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We analyze superconductivity in the cuprates near the onset of an incommensurate charge den-
sity wave (CDW) order with momentum Q = (Q, 0)/(0, Q), as observed in the experiments. We
first consider a semi-phenomenological charge-fermion model in which hot fermions, separated by
Q, attract each other by exchanging soft CDW fluctuations. We find that in a quantum-critical
region near CDW transition, Tc = Aḡc, where ḡc is charge-fermion coupling and A is the prefactor
which we explicitly compute. We then consider the particular microscopic scenario in which CDW
order parameter emerges as a composite field made out of primary spin-density-wave fields. We
show that charge-fermion coupling ḡc is of order of spin-fermion coupling ḡs. As the consequence,
superconducting Tc is substantially enhanced near the onset of CDW order. Finally we analyze the
effect of an external magnetic field H . We show that, as H increases, optimal Tc decreases and the
superconducting dome becomes progressively more confined to the CDW quantum-critical point.
These results are consistent with the experiments.

I. INTRODUCTION

Understanding of the nature of charge order in high-
Tc cuprates and of its effect on superconductivity is es-
sential for the full understanding of the complex physics
in this materials. Charge order has been observed in
the cuprates quite some time ago1,2, but was originally
though to be present only in La-based materials. Recent
wave of discoveries of an incommensurate charge-density-
wave (CDW) order in Y-, Bi-, and Hg- based cuprates3–10

has demonstrated that charge order is ubiquitous to all
families of high-Tc cuprates. A true long-range CDW or-
der has so far been observed only in a finite magnetic
field, but short-range static order (probably pinned by
impurities) exists already in zero field. On a phase dia-
gram, CDW order been detected within the pseudogap
region, and its onset temperature is the highest around
doping level x ∼ 0.12. The CDW has an incommensu-
rate momentum Q = Qy = (0, Q) or Qx = (Q, 0) and the
order is likely uni-axial, i.e., it develops, within a given
domain, with only Qx or Qy (Ref. 8).

The discovery of the CDW order raised a number of
questions about its origin11–21, a potential discrete sym-
metry breaking before a true CDW order sets in4,14,22–28,
and the relation between CDW order (or its fluctuations)
to pseudogap behavior14,18,20,27 and Fermi surface (FS)
reconstruction29.

In this paper we discuss another issue related to CDW
– its effect on superconductivity. We take as inputs three
experimental facts. First, Tc, as a function of doping,
has a dip or a plateau at around x ∼ 0.12, where the
onset temperature of CDW is the largest30,31. Second,
when CDW is suppressed by applying pressure32, super-
conducting Tc increases. Third, when a magnetic field is
applied33, the dip grows and at high enough field the su-
perconducting dome splits into two, and the one at larger

dopings is centered at the same x at which CDW order
develops at T = 0 (Ref. 33). In other words, supercon-
ductivity forms a dome on top of quantum-critical point
(QCP) for the onset of the CDW order.

The first two results can be naturally understood if we
assume that CDW and d-wave superconductivity are just
competing orders, i.e., when one order is at its peak, the
other one is suppressed. The third observation, on the
other hand, requires one to go beyond a simple “com-
peting order” scenario because the presence of the dome
of superconductivity on top of CDW QCP indicates that
superconductivity is at least partly caused by soft fluctu-
ations of CDW order which then must develop at larger
energies than the ones related to superconductivity.

In our analysis we explore CDW-mediated supercon-
ductivity in some detail. We perform our analysis in
two stages. At the first stage we put aside the issue
what causes CDW order, assume that this order devel-
ops below some critical doping, and consider a semi-
phenomenological model of fermions interacting by ex-
changing soft CDW fluctuations with momenta Q. This
model is quite similar to the spin-fermion model, consid-
ered in earlier studies of spin-mediated superconductiv-
ity for cuprates, Fe-pnictides, and other correlated mate-
rials34–39, and we dub this model the “charge-fermion
model”. The charge-fermion and spin-fermion models
are similar but differ in detail because of the difference
between the CDW momentum Q and antiferromagnetic
momentum (π, π), and also because of the difference in
the spin structures of charge-mediated and spin-mediated
interactions (spin Kronecker δ functions vs spin Pauli ma-
trices). One qualitative consequence of these differences
is that charge-mediated interaction gives rise to super-
conductivity with a full gap in each region where the FS
crosses the Brillouin zone boundary (anti-nodal regions
in the cuprate terminology), but it does not couple su-
perconducting order parameters from different regions,
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hence it alone cannot distinguish between s-wave and d-
wave pairing symmetries40.

We perform quantitative analysis of the pairing
within the charge-fermion model in the most interesting
quantum-critical regime right above QCP for CDW or-
der. In this regime, charge-mediated interaction gives
rise to the pairing but also destroys coherence of hot
fermions (the ones at the FS separated by Q). Super-
conducting T ch

c is determined by the interplay between
strong tendency towards pairing and strong pair-breaking
effects associated with the self-energy. We compute Lan-
dau damping of soft bosons and fermionic self-energy,
and then obtain and solve the linearized gap equation
with renormalized fermionic and bosonic propagators.
We show that in the quantum-critical region Tc is finite
and scales with the effective charge-fermion coupling con-
stant ḡc: T ch

c = Acḡc, where Ac ≈ 0.0025.

At the second stage we consider the specific micro-
scopic scenario for CDW order – the one in which CDW
is a composite order parameter made out of primary
(π, π) spin fluctuations. Within this scenario, spin fluc-
tuations are assumed to develop first, at energies com-
parable to bandwidth, while CDW fluctuations develop
at smaller energies and do not provide substantial feed-
back on spin fluctuations. This composite order sce-
nario requires fermion-fermion interaction to be compa-
rable to the bandwidth (otherwise spin fluctuations do
not develop at high energies) and inevitably is partly
phenomenological. We will not discuss a complemen-
tary, renormalization group-based, truly weak coupling
scenario in which all fluctuations (spin, charge, super-
conducting) develop simultaneously at low energy and
mutually affect each other41.

Various versions of magnetically induced charge bond
and site orders have been proposed over the last few
years11–14,16–18,20,21,42,43, some focused on CDW with di-
agonal momentum (Q, Q), and others on CDW with mo-
menta Qx = (Q, 0) and Qy = (0, Q). Motivated by ex-
periments, we consider soft fluctuations of CDW order
parameter with momenta near the axial Qx or Qy. Pre-
vious studies have found44 that axial CDW has a part-
ner – an incommensurate pair-density wave (PDW), and
fluctuations in CDW and PDW channels develop simul-
taneously. To keep presentation focused, we concentrate
on CDW and neglect PDW fluctuations. The latter can
in principle also mediate pairing interaction, but are un-
likely to destructively interfere with CDW fluctuations.

In an earlier work14 we have shown that the axial CDW
order develops in a paramagnet at a finite Tcdw, provided
that magnetic correlation length ξs is large enough. As
ξs decreases, Tcdw also decreases and vanishes at some
finite ξs,cr, setting up a CDW QCP at a finite distance
from a magnetic QCP (the one at ξs = ∞). Near ξs,cr

CDW fluctuations become soft and give rise to singular
pairing interaction mediated by these fluctuations. We
show the behavior of Tcdw vs ξs schematically in Fig. 1.

Whether this additional pairing interaction substan-
tially affects superconducting Tc depends on the inter-
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FIG. 1. Doping range where CDW order with momentum
(Q, 0) or (0, Q) emerges within itinerant spin-fluctuation sce-
nario. The effective interaction in the CDW channel is made
out of two spin-fluctuation propagators. The CDW order de-
velops only when the system is sufficiently close to a magnetic
instability and terminates at doping xch

cr , different from xsp
cr for

antiferromagnetism. In the shaded region near xsp
cr localiza-

tion of electronic states (Mott physics) becomes relevant (Ref.
45), and spin-fluctuation approach needs to be modified. In
this region, the onset temperature of CDW order drops.

play between charge-fermion coupling ḡc and the cou-
pling ḡs between fermions and primary spin fluctuations.
The argument is that spin-fluctuation exchange by it-
self gives rise to superconducting pairing, and at large
ξs the corresponding T sp

c scales with ḡs: T sp
c = Asḡs,

where As ≈ 0.007 (Ref. 46). As ξs decreases, T sp
c also

decreases but remains finite. The two-dome structure of
Tc(x), observed in the cuprates in an applied magnetic
field, can be understood within this approach only if near
ξs = ξs,cr, T ch

c ≥ T sp
c . If this does not hold, i.e., T ch

c is
smaller than T sp

c , the contribution to superconductivity
from charge-mediated exchange is only subdominant to
the one from spin fluctuations. In this situation, the
only effect on Tc from CDW is due to direct competition
between CDW and superconducting orders. This com-
petition may give rise to additional reduction of Tc in
a magnetic field, given the experimental evidence that
CDW order increases in a field. However, it cannot give
rise to a peak of Tc above CDW QCP.

