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Symmetry-protected topological (SPT) phases of matter have been the focus of many recent
theoretical investigations, but controlled mechanisms for engineering them have so far been elusive.
In this work, we demonstrate that by driving interacting spin systems periodically in time and
tuning the available parameters, one can realize lattice models for bosonic SPT phases in the limit
where the driving frequency is large. We provide concrete examples of this construction in one
and two dimensions, and discuss signatures of these phases in stroboscopic measurements of local
observables.

I. INTRODUCTION

Since the discovery of the quantum Hall effect (QHE)1,
topological phenomena in quantum many-body systems
have dramatically changed our understanding of phases
of matter. In particular, the study of the fractional
QHE brought about the notion of topological order2–4,
which characterizes phases of matter with emergent frac-
tional excitations and topological ground-state degen-
eracy, which cannot be described within the standard
Landau-Ginzburg framework.

In recent years, the prediction and discovery of topo-
logical band insulators5,6 has awakened a great deal of
interest in gapped symmetry-protected topological (SPT)
phases of matter. These phases of matter lack fraction-
alized degrees of freedom, but display topological prop-
erties that manifest themselves in non-trivial boundary
states that are protected by global symmetries. While
they do not display the long-range entanglement of
topologically-ordered systems, SPT phases of matter are
characterized primarily by a nontrivial short-range en-
tanglement structure in the low-energy states7.

Following the classification of weakly-interacting
fermionic SPT states8–10, there has been a vast amount
of recent effort to classify strongly-interacting SPT
phases7,11–15 as well as to construct models supporting
them7,16–25. In light of this effort, it is highly desirable to
identify controlled mechanisms capable of bringing SPT
states into realization.

In this paper, we put forward a proposal to realize
bosonic SPT phases as out-of-equilibrium states of quan-
tum spin systems with periodically-driven multispin in-
teractions. The systems we study are described by time-
dependent Hamiltonians of the form

H(t) = H0 + Θ(t) f(t)Hint , (1)

where H0 is a local Hamiltonian describing a trivial para-
magnet (i.e., one whose ground state is a trivial product
state) and Hint is a local interaction with a time-periodic
coupling constant f(t) = f(t+ T ) with zero mean and a
characteristic frequency ω = 2π/T . Θ(t) is the Heaviside
function denoting a protocol where the drive is switched
on at t = 0.

When Hint = 0, H(t) = H0 can be mapped from a triv-
ial paramagnetic Hamiltonian to an SPT Hamiltonian by
a product of local unitary transformations that entangles
the local degrees of freedom in a nontrivial way7,21. Such
transformations arise naturally in the study of many-
body systems with periodically-driven interactions. In
particular, we will show that, in the limit of large ω,
the time-periodic unitary transformation to the “rotat-
ing frame,” (we set ~ = 1)

UR(t) = ei
∫ t
0

d t′ f(t′)Hint ≡ ei g(t)Hint , (2)

generates the desired entanglement if Hint is chosen ap-
propriately. The transformation UR(t) maps a state
|ψ(t) 〉, whose time evolution is governed by the Hamilto-
nian (1), into a state |ψR(t) 〉 = UR(t) |ψ(t) 〉 whose time
evolution is generated by

HR(t) = UR(t)H(t)U†R(t)− iUR(t) ∂t U
†
R(t). (3)

The stroboscopic evolution of the initial state in the ro-
tating frame, |ψR(nT ) 〉 = e−iHF nT |ψR(0) 〉 (n ∈ Z), is
governed by the Floquet Hamiltonian HF, which can be
systematically determined via a Magnus expansion26,27.
(Note that HF is also the generator of stroboscopic evo-
lution in the “lab frame,” although we work with states
in the rotating frame for convenience.) In the infinite-
frequency limit, the Floquet Hamiltonian is nothing but
the time-average of HR(t),

H(0)
F =

1

T

∫ T

0

dtHR(t) , (4)

while the n-th order term in the Magnus expansion

is of order 1/ωn. We will refer to H(0)
F as the stro-

boscopic Hamiltonian, because in the infinite-frequency

limit, where only H(0)
F survives, the stroboscopic evolu-

tion and the true unitary evolution of the time-dependent
system coincide.

