 binds Φ = 8π. The effective “topo-

logical action” for the resultant flux-tubes is now given by the first line in Eq. (E2), which

coincides with the flux-tube action (3.9) obtained in section III. Note that the current j8

does not enter this topological part of the action - i.e. the flux 8π flux-tube is statistically

trivial, in agreement with the results of section III.

Appendix F: Topological - superconducting slab.

We have argued in section IV E that the topologically-ordered surface states of an ETI

that we’ve constructed cannot be realized strictly in 2d preservering both time-reversal

and particle-number symmetry. However, if we allow ourselves to break either of these

symmetries, this state must be realizable in 2d. In section IV A we’ve already discussed

the realization, which breaks the time-reversal symmetry but preserves the U(1) symmetry.

This realization corresponds to the ETI slab with the topologically-ordered state on the top

surface and the σxy = 1/2 phase on the bottom surface. (We refer to such a system as a

topo-M+ slab below). On the other hand, a realization, which preserves the time-revesal

symmetry, but breaks particle-number symmetry must be provided by an ETI slab with

the topologically-ordered phase on the top surface and the superconducting phase on the

bottom surface. (We refer to such a system as a topo-SC slab below). In this appendix,

we provide additional arguments that a time-reversal invariant 2d state with the topological
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content (4.1) and transformation properties (4.8) under T can, indeed, exist. Further curious

properties of this T -invariant phase will be discussed in appendix G.

Any system of fermions possesses the fermion parity symmetry. By gauging this symmetry

one can obtain a bosonic system. Given a 2d topologically-orderered state of fermions it

is useful to gauge the fermion parity symmetry to obtain a topologically-ordered state of

bosons. Such an “extended” topological order carries more information about the original

fermion system than the anyon content and the braiding rules of the “fermionic” topological

order do. Indeed, even topologically trivial fermion systems, which are equivalent to n copies

of the px + ipy superconductor, upon gauging the fermion parity symmetry give rise to 16

distinct types of bosonic topological order.51 Further, any time-reversal invariant fermion

system must give rise to a time-reversal invariant bosonic topological order upon gauging

the fermion parity. This condition may be used to rule out time-reversal invariant strictly

2d implementations of some fermionic topological orders, whose fusion and braiding rules

are consistent with T .30

Let us argue that the topo-SC slab introduced above gives rise to a time-reversal invariant

bosonic topological order upon gauging fermion parity. First, we need to deduce this bosonic

topological order. To do so, it is convenient to first start with the T -breaking topo-M+

slab and gauge the fermion parity symmetry. For concreteness, we work here with the

“large” topological order T96 (the generalization to the Moore− Read × U(1)−2 order can

be obtained trivially). The gauged theory must contain an additional anyon corresponding

to an electromagnetic flux, Φ = π, piercing the system. The electron must have mutual

statistics −1 with this anyon. Further, since magnetic flux 2π is invisible, two π-fluxes must

fuse to an anyon, which exists already in the ungauged fermionic system. For a system with

particle-number symmetry, we can think of the π-flux as smeared out over a large area. We

call such a smeared π-flux excitation - the “elementary” π-flux. The elemenatry π-flux must

then carry electic charge Q = σxy/2. Further, any charge Q anyon of the original ungauged

system must have mutual statistics eiπQ with the elementary π-flux. We can deduce the

statistics of the elementary π-flux from the effective action for the electromagnetic gauge-

field Aµ in the same manner we did in section III. The effective action for Aµ is simply given

by the Chern-Simons theory

L = − ik
4π
εµνλAµ∂νAλ (F1)

with the level k given by the Hall conductivity, k = σxy. For the topo-M+ slab, k = σxy =

1/2. Writing the current of elementary π-flux defects as jvµ = 1
π
εµνλ∂νAλ and repeating the

procedure in section III, we obtain an effective action for the π-fluxes

L =
i

πk
εµνλaµ∂νaλ − iaµjvµ (F2)

from which we conclude that the elementary π-fluxes are Abelian anyons with statistics

eπik/4. Hence, π-fluxes through the topo-M+ slab have statistics eπi/8.

With the above observations, we can readily guess the “gauged” topological order for
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the topo-M+ slab. Recall that the topological order T96 corresponds to a subset of the

Ising × U(1)8 × U(1)−8 theory given in Eq. (4.4). The gauged order corresponds to the full

Ising×U(1)8×U(1)−8 order. The elementary π-flux is identified with the eiϕρ anyon, which,

indeed, has electric charge Q = 1/4, self-statistics eiπ/8 and mutual statistics eiπQ with any

charge Q anyon. Two π-fluxes eiϕρ fuse to e2iϕρ , which is an allowed excitation in the original

T96 theory, as required. All the anyons in the full Ising × U(1)8 × U(1)−8 either belong to

the T96 subtheory or can be obtained by fusing an anyon in T96 with the elemenatary π-flux

eiϕρ .