We evaluate charge-fermion coupling ḡc within the
RPA-type analysis of charge fluctuations near CDW
QCP: U eff

c (q) ∝ Uc/(1 − UcΠc(q)) ≡ ḡc/(ξ−2
c + (q − Q)2),

and show that ḡc is comparable to spin-fermion coupling
ḡs. This result may look strange because charge fluc-
tuations, viewed as composite objects made out of spin
fluctuations, develop only in a narrow range near the FS
points separated by Qx or Qy, with the width in mo-
mentum space of order Λ ∼ ξ−1

s . As the consequence,



3

ḡc ∼ Ucξ−2
s . However, the “bare” interaction in the

charge channel, Uc, is a composite object made out of two
spin fluctuation propagators and two fermionic Green’s
functions (see Fig. 8). This composite object behaves as
ḡsξ2

s . As the consequence, Ucξ−2
s is not reduced by ξs,

and ḡc differs from ḡs only by a numerical factor.
To properly calculate the ratio ḡc/ḡs one needs to do

full-scale dynamical calculations, even if one restricts
with ladder series of diagrams, like in RPA. In this work,
we use a simplification and approximate the bare inter-
action in the charge channel Uc by a constant within
the momentum range Λ ∼ ξ−1

s around proper Fermi sur-
face points (hot spots) and set it to zero outside this
range. We compute the polarization operator Πc(q, Ωm)
and use RPA to obtain charge-mediated effective inter-
action within fermions. We use the condition for CDW
QCP: 1 = UcΠc(Q) to fix Λ and obtain explicit rela-
tion between ḡc and ḡs. Within this approach, we find
ḡc ≥ ḡs.

We argue, based on this analysis, that the enhance-
ment of superconductivity near a CDW QCP is sub-
stantial, i.e superconductivity in the cuprates comes
from both spin and charge fluctuations. We present the
schematic phase diagram in Fig. 2. This scenario explains
the developments of two domes of Tc in a high magnetic
field: one, at smaller doping, is due to critical spin fluc-
tuations, and another, at larger doping, is due to critical
charge fluctuations.

1. Relation to earlier works

The pairing by charge fluctuations has been studied
before. In the context of the cuprates, DiCastro, Castel-
lani, Grilli, and their collaborators40 analyzed in detail
the pairing mediated by axial CDW fluctuations near the
onset of charge order, which was assumed to develop on
its own rather than being induced by SDW fluctuations
They found that charge-mediated 4-fermion interaction
is attractive in both d-wave and s-wave channel and does
not distinguish the two. They argued that some other
mechanism, e.g., antiferromagnetic spin fluctuations, lifts
the degeneracy in favor of d-wave. We obtain the same
results in Sec. II. The novel part of our analysis in this
Section is the calculation of charge-mediated Tc in the
quantum-critical regime.

This pairing problem near CDW QCP has certain sim-
ilarities to the pairing at the onset of a nematic order,
which has been extensively studied in recent years47–50.
It has been argued that Q = 0 nematic fluctuations en-
hance all partial components of the pairing susceptibility.
The case of QCP at small Qx/Qy is less unrestrictive in
this respect but still, s-wave and d-wave channels are de-
generate for CDW fluctuations.

The analysis of the electron-mediated pairing near a
QCP for density-wave order is also quite interesting from
a general perspective as it adds one important new el-
ement not present for the pairing away from a QCP.
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FIG. 2. Schematic phase diagram for the interplay between
superconductivity mediated by spin and charge fluctuations.
Panel (a): the onset temperature T sp

c of spin-mediated super-
conductivity, as a function of doping. We assume that im-
purities kill superconductivity above a certain doping. Panel
(b): the onset temperature T sp

c of charge-mediated supercon-
ductivity near the onset of CDW order. We compute T ch

c

in this work. Panel (c): The full phase diagram. The non-
monotonic Tc(x) is obtained by combining spin-mediated and
charge-mediated contributions to Tc from panels (a) and (b)
(dashed lines).

Namely, the same interaction which gives rise to strong
attraction also destroys fermionic coherence and prevent
fermions from developing supercurrent51,52. Supercon-
ductivity then may or may not emerge depending on the
interplay between these two opposite tendencies47,53.

The rest of this paper is organized as follows. In Sec. II
we introduce and analyze charge-fermion model of itiner-
ant electrons coupled to near-critical CDW fluctuations.
In Sec. IIa we derive bosonic and fermionic self-energies.
In Sec. IIb we study the pairing problem and obtain T ch

c

due to charge-fluctuation exchange near a CDW QCP.
We show that T ch

c scales with the charge-fermion coupling
constant ḡc. In Sec. III, we relate ḡc and spin-fermion
coupling ḡs within the magnetic scenario for CDW. In
this scenario, a CDW order parameter field emerges as a
composite object made out of two spin-fluctuation prop-
agators. We show that ḡc is comparable to ḡs and may
even exceed it. In Sec. IV we discuss in some more de-
tail superconducting dome around CDW QCP. Finally in
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FIG. 3. The Fermi surface of a 2D electronic system on a
square lattice and location of hot spots for charge-mediated
interaction. CDW “hot” spots are defined as points on the
Fermi surface separated by either Qy = (0, Q) or by Qx =
(Q, 0). In a generic situation, there are 8 hot spots for Qy and
eight for Qx. Motivated by experiments, we consider the case
when hot spots for Qy and for Qx merge. In this situation,
CDW hot spots coincide with hot spots for (π, π) magnetism,
and there are eight of them on the Fermi surface We label
these hot spots by 1-8 (5 ≡ −2, 6 ≡ −1, etc). The arrow
shows the direction of the Fermi velocity at hot spot 1. Fermi
velocities at other seven hot spots are related to this one by
symmetry. Near CDW instability hot fermions interact with
each other by exchanging CDW fluctuations with momenta
Qx,y. Here and in other figures below we represent charge
fluctuations by dashed lines.

Sec. V we discuss the results and present our conclusions.

II. THE CHARGE-FERMION MODEL

We begin with a semi-phenomenological analysis. We
assume, without specifying the reason, that CDW order
with momentum Qy = (0, Q) and/or Qx = (Q, 0), devel-
ops at some critical doping xcr

c , and consider the model
of 2D fermions interacting by exchanging near-critical,
soft charge fluctuations. We dub this model as “charge-
fermion model” by analogy with the spin-fermion model
which was introduced to describe a system near a mag-
netic QCP. As our goal is to describe low-energy physics
(energies well below the bandwidth), we focus on mo-
mentum ranges around the CDW “hot” spots on the FS,
defined as points which are separated by CDW momen-
tum Qx or Qy. For a generic Q there are 16 CDW hot
spots, eight corresponding to Qy and another eight cor-

responding to Qx. For simplicity we consider the case
when Q is such that CDW hot spots are at or near the
crossing between the FS and symmetry lines in the Bril-
louin zone kx ± ky = ±π. Then hot spots from Qy sector
merge with hot spots from Qx sector, and the total num-
ber of hot spots become eight. We label these points as
1-8 in Fig. 3. This approximation works reasonably well
for the values of Q extracted from the experiments6.

We linearize the fermionic dispersion in the vicinity
of a hot spot i as ǫi,k̃ = vi · k̃i, where vi is the Fermi

velocity and k̃i is the momentum deviation from the hot
spot i. We define the Fermi velocity at the hot spot 1 as
v1 = (vx, vy), the velocities at other hot spots are related
by symmetry. In the cuprates, the FS at the antinodal
region is “flattened”, and we have vx < vy (see Fig. 3).
We define α = vx/vy < 1.