If the amplitude of the drive is small compared to the
frequency, the stroboscopic Hamiltonian (4) simply re-
duces to H0. On the other hand, when the amplitude
of the drive is chosen to scale with the frequency ω, the
stroboscopic Hamiltonian can acquire a nontrivial form
that is different from H0

27. In this work, we show that
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FIG. 1. (Color online) Couplings in the leading term of the
Magnus expansion (4) as functions of the scaled driving am-
plitude λ. White and gray regions correspond, respectively,
to trivial and stroboscopic SPT phases.

the stroboscopic Hamiltonian (4) describes microscopic
models of SPT states with Z2×Z2

7,20,21 and Z2
7,17 sym-

metries, respectively, for one- and two-dimensional driven
systems. We refer to the phases generated in this way as
stroboscopic SPT (SSPT) phases. Remarkably, we find
that, while the SSPT Hamiltonian (4) is invariant under
the global symmetry, the original time-dependent Hamil-
tonian (1) is not. Hence the global symmetry of the SSPT
phase is found to be an emergent property of the high-
frequency limit of HF. These results can be generalized
to other symmetry classes. Finally, we also demonstrate
that the dynamics of local observables at stroboscopic
times can be used to probe the nontrivial edge states of
SSPT systems without the need to prepare the system in
the ground state of HF.

II. Z2 × Z2 SSPT PHASE IN 1D

A. The model

We begin by studying an open 1D chain with N sites
described by the time-dependent Hamiltonian (1) with

H1D(t) = h

N∑
i=1

σxi + Θ(t) f(t)

N−1∑
i=1

σzi σ
z
i+1 , (5)

and f(t) = λω cos(ωt+ϕ) (λ > 0). Note that the driving
amplitude is taken to scale linearly with the frequency,
so that λ is dimensionless. The Pauli operators σai (a =
x, y, z) satisfy the onsite algebra [σai , σ

b
j ] = 2i δij εabc σ

c
i

and the anticommutation relation {σai , σbi } = 2 δab . Fur-
thermore, notice that the Hamiltonian (5) has an on-

site Z2 spin flip symmetry generated by S =
∏N
i=1 σ

x
i .

Henceforth, we set the energy scale h = 1, with the un-
derstanding that the limit ω →∞ corresponds to taking
ω � h.

Upon making the transformation to the rotating frame,
we find that, for ϕ = 0, the stroboscopic Hamiltonian (4)

is given by

HZ2×Z2 = J0(2λ) (σx1 + σxN )

+

N−1∑
i=2

[
a(λ)σxi − b(λ)σzi−1σ

x
i σ

z
i+1

]
,

(6)

where a(λ) = 1
2 [1 + J0(4λ)], b(λ) = 1 − a(λ) and J0(x)

is the Bessel function of the first kind.
Observe that the Hamiltonian (6) possesses a global

Z2 × Z2 symmetry generated by Seven =
∏
i even σ

x
i and

Sodd =
∏
i odd σ

x
i , corresponding to independent spin

flips on the even and odd sublattices. However, the time-
dependent Hamiltonian (5) has a Z2 symmetry, rather
than a Z2×Z2 symmetry – in other words, this enlarged
symmetry group is an emergent property of the high-
frequency limit ω → ∞, as it appears only upon taking
the time average Eq. (4).

We plot the couplings a(λ), b(λ), and J0(2λ) in Fig. 1.
By varying λ, one can tune the couplings such that
a(λ) > b(λ) or vice versa. We will argue below that
the values of λ for which a(λ) = b(λ) are critical points
of the effective Hamiltonian that separate a trivial insu-
lating phase from an SPT phase.

To continue our analysis of this Z2 × Z2-symmetric
Hamiltonian, it is instructive to rewrite it in terms of Ma-
jorana operators αi = (

∏
j<i σ

x
j )σzi and βi = iαi σ

x
j ,28,29

which are Hermitian and satisfy the usual fermionic al-
gebra. In terms of these operators, the Hamiltonian (6)
reads

HZ2×Z2 = −i J0(2λ)(α1 β1 + αN βN )

− i a(λ)

N−1∑
i=2

αi βi + i b(λ)

N−1∑
i=2

βi−1 αi+1.
(7)

This Hamiltonian contains two types of terms that can
be thought of as projectors onto two distinct dimeriza-
tion patterns that encode the entanglement structure of
the ground-state wavefunction (see Fig. 2). The pattern
encoded by the αiβi terms involves Majorana dimers on
each site. It is “trivial” in the sense that, for a finite
chain, the pattern pairs all Majorana operators. On the
other hand, the βi−1αi+1 terms encode dimerization be-
tween next-neighbor Majoranas of opposite types. This

… …
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FIG. 2. (Color online) Competing dimerization patterns in
the Z2 × Z2 SPT chain. Dotted and solid lines account, re-
spectively, for the dominant dimerization patterns in the triv-
ial and SPT phases. When only the 3-spin term is present in
the model, a dangling spin is localized on the edges.
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pattern is “nontrivial” in the sense that it leaves two un-
paired Majoranas at each end of a finite chain, yielding
a fourfold ground-state degeneracy as a signature of the
entanglement structure of the SPT phase. Equivalently,
one can see this fourfold degeneracy from Eq. (6), as the
operators σz1 and σzN commute with the Hamiltonian if
only the three-spin interaction contributes.