Having understood the gauged topo-M+ slab, we proceed to the topo-SC slab. In the

absence of any symmetry, the topo-SC slab can be obtained from the topo-M+ slab by

gluing to its bottom surface an additional ETI slab with the σxy = −1/2 state on top

and the SC state on the bottom. We call this latter system the M−-SC slab. The Hall-

conductivities σxy = 1/2 from the bottom surface of the topo-M+ slab and σxy = −1/2

from the top surface of the M−-SC slab cancel, so a π-flux piercing both slabs is only

sensitive to the bottom SC surface. Now, the M− - SC slab is identical to a px − ipy
superconductor by the argument of section III. Thus, the topo-SC slab can be obtained

from the topo-M+ slab by gluing on a px − ipy superconductor. We know that gauging

fermion parity in a px − ipy superconductor gives rise to an Ising topological order (i.e. a

time-reversal conjugate of Ising), with anyons {1, σ̄, f̄}. Here, f̄ corresponds to the electron

of the px − ipy superconductor and σ̄ is the π-flux. Now, to glue the topo-M+ and px − ipy
slabs we need to identify the electron operators in the two theories, fe4iϕρe4iθ ∼ f̄ . This

is done by condensing the (bosonic) anyon ff̄e4iϕρe4iθ. Thus, the gauged topo-SC slab is

described by an Ising × Ising × U(1)8 × U(1)−8 theory with ff̄e4iϕρe4iθ anyon condensed.

We will refer to this theory as Ising× Ising×U(1)8×U(1)−8/ff̄e
4iϕρe4iθ. The condensation

confines some of the anyons and identifies others, giving rise to the following anyon content,

eimϕρeikθ, feimϕρeikθ, k +m− even, 0 ≤ m ≤ 7, 0 ≤ k ≤ 7, (F3)

σeimϕρeikθ, k +m− odd, 0 ≤ m ≤ 7, 0 ≤ k ≤ 7, (F4)

σ̄eimϕρeikθ, k +m− odd, 0 ≤ m ≤ 7, 0 ≤ k ≤ 7, (F5)

σσ̄eimϕρeikθ, m = 0, 2, k = 0, 2, 4, 6, and m = 1, 3, k = 1, 3, 5, 7

(F6)

The anyons in (F4), (F3) form the initial fermionic T96 topological order. They are local

with respect to the electron operator c = fe4iϕρe4iθ. The anyons in (F5), (F6) are the π-

fluxes: they possess mutual statistics −1 with the electron, as required. Note that anyons

in Eq. (F6) are identified as, (m, k) ∼ (m + 4, k + 4). Thus, the gauged topo-SC slab has

144 anyons.

So far, we’ve only identified the intrinsic topological order of the gauged topo-SC slab. We

also need to specify the transformation properties under time-reversal. First, we note that

the intrinsic topological order has a chiral central charge c− = 0, so there is no obstruction

to implementing time-reversal symmetry from this perspective. Next note that we actually
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explicitly broke the time-reversal symmetry in order to identify the intrinsic topological

order, so we need to guess how T acts on the gauged theory. We already know how the

anyons of the original T96 theory transform, thus, we only need to deduce the transformation

properties of the π-fluxes. These are strongly constrained. Clearly, π-fluxes must transform

to π-fluxes. From considerations of topological spin and quantum dimension, σ̄eiϕρ anyon can

transform only into one of the following σ̄eiϕρ , σ̄e−iϕρ , σ̄eiϕρe4iθ and σ̄e−iϕρe4iθ. The choices

σ̄eiϕρ → σ̄eiϕρ , σ̄eiϕρ → σ̄eiϕρe4iθ are not consistent with the action of T in the original T96

theory. The choice σ̄eiϕρ → σ̄e−iϕρe4iθ can be ruled out as follows. We can construct the

π-flux anyons in the following way. Let’s first build an “elementary” π-flux, by considering a

configuration of the electromagnetic field Aµ, where the flux is spread-out on the topo-surface

and in the bulk of the ETI slab, but concentrated in the vortex core on the superconducting

surface. Since the vortex on the superconducting surface carries a Majorana zero mode, the

elementary π-flux must be identified with one of the σ̄eimϕρeikθ anyons. All other π-fluxes

can be obtained by taking one of the anyons on the topo-surface and fusing it with the

elementary π-flux. Now, a time-reversal conjugate of the elementary π-flux has an opposite

magnetic field. If we take the elementary π-flux and its time-reversal partner and slowly

fuse them, we can clearly only nucleate excitations on the superconducting surface, since the

magnetic field in the bulk and on the topo-surface is smooth. Thus, an elementary π-flux

fused with its time-reversal partner can only give 1 or the electron f̄ . If we assume that

under T , σ̄eiϕρ → σ̄e−iϕρe4iθ we can convince ourselves that no σ̄eikϕρeimθ anyon fuses with

its time reversal partner to give 1 and f̄ . Thus, the only consistent choice is σ̄eiϕρ → σ̄e−iϕρ .