The action of the charge-fermion model can be written
as

S =

∫

dk̃
∑

i,α

c†
iα(k̃)(−iωm + ǫik̃)ci,α(k̃)

+

∫

dq̃ χ−1
0c (q̃)

∑

a=x,y

φa(q̃)φ†
a(q̃)

+ gc

∑

i=1,3,5,7;
α

f i
y

∫

dk̃dk̃′ c†
iα(k̃)ci+1,α(k̃′)φ†

y(k̃′ − k̃)

+ gc

∑

i=1,2,3,4;
α

f i
x

∫

dk̃dk̃′ c†
iα(k̃)ci+4,α(k̃′)φ†

x(k̃ − k̃′)

+ h.c., (1)

where ciα is a fermion field with i labeling hot spots
and α labeling spin projections. Hot spots i and i + 1
are separated by CDW momentum Qy, and hot spots
i and i + 4 are separated by Qx (see Fig. 3). The
scalar field φx,y is a CDW order parameter field with
momenta near Qx/Qy. In Eq. (1) we have used short-

hands k̃ = (ωm, k̃) and q̃ = (Ωm, q̃), where ωm(Ωm) are
fermionic (bosonic) Matsubara frequencies. The bosonic
momentum q̃ is measured as the deviation from CDW
momenta Qx or Qy, and the fermionic momentum k is
measured as the deviation from the corresponding hot
spot. The form-factors f i

x,y determine relative magnitude
and sign between CDW orders in different hot regions.
In general, the CDW order has both d-wave and s-wave
components. A pure d-wave order would correspond to
f1,5

y = −f3,7
y = 1 and f1,2

x = −f3,4
x = 1.

We assume, like it is done in the spin-fermion model,
that static charge susceptibility comes from fermions
with energies larger than the one relevant to super-
conductivity and approximate it by a simple Ornstein-
Zernike form χc = χ0c/(q̃2

x + q̃2
y + ξ−2

c ), where ξc is the

CDW correlation length. The prefactors for q̃2
x and q̃2

y

may in general differ54 because Qx and Qy are not along
Brillouin zone diagonals, but this difference can be ab-
sorbed into rescaling of q̃ and does not affect our analysis.
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The coupling gc is a phenomenological charge-fermion
coupling constant. The corresponding charge-mediated
4-fermion interaction term in the Hamiltonian is (we set
Q = Qy for definiteness)

Hint = −U eff
c (q)

∑

k,p

c†
k,αc†

p,γck−q,δck+q,βδαβδγδ (2)

with

U eff
c (q) = g2

c χc(q) =
ḡc

ξ−2
c + (q − Qy)2

. (3)

The effective coupling ḡc = g2
c χ0c, and the sign conven-

tion is such that the interaction appears with a factor −1
in the diagrammatic theory.

The charge-fermion model is defined self-consistently
when its fluctuations cannot modify the physics at lat-
tice energies, and this requires that ḡc must be small
compared to the fermionic bandwidth.

A. Normal state analysis

FIG. 4. The one-loop diagrams for the bosonic self-energy
Πx,y [Panels (a), (b)] and fermionic self-energy Σi [Panel (c)].

For the computation of superconducting T ch
c , mediated

by charge fluctuations, we need to know normal state
properties. We use Eq. (1) and compute self-energies
for the bosonic fields φx and φy and for the fermionic
field We show corresponding diagrams in Fig. 4. We
compute basonic and fermionic self-energies in a self-
consistent fashion, like it was done in the earlier works
on the spin-fermion model11,52,55. Namely, we first eval-
uate one-loop bosonic self-energy (the bosonic polariza-
tion operator) using free fermions and show that it has

the form of Landau damping, then use the full dynam-
ical bosonic propagator to calculate one-loop fermionic
self-energy and show that it is strong but predominantly
depends on frequency, and then verify that frequency de-
pendent fermionic self-energy does not affect the Landau
damping. This self-consistent procedure becomes exact
if we neglect subleading terms in the self-energy, which
depend on the fermionic dispersion ǫk. This can be rig-
orously justified if we extend the model to M fermionic
flavors and take the limit M → ∞ (e.g. Ref. 11), or ex-
tend the number of pairs of hot spots from 4 to N and
take the limit N → ∞ (e.g. Ref. 52). We will use the
latter extension to justify our analysis.

1. bosonic polarization operators

The bosonic polarization operator for φy is given by
the diagram in Fig. 4(a), and the expression for φx is
related by symmetry. The full polarization operator is
a sum of contributions from four pairs of hot fermions
which are separated by Qy. These pairs are (1,2), (3,4),
(5,6), and (7,8). There are no Umklapp processes for
incommensurate CDW order, in distinction to SDW case
in which Q = (π, π) and Umklapp processes are allowed.

For the contribution to Π from fermion pair (1,2) we
obtain

Π1(Ωm, q̃) = −2g2
cT

∑

ωm,k̃

G1(ωm, k̃)G2(ωm + Ωm, k̃ + q̃)

(4)

where the factor 2 comes from summation over spin in-
dices. To simplify the notations we will drop the tildes
on momenta hereafter. The Green’s functions are given
by G1,2 = 1/(iωm − ǫ1,2) and fermionic dispersions can
be written as ǫ1,2 = v1,2 · k. We transform the mo-
mentum integral dkxdky into dǫ1dǫ2 by adding the Ja-
cobian J = 1/|v1 × v2| = 1/v2

F × (α2 + 1)/(2α), where

vF =
√

v2
x + v2

y . Because this Jacobian is independent

of q, the polarization operator in this approximation is a
function of frequency only. We subtract from Π1(Ωm) its
frequency-independent part Π1(0), which only renormal-
izes the position of the CDW QCP and is not of interest
to us. The subtraction makes integral over internal fre-
quency convergent, and evaluating the integrals we ob-
tain at zero temperature
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Π1(Ωm) = − g2
c

4π3v2
F

α2 + 1

α

∫

dωmdǫ1dǫ2

[

1

(iωm − ǫ1)[i(ωm + Ωm) − ǫ2]
− 1

(iωm − ǫ1)(iωm − ǫ2)

]

=
g2

c

4πv2
F

α2 + 1

α

∫

dωm[sgn (ωm) sgn(ωm + Ωm) − 1]

= − g2
c

4πv2
F

α2 + 1

α
|Ωm|. (5)

This is a conventional Landau damping term. We do
the same calculation for hot spot pairs (3,4), (5,6), and
(7,8). Because the Jacobians 1/|v1 × v2| = 1/|v3 × v4| =
1/|v5 × v6| = 1/|v7 × v8| = 1/v2

F × (α2 + 1)/(2α), all
contributions are the same as (5). Therefore Πy(Ωm) =
4Π1(Ωm). It is easy to verify that for φx the self-energy
is the same as for φy , i.e., Πx = Πy.

Including the polarization operator into the propaga-
tors for φx and φy fields, we obtain

χc(Ωm, q) =
χ0c

ξ−2
c + q2

x + q2
y + γc|Ωm|

, (6)

where

γc =
4ḡc

4πv2
F

α2 + 1

α
(7)

and we recall that ḡc = g2
c χ0c. The overall factor of 4

in the numerator of (7) is the number of pairs of hot
fermions. To extend the model to large N one just has
to replace 4 by N . We will use this extension below.

The total dynamical interaction mediated by charge
fluctuations can then be written as

U eff
c (q, Ωm) = g2

c χ(q) =
ḡc

ξ−2
c + (q − Qx)2 + γc|Ωm|

.

(8)

2. fermionic self-energy

We now use Eq. (6) and evaluate one-loop fermionic
self-energy. The corresponding diagram is presented in
Fig. 4(c). Observe that for any hot fermion, interactions
mediated by both bosonic fields, φx and φy, contribute
to the self-energy. For example, for a fermion at hot spot
1, φx and φy scatter it to hot spots 2 and 5, respectively.

The self-energy depends on the location of a fermion on
the FS and on the distance to CDW QCP. Below we will
be interested in superconductivity right at CDW QCP,
hence we will need the self-energy right at this point.
Accordingly, we set ξ−1

c = 0 in the charge fluctuation
propagator.