The transition between these two patterns and the as-
sociated phases occurs at the point a(λ) = b(λ), where
the bulk gap closes. To see this, we combine the Majo-

rana operators into complex fermions c†i = (αi + iβi)/2,
in terms of which the Hamiltonian becomes

HZ2×Z2
= t

N−1∑
i=2

(c†i+1ci−1 + ci+1ci−1 + H.c.)

+ µ

N−1∑
i=2

c†i ci + µ0(c†1c1 + c†NcN )

(8)

where we have dropped a constant term, and where we
have defined t = b(λ), µ = 2 a(λ), and µ0 = 2J0(2λ).
This model is nothing but two decoupled copies (one on
the even sublattice and one on the odd) of the Kitaev
model for a 1D p-wave superconductor28. The critical
point for this model is well-known, and occurs for µ =
2t. However, this is equivalent to the condition a(λ) =
b(λ). It is important to note that while the chemical
potential µ0 at the ends of the chain is not equal to the
bulk value µ, the location of the transition is not affected
for a sufficiently long chain, as we have verified by exact
diagonalization.

The preceding discussion illustrates that the strobo-
scopic Hamiltonian (6) is Z2×Z2-symmetric and contains
one free parameter, λ, that tunes the system across the
transition between the Z2×Z2 SSPT phase and the trivial
paramagnetic phase. However, it is evident from Fig. 1
that the coupling a(λ) 6= 0 for any λ. Naively, then, it
seems that one cannot access the “ideal” scenario where
the operators σz1,N commute with the Hamiltonian. Nev-

ertheless, this is not the case, as the local field J0(2λ) at
the ends of the chain vanishes identically if 2λ is equal
to a zero of the Bessel function J0 (see Fig. 1). In this
case, the operators σz1 and σzN identically commute with
the Hamiltonian (6), and the system has an exact four-
fold ground-state degeneracy despite the presence of a
transverse field in the bulk. Deviations from these spe-
cial values of λ split this degeneracy by an amount that
decreases exponentially with system size, and the sys-
tem remains in the SSPT phase so long as the bulk gap
remains open.

B. Signatures in stroboscopic dynamics

1. Infinite-frequency limit

So far, we have demonstrated that, in the limit ω →∞,
the stroboscopic evolution of the periodically-driven spin

chain of Eq. (5) is generated by the effective Hamilto-
nian (6), for an appropriately-chosen driving protocol.
However, it remains to be shown that the stroboscopic
evolution generated by Eq. (6) yields telltale signatures
of SPT physics in local measurements. To address this
point, we consider the local spin expectation value

〈σzi (t)〉 = 〈Ψ0 |e+iHZ2×Z2 t σzi e
−iHZ2×Z2 t|Ψ0 〉, (9)

where |Ψ0 〉 is some initial state. This quantity coincides
with the true time evolution of the operator σzi in the
limit ω →∞, where the period T is infinitesimally small
and t = nT (n ∈ Z) is approximately a continuous vari-
able. For simplicity, we choose the initial state |Ψ0 〉 to
be a product of eigenstates of σzj on each site j, so that
〈σzi (t)〉 is invariant under UR(t) (i.e., the unitary trans-
formation to the rotating frame).

The observable defined in Eq. (9) provides a clear
signature of the edge states in the SSPT phase, even
though the product state |Ψ0 〉 is a highly out-of-
equilibrium state with respect to the stroboscopic Hamil-
tonian (c.f. Ref.30). When J0(2λ) = 0, 〈σz1(t)〉 and
〈σzN (t)〉 are independent of time, since σz1 and σzN com-
mute with the effective Hamiltonian HZ2×Z2

. For i 6= 1
or N , however, 〈σzi (t)〉 evolves quasi-periodically in time,
with oscillations occurring on a timescale τc on the order
of the inverse bulk energy gap of HZ2×Z2

[see Fig. 3(a)].
If λ is tuned slightly away from one of these special values
but remains within the phase boundary, which amounts
to adding a small transverse field (σx1 + σxN ), then the
end spins precess in the y-z plane on timescales much
longer than τc, so that the bulk and boundary behavior
can be distinguished. Because the end spins were com-
pletely unconstrained before the addition of the trans-
verse field, this precession, which is characteristic of a free
spin placed in a magnetic field perpendicular to the quan-
tization axis, manifests itself in oscillations of 〈σz1,N (t)〉
about zero [see Fig. 3(b)]. In this way, 〈σz1,N (t)〉 can
be used to distinguish the free edge spins characteristic
of SPT physics from spins that are “frozen” due to the
presence of a symmetry-breaking field. For example, if a

small longitudinal field hz
∑N
i=1 σ

z
i is added to Eq. (5),

thereby breaking the Z2 × Z2 symmetry of the strobo-
scopic Hamiltonian, then one finds that the end spins
no longer wrap the unit circle in the y-z plane as they
precess when the transverse field is added at the ends
of the chain. Consequently, 〈σz1,N (t)〉 no longer oscil-
lates around zero, but around a nonzero value whose sign
matches the sign of the longitudinal field [see Fig. 3(c)].
Thus, in the infinite-frequency limit, stroboscopic mea-
surements of 〈σzi (t)〉 are an effective dynamical probe of
SPT physics at the boundary of the driven system.