Putting this together with the transformation properties of the anyons in the original T96

theory, we have

T : σ̄eimϕρ → σ̄e−imϕρ , m − odd

eimϕρ → eimϕρ , f̄ eimϕρ → f̄ eimϕρ , m ≡ 0 (mod 4)

eimϕρ → f̄ e−imϕρ , f̄ eimϕρ → e−imϕρ , m ≡ 2 (mod 4) (F7)

Note that Eq. (F7) is exactly analogous to the transformation rules (3.10) we derived for

flux-tubes on the superconducting surface in section III. This is not surprising and, in fact,

we can identify the σ̄eiϕρ flux-tube with an “elementary” π-flux vortex. We will return to

the transformation laws (F7) below.

Eq. (F7) only lists the transformations of elementary flux-tubes (and their multiples).

For completeness, we list the transformation properties of all the flux-tubes,

σ̄eimϕρeikθ → σ̄ei(2k−m)ϕρeikθ k +m− odd, 0 ≤ m ≤ 7, 0 ≤ k ≤ 7,

σσ̄eimϕρeikθ → σσ̄e−i(m+2)ϕρe−i(k+2)θ, m = 0, 2, k = 0, 2, 4, 6

σσ̄eimϕρeikθ → σσ̄e−imϕρe−ikθ, m = 1, 3, k = 1, 3, 5, 7

(F8)
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We now propose a route to realizing the topological order Ising × Ising × U(1)8 ×
U(1)−8/ff̄e

4iϕρe4iθ with the transformation laws (4.8), (F8) under time-reversal in an ex-

actly soluble lattice model. The strategy follows recent work by L. Fidkowski, X. Chen and

A. Vishwanath.30,58 Imagine building a 3d Walker-Wang model53 based on the “restricted”

Ising × U(1)−8 braided tensor category introduced in section III. Recall that this tensor

category is the subset of Ising × U(1)−8, {1, σ, f}eikθ, which is local with respect to fe4iθ.

We label this tensor category, T12, (with the subscript referring to the number of anyons).

Since fe4iθ braids trivially with all the anyons in T12, the category is non-modular. The

surface of the Walker-Wang model will support the T12 state and the bulk will have decon-

fined fermion excitations corresponding to fe4iθ, as well as flux-tubes, with which fe4iθ has

mutual statistics −1. Now a slab of the Walker-Wang model will carry the T12 topological

order on the top surface and the T 12 topological order on the bottom surface. Let us write

the anyons in this T 12 state as a subset of Ising × U(1)8 = {1, σ̄, f̄}eimϕρ . On the bottom

surface, f̄ e4iϕρ braids trivially with all the anyons and corresponds to the deconfined bulk

fermion. Thus, we identify fe4iθ ∼ f̄ e4iϕρ . We now conjecture that the topological order of

the slab of the Walker-Wang model as a whole is Ising× Ising×U(1)8×U(1)−8/ff̄e
4iϕρe4iθ.

This topological order naturally decomposes into anyons on the top and bottom surfaces

and π-fluxes, which can be obtained by fusing the anyons on the top and bottom surfaces

with an “elementary” π-flux eiϕρeiθ.

As we discussed in section III, there is a natural action of time-reversal symmetry on the

T12 category given in Eq. (3.10). It may be possible to use the machinery recently developed

in Ref. 30,58 to implement this time-reversal symmetry in the Walker-Wang model. For a

slab of a Walker-Wang model, both surfaces will naturally have the same implementation

of time-reversal symmetry. This is consistent with the implementation of time-reversal

symmetry by the T 12 subtheory (F7). Note that according to the transformation properties

(4.8), the elementary π-fluxes through the bulk of the Walker-Wang model, eiϕρeiθ, should

transform trivially under T .