For the self-energy contribution to a fermion at hot

spot 1 from Qy scattering, we have

Σy(k, ωm) = T
∑

ω′

m
,k′

U eff
c (k − k′, ωm − ω′

m)G2(ω′
m, k′),

(9)

where k is the deviation from hot spot 1. We place k on
the FS, i.e., set k⊥ ≡ v̂1 · k = 0, which gives ky = −αkx.
At T = 0, we rewrite Eq. (9) as

Σy(k‖, ωm) =
−ḡc

8π3

∫ dω′
mdk′

⊥dk′
‖

iω′
m − vF k′

⊥

× 1

(k̄‖ − k′
‖)2 + (k̄⊥ − k′

⊥)2 + γc|ωm − ω′
m|

, (10)

where k′
⊥ and k′

‖ are perpendicular and parallel compo-

nents of k′ with respect to the Fermi surface at hot spot
2, i.e., k′

⊥ ≡ v̂2 · k′, and k̄‖ and k̄⊥ are components of
external k, defined relative to the FS at the hot spot 2,
i.e., k̄⊥ ≡ v̂2 ·k, where v2 = (vx, −vy). Using ky = −αkx

we obtain

k̄⊥ = 2αk‖/(α2 + 1). (11)

We integrate over k′
⊥ first, and complete the integra-

tion contour over the half plane with only one pole. We
obtain

Σy(k‖, ωm) =
iḡc

8π2vF

∫ dk′
‖dω′

m sgn(ω′
m)

√

(k̄‖ − k′
‖)2 + γc|ωm − ω′

m|
1

√

(k̄‖ − k′
‖)2 + γc|ωm − ω′

m| + [|ω′
m|/vF + ik̄⊥ sgn(ω′

m)]

(12)

We will see that typical internal frequencies ω′
m are of

the same order as external ωm. Then, at small enough
frequencies one can safely neglect the |ω′

m|/vF term in
the denominator. With this simplification we obtain

Σy(k‖, ωm)

=
iḡc

8π2vF

∫ dk′
‖dω′

m sgn(ω′
m)

(k̄‖ − k′
‖)2 + γc|ωm − ω′

m| + k̄2
⊥

=
iḡc

2πvF γc
sgn(ωm)

[

√

γc|ωm| + k̄2
⊥ − |k̄⊥|

]

. (13)
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Plugging Eq. (11) into Eq. (13) we finally obtain

Σy(k‖, ωm) =
iḡc

2πvF γc
sgn(ωm)

×





√

γc|ωm| +

(

2αk‖

α2 + 1

)2

−
∣

∣

∣

∣

2αk‖

α2 + 1

∣

∣

∣

∣





=
2ivF

N

α

α2 + 1
sgn(ωm)

×





√

γc|ωm| +

(

2αk‖

α2 + 1

)2

−
∣

∣

∣

∣

2αk‖

α2 + 1

∣

∣

∣

∣



 .

(14)

The self-energy from Qx scattering is obtained in the
same way:

Σx(k, ωm) = −ḡcT
∑

ω′

m
,k′

χc(ωm − ω′
m, k − k′)G5(ω′

m, k′).

(15)

As Fermi velocities at hot spot 5 and 2 are antiparallel,
we have G5(ω′

m, k′) = G2(ω′
m, −k′). Comparing Eqs.

(9) and (15), we then immediately find that Σx = Σy.
Combining the two we obtain

Σ(k‖, ωm) =
iḡc

πvF γc
sgn(ωm)

×





√

γc|ωm| +

(

2αk‖

α2 + 1

)2

−
∣

∣

∣

∣

2αk‖

α2 + 1

∣

∣

∣

∣





=
4ivF

N

α

α2 + 1
sgn(ωm)

×





√

γc|ωm| +

(

2αk‖

α2 + 1

)2

−
∣

∣

∣

∣

2αk‖

α2 + 1

∣

∣

∣

∣



 .

(16)

It is easy to verify that this results holds for around all
hot regions 1-8, and in each region k‖ is the deviation
from the corresponding hot spot along the FS. The func-
tional form of the self-energy as in Eq. (16) was first ob-
tained for the spin-fermion model in Ref. 52 (for α = 1)
and Ref. 11 (for arbitrary α). Right at a hot spot, the
fermionic self-energy has a non-Fermi liquid (NFL) form:

Σ(0, ωm) = i sgn(ωm)
√

ω0c|ωm|, (17)

where ω0c = (4/N)ḡc/π × α/(α2 + 1). Away from a hot
spot, at k2

‖ ≫ γc|ωm|, the self-energy Σ(ωm, k‖) retains a

Fermi liquid (FL) form at the smallest ωm, i.e., we have

Σ(ωm, k‖) =
iωm

|k‖|

(

ḡc

πvF

α2 + 1

4α

)

+ O(ω2
m) (18)

One can easily verify that the inclusion of fermionic self-
energy Σ(k, ωm) ∝ i sgn(ωm) will not change the polar-
ization operator, i.e., Π(Ωm) retains the same form even
if we compute it using dressed fermions.

To verify self-consistency of the calculations, we also
computed the self-energy away from the FS. We found
Σ(k⊥, 0) ∝ (1/N)vF k⊥ log(Λ/|vF k⊥|), where Λ is the up-
per cutoff in momentum integration. The presence of the
logarithm implies that Fermi velocity also acquires sin-
gular renormalization at CDW QCP (Refs. 11 and 52).
This singularity breaks self-consistency of one-loop cal-
culation of fermionic and bosonic self-energies if we keep
N finite, but self-consistent procedure still remains rigor-
ously justified at this loop order if we set N → ∞. The
situation gets more complex at higher loop orders due
to special role of forward scattering and backscattering
processes which give rise to the dependence of Σ on k⊥

without the factor 1/N (Refs. 48, 50, 56, and 57). How
important are these effects in unclear and in this work
we restrict with one-loop self-energy.

B. The pairing problem

We now use the normal state results as inputs for the
analysis of the pairing mediated by CDW fluctuations
with momenta around Qx and Qy. To leading order in
1/N , the pairing problem can be analyzed without vertex
corrections, by summing up the ladder series of diagrams
in the particle-particle channel11,52.

FIG. 5. Diagrammatic representation of the coupled ladder
equations for superconducting order parameters Φ1 and Φ2,
which involve fermions in hot regions 1 and 2 in Fig. 1.

We first focus on the momentum region where hot
spots 1,2, and 5 = −2, and 6 = −1 are located (see
Fig. 3). We introduce superconducting order parameters
Φ1 ∼ 〈c1c6〉 = 〈c1c−1〉 and Φ2 ∼ 〈c2c5〉 = 〈c2c−2〉 and
obtain in the standard way a set of coupled gap equations
for the two condensates. The interactions with momen-
tum transfer Qx = (Q, 0) and Qy = (0, Q) connect hot
spots 1,5 with 2,6, and hot spots 1,2 with 5,6, corre-
spondingly. As the consequence, the interactions relate
Φ1 with Φ2 and vise versa. We show the equation for Φ1

diagrammatically in Fig. 5. In analytical form, we have
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Φ1(k) =T
∑

k′

U eff
c (k − k′) × [G2(k′)G5(−k′)Φ2(k′) + G2(−k′)G5(k′)Φ2(−k′)] (19)

where k = (ωm, k) and k′ = (ω′
m, k′) and k, k′ are mo-

mentum deviations from the corresponding hot spots.
The fermionic Green’s function are given by Gi(k) =
1/[iωm − ǫi(k) + Σi(k)]. The equation for Φ2 in terms
of Φ1 has the same form, and thus Φ1 and Φ2 have the
same magnitude.

Because the two kernels in the Eq. (19) (the prefactors
for Φ2 in the right hand side) are both positive (we recall
that Ueff is positive), the U(1) order parameters Φ1 and
Φ2 have the same phase, i.e., Φ1 = Φ2. By the same
token, the SC order parameters in the momentum range
near hot spots 3,4,7,8, namely Φ3 ∼ 〈c3c8〉 = 〈c3c−3〉
and Φ4 ∼ 〈c4c7〉 = 〈c4c−4〉 are also equal. The kernels
of the gap equations in the regions 1,2,5,6 and 3,4,7,8
are the same, hence the magnitudes of Φ1 = Φ2 and
Φ3 = Φ4 are identical. However, there is no specifica-
tion of the relative phase between superconducting order
parameters in the two regions. Setting aside more ex-
otic possibilities of phase difference equal to a fraction of
π, we are left with two options for the pairing symme-
try: an s-wave, for which the phases of Φ1 and Φ3 are
identical, and a dx2−y2 , for which Φ3 = −Φ1 (see Fig.
3). When only CDW-mediated interaction is considered,
the two pairing states are degenerate. This has been no-
ticed before40, and it was argued that the degeneracy is
lifted by other interactions, e.g., antiferromagnetic spin
fluctuations would favor d-wave.

We now proceed with the calculation of T ch
c . We as-

sume and then verify that the Φ1(k) = Φ2(k) = Φ(k)
are even functions of momentum k. The linearized gap
equation (19), whose solution exists right at T = Tc, then
becomes

Φ(k) =2T
∑

k′

|U eff
c (k − k′)|G2(k′)G5(−k′)Φ(k′). (20)

In the right hand side of Eq. (20) we first integrate over
momentum transverse to the FS. Neglecting terms small
in 1/N , we obtain

Φ(ωm, k‖) =
ḡcT

vF

∑

m′

∫ dk′
‖

2π

Φ(ω′
m, k′

‖)

|ω′
m − iΣ(ω′

m, k′
‖)|

× 1

k2
‖ + k′2

‖ − 2βk‖k′
‖ + γc|ωm − ω′

m| , (21)

where β = (1 − α2)/(1 + α2). This factor appears in the
last term in (21) because k‖ and k′

‖ are parallel compo-

nents of momenta in different segments of the FS, namely
near hot spots 1 and 2, respectively.

A similar gap equation has been analyzed in the con-
text of spin-mediated pairing near SDW QCP11,46,52. To

make this paper self-contained, we present some details
of the computation of T ch

c in our case.
It is usually more convenient not to solve Eq. (21) di-

rectly, but to add to the right hand side of the gap equa-
tion an infinitesimal pairing condensate Φ0 and compute
pairing susceptibility χpp = Φ/Φ0. The transition tem-
perature Tc is the one at which pairing susceptibility di-
verges. This approach has an advantage in that the pair-
ing susceptibility can be analyzed within perturbation
theory.

The first iteration gives

Φ(ωm ∼ T, 0) = Φ0

(

1 +
l

2π
log2 ω0c

T

)

, l =
2α

α2 + 1
,

(22)

where, we remind, ω0c ∼ ḡc is the upper edge of NFL be-
havior. We note that neither the coupling constant ḡc nor
1/N directly appear in Eq. (22), i.e., once temperature
is expressed in units of ω0c, the renormalization of Φ0 is
fully universal. The presence of log2 term (i.e., one extra
power of log compared to BCS theory) is the consequence
of the singular dependence of the fermionic self-energy
on momentum along the FS. The log2 term comes from
momentum range where Σ(ωm, k‖) ∼ iωm/|k‖| [see Eq.

(18)]. At ḡc/vF ≫ |k‖| ≫
√

γc|ω0c| the term 1/|ω′
m −

iΣ(ω′
m, k′

‖)| in Eq. (21) scales as |k‖/ωm|. To logarith-

mical accuracy, the momentum integral over k′
‖ in Eq.

(21) yields
∫

γc|ω′

m
|
dk2

‖/k2
‖ ∝ log |ω′

m|, and the frequency

integral over ω′
m then yields

∫

T
(log |ω′

m|)/|ω′
m|dω′

m ∝
log2(1/T ). For the spin-fermion model, this result was
first obtained in Ref. 11.

The log2 T renormalization of the pairing vertex has
been found in other contexts58–61. To see how it is
relevant for Tc one has to go beyond one loop order.
To get the insight, we first consider the “weak cou-
pling” limit by formally replacing the actual coupling
l = 2α/(α2 + 1) by an effective lǫ = 2ǫα/(α2 + 1) and
taking the limit ǫ ≪ 1. In this limit, series of log2 renor-
malizations can be summed up explicitly, and the result is

Φ = Φ0elǫ/(2π) log2 (ω0c/T ). We see that, at the log2 level,
the pairing susceptibility does increase with decreasing
T , but it does not diverges at any finite T . One then has
to go beyond the log2 approximation and include sub-
leading O(log) terms. In the weak coupling limit ǫ ≪ 1
this can be done rigorously, along the lines specified in
Ref. 46, and the result is that subleading O(log) terms
do give rise to the divergence of the pairing susceptibility
at a finite T ch

c given by

T ch
c ∼ ω0ce−1/ǫ. (23)
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The exponential dependence is the same as in BCS for-
mula, which is not accidental because in the limit ǫ ≪ 1
the main contribution to superconductivity comes from
fermions away from the hot regions, where self-energy
has FL form. However, in distinction to BCS formula,
the prefactor ω0c is not the upper cutoff for the attrac-
tion but rather the scale set by the coupling constant ḡc.
The proportionality of T ch

c to the coupling ḡc is the fin-
gerprint of the pairing near a quantum-critical point47,62.

For the physical case ǫ = 1, we expect from (23)
T ch

c ∼ ω0c. To obtain the exact relation we solved Eq.
(21) directly, using the finite-temperature form of the
fermionic self-energy. Typical internal momenta and typ-
ical internal frequency are of order, k2

‖ ∼ γcωm ∼ γω0c

and ω ∼ ω0c. In this situation, fermions from both NFL
and FL regions contribute to the pairing. For numerical
evaluation of T ch

c we extracted the fermionic dispersion
in hot regions from ARPES data for Bi2Sr2CaCu2O8+x

(Ref. 63) and obtained α = 0.074. Using this value for α

we obtained numerically

T ch
c = 0.0025ḡc. (24)

For comparison, in the spin-fermion model the critical
temperature at SDW QCP is46 T sp

c = 0.0073ḡs (T sp
c ∼

140 K for ḡs ∼ 1.7 eV). We see that Tc in spin-fermion
and charge-fermion models on top of the corresponding
QCP are comparable if ḡc ≥ ḡs. If this is the case, then
CDW fluctuations give rise to substantial enhancement
of the superconducting Tc around CDW QCP. One also
should keep in mind that the result we quoted for T sp

c

due to spin fluctuation exchange is T sp
c right on top of

SDW QCP. Near the CDW QCP, magnetic ξs is finite
and spin-mediated T sp

c is reduced.
Away from the CDW QCP, charge-fluctuation ex-

change preserves FL behavior and charge-mediated Tc

drops and eventually follows weak coupling BCS formula.
The self-energy at a finite charge correlation length ξc is
modified compared to Eq. (16) and is given by

Σ(k‖, ωm) =
iḡc

πvF γc
sgn(ωm)





√

γc|ωm| +

(

2αk‖

α2 + 1

)2

+ ξ−2
c −

√

(

2αk‖

α2 + 1

)2

+ ξ−2
c



 . (25)

Now even right at a hot spot (at k‖ = 0) the self-energy
has a FL form

Σ(ωm, 0) = λc(iωm) − i
ω2

m

4ωcf
, (26)

where

λc =
ḡcξc

2πvF
, and ωcf =

ξ−2
c

γc
=

ḡc

4πλ2
c

α

α2 + 1
. (27)

The dimensionless charge fermion coupling λc (the ratio
of ḡc to typical fermionic energy vF ξ−1

c ) decreases when
ξc decreases. Once λc ≤ 1, charge-relaxation scale ωcf

becomes the upper energy cutoff for the pairing, and Tc

follows BCS-Eliashberg-McMillan formula64

Tc ∼ ωcf e− 1+λc

λc . (28)

We present the numerical result for the behavior of T ch
c as

a function of ξc in Fig. 11 (red line). A similar reduction
of charge-mediated T ch

c is expected on the other side of
CDW QCP, in the charge-ordered state.