We would like to stress that we are not using the Walker-Wang model here to build a 3d

electron topological insulator. Rather, we are using it to build a 2d system, whose topological

order is identical to that of a gauged topo-SC slab. Since we are ultimately interested in

getting a 2d state, one might not need to use the full power of the 3d Walker-Wang model

to get the desired result. Rather, it might be sufficient to build a strictly 2d Levin-Wen

model54 based on the T12 tensor category. However, it is conceptually useful to present the

argument in terms of the Walker-Wang model where the T12 and T 12 states live on opposite

surfaces of the slab.

Appendix G: SC∗ phase.

In this appendix, we discuss the phase obtained from the topologically-ordered,

symmetry-preserving ETI surface state by condensing a charge 1 boson, e4iφ = e4iϕρe4iθ.

Since the condensing anyon carries electric charge, the resulting phase will be a supercon-
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ductor. However, the condensation of e4iφ does not confine all the anyons, so the resulting

superconductor will have a remnant topological order. We, thus, label this phase as SC∗.

It turns out that the remnant topological order is Abelian. The implementation of time-

reversal symmetry in this Abelian phase is still non-trivial. As before, a 2d system realizing

the SC∗ topological order (and its implementation of the time-reversal symmetry) must be

provided by an ETI slab with the SC∗ phase on the top surface and the ordinary SC phase

on the bottom surface. In the present case, we will be able to explicitly construct a 2d model

corresponding to such a slab.

To reduce the complexity, in this section we work with the Moore− Read×U(1)−2 surface

topological order (4.9). Recall that this topological order consists of the subset of the Ising×
U(1)8×U(1)−2 theory, which is local with respect to the electron fe4iϕρ . Now, condensation

of the charge 1 boson e4iφ = e4iϕρ leaves the following anyons, {1, e2iϕρ} × {1, s̄} × {1, f}.
Note that f now becomes identified with the electron. Labeling the semion e2iϕρ = s, the

topological order becomes equivalent to U(1)2 × U(1)−2 × {1, f}. There are 8 anyon types,

counting the electron, and 4 - modulo the electron.

The transformation properties of the anyons under T are inherited from the

Moore− Read× U(1)−2 phase, Eq. (2.2), and read,

ss̄→ ss̄, T 2 = 1 (G1)

f → f, T 2 = −1 (G2)

fss̄→ fss̄, T 2 = −1 (G3)

s→ sf, sf → s (G4)

s̄→ s̄f, s̄f → s̄ (G5)

We see that the semions s and s̄ transform non-trivially under T . We now construct a 2d

system with identical topological order and implementation of time-reversal symmetry.

We begin with a bosonic topological order consisting of two layers. In the first layer, we

form a U(1)2 × U(1)−2 topological order with anyons labelled as {1, u} × {1, ū}. We take

U(1)2 and U(1)−2 sectors to be exact time-reversal conjugates of each other, so that u↔ ū

under T , and uū→ uū with T 2 = 1. In the second layer, we form a toric code, Z2, consisting

of anyons {1, e,m, ε}. As usual, e and m are self-bosons and mutual semions, while ε is a

fermion. We let these anyons transform under T as, e ↔ m and ε → ε with T 2 = −1.

It is known that such a toric code can be obtained by starting with a non-interacting 2d

superconductor in the DIII universality class and gauging the fermion parity symmetry.30

The edge of this unusual toric code carries two counter-propagating Majorana modes.

So far, we’ve constructed a bosonic topological order U(1)2 × U(1)−2 × Z2. We now put

this system on top of a trivial 2d electron insulator and condense the boson uūεc, with c - the

physical electron. Note that this boson is a Kramers singlet. There are 8 deconfined anyons:

{1, uū, ε, uūε, ue, um, ūe, ūm}. The physical electron is now identified with c ∼ uūε. We see

that the resulting topological order and transformation properties under T are identical to

that of the SC∗ phase on the surface of an ETI, with the correspondence s ∼ ue, s̄ ∼ ūe,
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f ∼ uūε.

Note that the 2d topological order we’ve constructed appears to have a gapless edge.

Indeed, the edge of U(1)2 × U(1)−2 can be gapped out by condensing uū on the edge. This

leaves the gapless edge of the toric code consisting of two counterpropagating Majorana

modes. Note that when uū is condensed on the edge, an electron can tunnel into the

Majorana mode ε, as the electron c = uūε ∼ ε. Given the toric code by itself, it is not

possible to gap out these counter-propagating Majorana modes without breaking the time-

revesal symmetry. It is not immediately clear if this is also the case when the U(1)2 ×
U(1)−2 topological order is present (even though there is a regime where the edge modes

corresponding to U(1)2×U(1)−2 are gapped, an edge phase transition, or sequence of phase

transitions, involving both U(1)2×U(1)−2 and toric code sectors, which gaps all the modes

out is not immediately ruled out).