III. CHARGE-FERMION COUPLING

CONSTANT FROM THE SPIN-FERMION

MODEL

To compare the magnitudes of ḡc and ḡs we com-
pute their ratio within a particular microscopic model for

charge order in the cuprates. Namely, we assume, as in
earlier works by several groups including us11,12,52,62,65–68

that spin fluctations develop at higher energies than
CDW (and superconducting) fluctuations, and CDW or-
der emerges due to spin-fluctuation exchange, as a com-
posite order.

To this end, we consider a 2D itinerant electron system
in which the primary interaction between fermions is me-
diated by soft collective spin fluctuations at the antiferro-
magnetic momentum Qπ = (π, π). Such an interaction,
shown as the wavy line in Fig. 6, scatters fermions be-
tween hot spots 2 and 4, 1 and 3, etc, and is proportional
to the dynamical spin susceptibility:

Heff = −U eff
s (q, Ωm)

∑

k,p

c†
k,α~σαβck+q,βc†

p,γ~σγδcp−q,δ

(29)
where

U eff
s (q, Ωm) =g2

sχs(q, Ωm)

=
ḡs

ξ−2
s + (q − Qπ)2 + γs|Ωm|

, (30)

where γs is the corresponding Landau damping coeffi-
cient and the scale ḡs sets the magnitude of T sp

c for spin-
mediated superconductivity.

Except for special cases, there is no rigorously justified
procedure to obtain Eq. (29) starting from a model of
fermions interacting with some short-range interaction
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FIG. 6. Schematic representation of spin-mediated interac-
tion. Near an antiferromagnetic quantum-critical point in
a metal hot fermions scatter into each other by exchang-
ing soft antiferromagnetic spin fluctuations with momentum
(π, π) (the wavy lines).

U(r) because the main contribution to static part of U eff
s

comes from fermions with high energies.

One commonly used approach is to treat static part of
spin-mediated interaction phenomenologically and just
postulate Ornstein-Zernike form of the static χs(q, 0)
(this is the same procedure that we used in the charge-
fermion model). Once the model with static spin-
mediated interaction is established, one can compute the
dynamical part of χs(q, Ωm) (the Landau damping term)
within this model, as it comes from fermions with small
energies. Within this approach, one cannot relate ḡs with
U(r), but one can express Landau damping coefficient γs

via ḡs. The relation is52 γs = 2ḡs[2/(πv2
F )], where for

comparison with RPA below we pulled out factor of 2
due to spin summation.

A complementary approach is to treat U eff
s as the

charge component of the fully renormalized vertex func-
tion Γαγ,βδ(q, Ωm) at momentum transfer q near Qπ.
The vertex function Γ is the opposite of physical anti-
symmetrized interaction (a direct interaction minus the
one with outgoing fermions interchanged). The vertex
function can be obtained in RPA by summing up partic-
ular ladder and bubble diagrams which form geometrical
series (for details see Ref. 69). The approach is best un-
derstood when U(r) is approximated as on-site Hubbard
interaction U . The RPA gives

Γαγ,βδ(q, Ωm) = − U

1 − U2Π2(q, Ωm)
δαβδγδ +

U

1 − UΠ(q, Ωm)
δαδδβγ

= − U

2(1 + UΠ(q, Ωm))
δαβδγδ +

U

2(1 − UΠ(q, Ωm))
~σαβ · ~σγδ (31)

where to split the vertex into spin and charge parts we
used ~σαβ ·~σγδ = −δαβδγδ + 2δαδδβγ For a repulsive inter-
action U > 0, and the interaction in the spin channel is
enhanced and at large enough U diverges at q, at which
static Π(q, 0) > 0 is at maximum. We assume that the
maximum of Π(q, 0) is at q = Qπ.

Near Π(Qπ, 0) = 1/U , the interaction in the spin chan-
nel well exceeds the one in the charge channel, and one
can keep only the spin component of the interaction, i.e.,
approximate the dressed interaction by Eq. (29) with

U eff
s ~σαβ · ~σγδ =

U

2(1 − UΠ(q, Ωm))
~σαβ · ~σγδ. (32)

Expanding the polarization operator near antiferromag-
netic momentum and zero frequency, we obtain

Π(q, Ωm) = Π(Qπ, 0) − Cπ(q − Qπ)2 − 2|Ωm|
πv2

F

(33)

(the last term comes from fermions near the FS and the
prefactor for Ωm term is known exactly). Substituting

this form into (32) we obtain after simple manipulations
the same U eff

s (q, Ωm) as in Eq. (30) with

ḡs =
1

2Cπ
, ξ−2

s =
1 − UΠ(Qπ, 0)

UCπ
, γs = 2ḡs

2

πv2
F

(34)

We see that the expression for the Landau damping
coefficient is exactly the same as in the other (semi-
phenomenological) approach, the only new element of
RPA is that ḡs = 1/(2Cπ) is related to the behavior
of the static polarization bubble. Formally, ḡs doesn’t
depend on U , but in reality Cπ is of the same order as
Π(Qπ, 0) (in units where lattice constant a = 1), and
the latter is approximately 1/U near a SDW QCP. As a
result, ḡs is fact is of order U .

The interaction mediated by spin fluctuations gives
rise to d-wave superconductivity and to fermionic self-
energy. In the FL regime, Σ(ωm) ≈ λsωm, where
λs = 3ḡ/(4πvF ξ−1

s ). This self-energy gives rise to mass
renormalization m∗/m = 1 + λs and to quasiparticle
residue 1/Z = 1/(1 + λs). We will include this renor-
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malization into the calculations below.
We now proceed to construct the interaction in the

CDW channel.
The CDW instability with the ordering momentum

Qx = (Q, 0) and Qy = (0, Q) emerges in this approach as
a preliminary collective instability at a finite ξs, due to
spin-fluctuation exchange. A way to obtain CDW insta-

bility is to introduce infinitesimal CDW field ∆Q
k , which

couples to incommensurate component of charge density

as ∆Q
k c†

k−Q/2,αδαβck+Q/2,β , and compute susceptibility

with respect to this field. This has been done13,14,17

by summing up ladder series of renormalizations due to
spin-fluctuation exchange. Each act of spin-fluctuation
exchange transforms hot fermions near, say, hot points 1
and 2 in Fig. 6 into another set of hot fermions near the
points 3 and 4. The set 3,4 is generally different from
the set 1,2 (because directions of the Fermi velocities are
different), so to obtain the susceptibility one has to solve
the set of two coupled equations for fully renormalized

∆Q
k with the center of mass momentum k either between

points 1 and 2 or between points 3 and 4.
There is no rigorous justification why one should re-

strict with only ladder diagrams, even at large N . The
first non-ladder diagram is small numerically, but not
parametrically, compared to the ladder diagram of the
same loop order. Accordingly, there is no point to keep
N as artificially large parameter, and in this section we
set the number of pairs of hot spots N to their actual
value N = 4.

We present the diagrammatic representation of this set
of equations in Fig. 7(a,b). The linear “gap” equation for

∆Q
k has been analyzed in Ref. 14 and the outcome is that

the CDW susceptibility diverges at a finite Tcdw before
the system develops CDW order. The critical temper-
ature Tcdw decreases as ξs decreases and vanishes at a
finite critical ξs, setting up a CDW QCP at some dis-
tance away from SDW QCP21 (see Fig. 1).

Alternatively, one can combine pairs of subsequent

renormalizations of ∆Q
k into new effective interaction at

small momentum transfer [see Fig. 7(c)], which we la-
bel as Uc and show graphically in Fig. 8. This com-
posite effective interaction is the convolution of two
fermionic propagators and two spin-fluctuation propaga-
tors. Explicit calculation shows21,70 that Uc is numeri-
cally smaller but parameter-wise of the same order as a
single spin-fluctuation propagator – one extra power of
ḡs in the numerator gets cancelled out by the Landau
damping coefficient γs ∝ ḡs in the denominator. This
effective interaction is repulsive (Uc > 0) because the po-
larization bubble in the particle-hole channel is negative,
as opposed to the bubble in the particle-particle channel.

The corresponding term in the Hamiltonian is

Hc =Uc (c†
2,αc2,ν)(c†

1,µc1,β)

[

9

2
δαβδµν +

1

2
~σαβ · ~σµν

]

,

(35)

where subindices 1 and 2 indicate that the corresponding

FIG. 7. The linearized “gap” equation for the CDW order pa-
rameter ∆Q

k ∼ 〈c†

k+Q/2
ck−Q/2〉. We define the center-of-mass

momentum of hot spots 1 and 2 as k0 and that of hot spots
3 and 4 as kπ. Panels (a) and (b): the coupled gap equations
for ∆Q

k0
and ∆Q

kπ
. Panel (c): The gap equation for ∆Q

k0
only,

obtained by combining panels (a) and (b). We treat the com-
posite object in the dashed frame as the effective interaction
Uc (the prefactor −1 reflects that interaction appears in the
diagram with the minus sign).

momenta are near hot spots 1 and 2, and the spin factors
originate from

(~σγβ · ~σαδ) (~σµγ · ~σδν)

=

(

3

2
δαβδγδ − 1

2
~σαβ · ~σγδ

) (

3

2
δδγδµν − 1

2
~σδγ · ~σµν

)

=
9

2
δαβδµν +

1

2
~σαβ · ~σµν . (36)

Only the first, 9
2 δαβδµν term is relevant to CDW insta-

bility as it renormalizes ∆Q
k , which acts between fermions

near hot spots 1 and 2, with the same spin components
(i.e., it is convoluted with δαβ), therefore we can drop
the 1

2~σαβ · ~σµν component in Eq. (35).
The composite interaction Uc can be approximated as

a constant if the deviation of the fermionic momenta from
corresponding hot spots (e.g., regions 1 and 2 in Fig. 6)
are smaller than the inverse spin correlation length ξ−1

s .
At larger deviations from hot spots, Uc becomes function
of momenta and decreases.

We now turn to the calculation of the fermionic self-
energy and pairing instability. At a first glance, an in-
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FIG. 8. The diagrammatic representation of the composite
effective interaction Uc (same as in the dashed frame in Fig.
7. This effective interaction is a convolution of a particle-hole
bubble and two antiferromagnetic spin-fluctuation propaga-
tors.

teraction with a positive (repulsive) Uc cannot give rise
to the pairing instability with sign-preserving gap be-
tween the regions 1 and 2. On a more careful look,
however, we notice that the interaction in Eq. (35) is
the one at small momentum transfer (both incoming and
outgoing fermions are near the same hot spot), while to
analyze CDW-mediated pairing (Fig. 5) and fermionic
self-energy (Fig. 4(c)) one needs density-density interac-
tion at momentum transfer approximately equal to the
momentum difference between hot spots 1 and 2, namely,
Qy = (0, Q). To obtain this interaction, we need to inter-
change one creation and one annihilation fermionic oper-
ator. Then we obtain from Eq. (35)

Hc = −9Uc

2
(c†

2,αδαβc1,β)(c†
1,µδµνc2,ν). (37)

Viewed this way, the effective interaction is attractive and
is capable to give rise to pairing.

Another, more standard way to verify that the density-
density interaction with momentum transfer Q is at-
tractive is to again extract it from the vertex func-
tion Γαµ,βν(q, Ωm). To second order in the spin-
fluctuation propagator, there are two direct and two anti-
symmetrized diagrams for Γαµ,βν(q, Ωm) which contain
spin propagators with momenta near Qπ. We show them
in Fig. 9. In evaluating these four diagrams, we addition-
ally require that both spin-fluctuation propagators carry
the same momenta, as only then one can cancel extra
power of ḡs. It is easy to show that only the fourth dia-
gram (the one from the anti-symmetrized part) satisfies
these conditions. This diagram is exactly the same as the
one in Fig. 8, but there is an extra minus sign in front
of it. The evaluation of the diagram itself gives −Uc be-
cause particle-hole bubble is negative. The extra (−1)
in front of this diagram cancels the overall minus sign.
As a result, the charge component of the vertex function
becomes

Γc
αµ,βν =

9Uc

2
δαβδµν (38)

where the spin structure is obtained the same way as in
Eq. (36). Associating the charge component of the vertex
function with the effective density-density interaction, we
reproduce Eq. (37).

The effective interaction −(9Uc/2)c†
2,αc1,αc†

1,µc2,µ is
the bare interaction at momentum transfer Qy, and in
this respect 9Uc/2 plays the same role as Hubbard U
played for our earlier derivation of spin-mediated inter-
action within RPA. Just like we did for spin case, we now
dress interaction by summing up series of RPA diagrams
(see Fig. 10). This way we obtain fully renormalized
(within RPA) effective interaction in the charge channel

U eff
c =

9Uc

2

1

1 − 9Uc|Πc(q, Ωm)| (39)

Expanding the polarization operator Πc near, say Q =
Qy, we obtain

|Πc(q, Ωm)| = |Π(Qy, 0)| − Cy(q − Qy)2 − |Ωm|
πv2

F

α2 + 1

2α
(40)

Substituting this form into (39) we obtain the effective
charge-mediate interaction the same form as in Eq. (8)
with

ḡc =
1

2Cy
, ξ−2

c =
1 − 9UcΠ(Qy, 0)

9UcCy
, γc = ḡc

1

πv2
F

α2 + 1

α
(41)

To proceed further we approximate the dynamical spin
susceptibility χs(q, Ωm) by its value at q = Qπ and
Ωm = 0 and integrate over fermions within the momen-
tum range of the width Λ around hot spots. Like we said
above, the approximation of Uc by a constant is valid
when momentum deviations from a hot spot are at most
of order ξ−1

s , so Λξs is generally of order one. We also
assume for simplicity that CDW order parameter has a
pure d-wave form, i.e., set our parameter α to be one.
Within this last approximation, the polarization opera-
tor has the same form between points 1-2 and 3-4. Eval-
uating the polarization operator Πc we then find near
q = Qy

17

|Πc(q)| =
Λ√

2π2vF (1 + λ)

[

1 − C̃y
(q − Qx)2

Λ2

]

(42)

where C̃y is of order one and we remind that λ =
3ḡs/(4πvF ξ−1

s ) is the mass renormalization due to spin-
fluctuation exchange. The variable Cy, which we intro-

duced in (40) is related to C̃y as

Cy = C̃y
1√

2π2vF (1 + λ)Λ
. (43)

Within the same approximation the composite interac-
tion Uc is given by

Uc =
(

ḡsξ2
)2 |Πc(Qy)| = ḡ2

sξ3 Λξ√
2π2vF (1 + λ)

(44)

such that

9Uc|Πc(Qy)| = (3ḡsξ)2 (Λξ)2

2π4v2
F (1 + λ)2

(45)
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FIG. 9. The vertex function with momentum transfer near Qy in two-loop order (two spin-fluctuation propagators). Other
two-loop diagrams (not shown) contain spin-fluctuation propagators with small momentum transfer and are irrelevant for our
purposes. The charge component of this vertex function is 9Uc/2. The opposite of this charge component (i.e., −9Uc/2) is the
bare interaction in the charge channel at momentum transfer near Qx or Qy.

FIG. 10. The RPA diagrams for the dressed effective charge
interaction Ueff

c . Each double slid line is the ”bare” Uc – the
charge component of the vertex function at two-loop order.
The dressed interaction Ueff

c can be viewed as charge fluctua-
tion exchange (see text).

Using the condition 9Uc|Πc(Qy)| ≈ 1, we eliminate un-
known scale Λ and obtain

Cy = C̃y
3ḡsξ2

s

2π4v2
F (1 + λ)2

(46)

Hence

ḡc =
1

2Cy
= ḡs

3π2

16C̃y

(

1 + λ

λ

)2

≈ 2ḡs
1

C̃y

(

1 + λ

λ

)2

(47)
We see that within this approximation the ratio ḡc/ḡs

depends on the value of dimensionless parameter C̃y.
To obtain this parameter one needs to know more pre-
cisely system behavior at energies comparable to Λ. Still,
if C̃y(λ/(1 + λ))2 ≤ 1, then ḡc ≥ 2ḡs, in which case
superconducting T ch

c from the exchange of near-critical
charge fluctuations well may exceed T sp

c from the spin-
fluctuation exchange. This is the central result of this
section.