We note that the edge modes can certainly be eliminated by gluing on a 2d topological

superconductor in the class DIII. The edge then has two pairs of counter-propagating

Majorana modes, which can be gapped out without breaking T . In terms of the intrinsic

topological order and the transformation properties of anyons under time-reversal, our 2d

systems without a DIII superconductor glued on and with a DIII superconductor glued on

are identical. Nevertheless, they correspond to different phases of matter - this can easily be

checked by gauging the fermion parity symmetry and verifying that the π-fluxes transform

differently under T in the two cases. We call these two phases of matter SC∗2d,a and SC∗2d,b.

The above two distinct 2d phases of matter have a natural interpretation in terms of an

ETI slab with the SC∗ phase on top and the ordinary SC phase on the bottom. Indeed,

it is well known that a domain wall on the ordinary superconducting surface of an ETI

across which the sign of the superconducting order parameter changes carries two counter-

propagating Majorana modes.41 Thus, a slab of an ETI with both surfaces in the SC phase,

with opposite signs of the order parameter on the two faces is identical to a 2d topological

superconductor in the DIII universality class. Further, changing the sign of the order

parameter on some region of the SC surface is identical to gluing on a DIII superconductor

to that region. An ETI slab with SC∗ phase on top and the ordinary SC phase on the

bottom is equivalent to the SC∗2d phases, with the particular realization, a vs b, depending

on whether the sign of the order parameter is the same or different on the two surfaces.

The discussion in this section of the surface SC∗ phase and the SC∗-SC slab of an ETI

serves as yet another consistency check on our construction of the symmetry-respecting

topologically-ordered surface phase.

We may now go back to the topo-SC slab discussed in appendix F and ask what happens if

one changes the sign of the superconducting order parameter on the bottom surface. We will

label such slabs as topo-SC+ and topo-SC− depending on the sign of the superconducting

order parameter, and will view them as T -enriched 2d topological phases. We can use

either T96 or T24 as the topological surface phase here. Clearly, as the topological surface

phase preserves the U(1) symmetry, the topo-SC slab admits a T -invariant gapped edge

independent of the sign of the superconducting order parameter. Now, the topo-SC− slab
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FIG. 2: A disc of the 2d topological superconductor in class DIII surounded by an annulus of the

T -invariant T24 phase. The latter can be obtained using a slab of an ETI with symmetry-preserving

T24 topological order on the top surface and the superconducting phase on the bottom surface. The

disc + annulus system exhibits the phenomenon of “weak symmetry breaking” first introduced in

Refs. 55,56: both edges of the annulus are T -preserving and gapped, yet the entire annulus breaks

T . The order parameter for T breaking is provided by an operator, which tunnels the boson e2iφ

across the annulus.

can be obtained from the topo-SC+ slab by painting a 2d topological superconductor in class

DIII on the bottom surface. From this, we conclude that the edge between the topo-SC+

slab and the 2d topological superconductor can be T -invariant and gapped (likewise, for the

topo-SC− slab). Of course, the edge between the topo-SC+ slab and the vacuum can also

be T -invariant and gapped. Next, take a disk of the 2d topological superconductor within

a wide annulus of the topo-SC phase (see Fig. 2). Both the inner and the outer boundaries

of the topo-SC annulus are T -invariant and gapped, thus, viewing the entire annulus as a

boundary of the topological superconductor, it appears that the latter admits a T -invariant

gapped boundary. However, we know that this cannot be the case. In fact, an analogous

paradox was discussed in Refs. 55,56 for 2d topological insulators and was termed “weak

symmetry breaking.” The resolution is that while each boundary of the topo-SC annulus

individually preserves T , the entire annulus breaks T . The order parameter for this T -

breaking is the operator that tunnels the anyon eiφ across the annulus in the T96 case (the

anyon e2iφ in the T24 case). The global degeneracy associated with the T -breaking can be

thought to arise from the topological degeneracy of the topo-SC annulus.

Having seen that topo-SC+ and topo-SC− = topo-SC+ + topological superconductor sys-

tems each admit a T -invariant gapped edge, we may ask if these two systems, in fact, belong

to the same T -enriched topological phase. We hypothesise that the answer to this question

is yes, i.e. the topo-SC phase can completely “absorb” the topological superconductor. This

is strongly suggested by the fact that upon gauging the fermion parity symmetry in the T96

phase, we obtain, as discussed in appendix F, unique T -transformations for the π-fluxes, i.e.
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topo-SC+ and topo-SC− gauge to the same bosonic T -enriched phase.
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