A more quantitative analysis requires extensive numer-
ical calculations and is beyond the scope of this work. We
also emphasize that there is no known controllable pro-
cedure of the derivation of the effective interaction medi-
ated by near-critical collective bosonic fluctuations, the
RPA which we used is an uncontrollable approximation.
And we also recall that the composite interaction Uc (the
convolution of two fermionic propagators and two spin
propagators) does depend on external momenta and fre-
quency, and already the calculation of Tcdw requires one
to solve integral equation for momentum and frequency

dependent full ∆Q
k .

0 0.1 0.2 0.3 0.4 0.5

10
−1

10
0

1/ξ

T
c/
T
c
(ξ

=
∞

)

 

 

← ξ = 4 .35

H = 5 × 10− 4E F

H = 0

FIG. 11. The behavior of T ch
c ’s as a function of 1/ξc with and

without an external field H , obtained by explicitly solving Eq.
(48). Without a magnetic field T ch

c decreases as ξc becomes fi-
nite and at small enough ξc crosses over from quantum-critical
to BCS-like behavior [see Eq. (28)]. At a finite field, T ch

c

at ξc = ∞ is somewhat reduced, but, most important, T ch
c

now vanishes at a finite ξcr
c . In numerical calculations we

used ḡc = 0.75EF , α = 0.076, and µBH = 5 × 10−4EF (for
EF = 1 eV, this H is ∼10 Tesla). For these parameters,
ξcr

c = 4.35/kF . The critical ξcr
c is well described by Eq. (50)

– plugging ξcr
c into this equation gives 1.2 in the right hand

side, close enough to the actual 1.

IV. SHRINKING OF A SUPERCONDUCTING

DOME IN A MAGNETIC FIELD

Finally, we discuss the issue of how T ch
c , mediated by

collective degrees of freedom, evolves in the presence of
an external magnetic field. For definiteness, we focus on
the role of near-critical charge fluctuations and neglect
the contribution to Tc from spin fluctuations.

It has been found experimentally33,71 that in the pres-
ence of a magnetic field H superconducting Tc, viewed as
a function of doping, splits into two domes, and the one
at higher doping is centered at or very near CDW QCP.
As H increases, the maximum of Tc in this dome is some-
what reduced, but, most notably, the width of the dome
shrinks, i.e., superconductivity get progressively confined
to a CDW QCP.
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We show that this behavior is reproduced within a
quantum-critical CDW pairing scenario. The argument
is rather straightforward – right at CDW QCP, T ch

c is
set by charge-fermion coupling ḡc, and to reduce T ch

c

one would need to apply a rather strong magnetic field
µBH ∼ ḡc. Away from CDW QCP, in the FL regime,
T ch

c is reduced and eventually follows BCS formula. In
the latter case, a much weaker µBH is needed to kill
superconductivity.

To see how this works in practice, we solved for charge-
mediated T ch

c at a finite charge correlation length ξc by
assuming that the dominant effect of the field is Zeeman
splitting of fermionic energies in the particle-particle bub-
ble. Within this approximation, the linearized integral
equation for the pairing vertex function Φ(ωm, k‖, ) (the

one which has a solution at T = T ch
c ) is

Φ(ωm, k‖)

=
ḡcT

vF

∑

m′

∫ dk′
‖

2π

Φ(ω′
m, k′

‖) sgn(ω′
m)

ω′
m − iΣ(ω′

m, k′
‖) − iµBH

× 1

k2
‖ + k′2

‖ − 2βk‖k′
‖ + γc|ωm − ω′

m| + ξ−2
c

=
ḡcT

vF

∑

m′

∫ dk′
‖

2π

Φ(ω′
m, k′

‖) |ω′
m − iΣ(ω′

m, k′
‖)|

[ω′
m − iΣ(ω′

m, k′
‖)]2 + (µBH)2

× 1

k2
‖ + k′2

‖ − 2βk‖k′
‖ + γc|ωm − ω′

m| + ξ−2
c

, (48)

where the self-energy is given by Eq. (25).
In the FL regime, when λc = ḡc/(2πvF ξ−1

c ) ≤ 1,
Φ(k‖, ωm) can be, to logarithmical accuracy, approxi-
mated by a constant Φ, and Eq. (48) reduces to

Φ =
λc

1 + λc
log

ωcf

(T 2
c + H2)1/2

Φ. (49)

where ωcf ∼ ḡc/λ2 has been introduced in (27). The
superconducting T ch

c becomes zero at a critical λcr
c , given

by

λcr
c

1 + λcr
c

log
ωcr

cf

H
= 1, (50)

or, with logarithmical accuracy, at λcr
c ∼

1/ log(ḡc/µBH). At smaller λc, i.e., at larger devi-
ations from CDW QCP, there is no charge-mediated
superconductivity.

We solved the gap equation numerically and obtained
T ch

c as a function of λc and µBH . We plot the results
in Fig. 11, and present the corresponding phase diagram
schematically in Fig. 12. We see that, indeed, super-
conducting dome gets sharper in the field, i.e., charge-
mediated superconductivity gets progressively confined
to CDW QCP. We did not do calculations on the other
(ordered) side of CDW QCP, but by generic reason we
expect a similar shrinking of Tc range. The shrinking of
Tc range with increasing field is fully consistent with the
experimental data33,71.

SC

in
c
re

a
s
in

g
 H

FIG. 12. The variation of the onset temperature of supercon-
ducting order mediated by near-critical charge fluctuations in
the presence of an external field H . As our numerical results
show (Fig. 11), the range of the superconducting dome shrinks
as magnetic field increases.

V. CONCLUSION

Motivated by the observation of a static charge or-
der in the cuprates and the enhancement of Tc at its
onset, we studied in this work the pairing mediated by
charge fluctuations around the quantum-critical point to-
wards an incommensurate charge order with momentum
Qx = (Q, 0) or Qy = (0, Q). Our main goal was to un-
derstand whether charge-mediated pairing near a CDW
QCP yields Tc comparable to that obtained from spin-
fluctuation exchange.

We first considered a semi-phenomenological charge-
fermion model in which hot fermions (the ones at the
FS, connected by Qx or Qy) interact by exchanging soft
collective excitations in the charge channel. We obtained
bosonic and fermionic self-energies in the normal state
and used them as inputs for the analysis of the quantum-
critical pairing problem. We found, in agreement with
earlier works40 that the charge-mediated pairing inter-
action is attractive in both d-wave and s-wave channels.
The d-wave pairing becomes more favorable once we in-
clude other contributions to the pairing interaction from,
e.g., antiferromagnetic spin fluctuations. We found that
the critical temperature Tc scales with the charge-fermion
coupling constant ḡc, and that fermions from NFL regime
very near a hot spot and from a FL region further away
from a hot spot contribute to the pairing. In this respect,
pairing near a CDW QCP is similar to the pairing by spin
fluctuations near a SDW QCP. We obtained the value of
T ch

c /ḡc numerically.

We next considered the microscopic model in which
spin fluctuations emerge at higher energies than charge
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fluctuations and are therefore the primary collective de-
grees of freedom. Charge fluctuations emerge at smaller
energies as composite fields, made out of pairs of spin
fluctations. Within this model, we were able to ex-
press charge-fermion coupling ḡc via the underlying
spin-fermion coupling ḡs and relate T ch

c due to charge-
fluctuations near a CDW QCP to T sp

c due to spin fluctu-
ations. We found that, at least within RPA, T ch

c due to
charge fluctuations is comparable to T sp

c that due to spin
fluctations and may even exceed it, i.e., superconduct-
ing Tc does get a substantial enhancement near a CDW
QCP.

Finally, we analyzed the behavior of charge-mediated
Tc in the presence of a magnetic field and found that
the dome of T ch

c around a CDW QCP indeed shrinks
as magnetic field increases, because a field destroys
superconductivity faster in non-critical regime than in

the quantum-critical regime and hence enhances charge-
fluctuation component of Tc near a CDW QCP.

This result and the one that the contribution to Tc

from critical charge fluctuations can be larger than the
contribution to Tc from non-critical spin-fluctuations, de-
spite that charge fluctuations are by themselves made
out of spin fluctuations, may explain the experimental
observation that in a magnetic field Tc gets progressively
confined to the doping range around the doping at which
charge order likely emerges at T = 0.
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