2. Finite-frequency corrections

The preceding discussion is an accurate description of
the driven system in the limit where the driving fre-
quency ω is infinite. However, at any finite frequency,
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FIG. 3. (Color online) Stroboscopic evolution of 〈σz
i (t)〉 for i = 1, 2, and 5 for an eight-site chain, where the initial state is

chosen to be the product state |Ψ0 〉 = | ↑↑ . . . ↑ 〉. Panels (a)–(c) depict stroboscopic evolution at ω = ∞ [i.e. as defined in
Eq. (9)], while panels (d)–(f) depict the exact stroboscopic evolution [i.e. as defined in Eq. (10a)] for ω = 100h. In (a), 2λ
equals the second zero of the Bessel function J0(x) in Fig. 1, and the longitudinal symmetry-breaking field hz = 0. In (b),
λ = 2.6 and hz = 0, while in (c), λ = 2.6 and hz = 0.01 in units of the bare transverse field h. The plots in panels (d), (e), and
(f) use the same parameters as the ones in panels (a), (b), and (c), respectively.

there are corrections to this behavior that become im-
portant in the infinite-time limit, where the “error”
due to these corrections can accumulate without bound.
We now characterize the nature of these corrections
(c.f. Ref.27), and present arguments and numerical re-
sults showing that there is a window of time after the
drive is switched on during which the signatures of the
infinite-frequency SSPT phase can be observed at large
but finite driving frequencies.

As the driving frequency ω is decreased, two effects
occur that lead to deviations from the infinite-frequency
case discussed in the previous section. First, the strobo-
scopic evolution of observables, as in Eq. (9), no longer
coincides with the true time evolution of the system.
In particular, expectation values of observables become
dressed by intra-period effects that become significant if
the system is not observed at stroboscopic times tn = nT

for n ∈ Z27. However, the expectation values of observ-
ables at stroboscopic times are still predicted by the uni-
tary evolution generated by the Floquet HamiltonianHF.
For instance, the stroboscopic evolution of σzi , which is
given at infinite driving frequency by Eq. (9), becomes

〈σzi (tn)〉 = 〈Ψ0 |e+iHFtn σzi e
−iHFtn |Ψ0 〉, (10a)

where

HF = H(0)
F +H(1)

F + . . . (10b)

contains all finite-frequency corrections H(k)
F ∼ h (h/ω)k

to the infinite-frequency Floquet Hamiltonian H(0)
F .

This brings us to the second effect, namely the fact
that HF acquires finite-frequency corrections appearing
at orders 1/ω and higher in the Magnus expansion. These
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corrections generically break the symmetry that protects
the SSPT phase. Indeed, in Appendix A, we present
the leading finite-frequency correction to the infinite-
frequency Hamiltonian HZ2×Z2

that break the emergent
Z2×Z2 symmetry down to the Z2 symmetry of the orig-
inal time-dependent Hamiltonian (5). We will now argue
that these symmetry-breaking corrections are unimpor-
tant for the detection of the stroboscopic signatures of
the SSPT phase discussed in the previous section, pro-
vided that the driving frequency ω is sufficiently large
compared to the bare transverse field energy scale h.

To see this, observe that at some stroboscopic time
tn = nT , the k-th order Magnus correction is only im-

portant if H(k)
F tn is comparable in size (modulo 2π) to a

number of order one. Since H
(k)
F ∼ h (h/ω)k, this means

that one must wait a (stroboscopic) time

n∗ ≡
t∗
T
∼
(ω
h

)k+1

(11)

in order for symmetry-breaking effects to begin to mani-
fest themselves. Note that, in the limit ω →∞, the time
t∗ = n∗ T → ∞ as well, so that the infinite-frequency
limit manifests the enlarged Z2 × Z2 symmetry, as ex-
pected.

To support this argument in the context of the dy-
namical signatures of the SSPT phase discussed in the
previous section, we have supplemented the infinite-
frequency stroboscopic evolution [c.f. Eq. (9)] dis-
played in Fig. 3(a)–(c) with finite-frequency calculations
[c.f. Eq. (10a)] over a range of frequencies. The finite-
frequency stroboscopic calculations were performed us-
ing the exact evolution operator over a period, deter-
mined by direct numerical integration of the Schrödinger
equation. We find that a driving frequency ω ∼ 100h
is sufficiently large to extract the dynamical information
necessary in order to infer the existence of symmetry-
protected edge states in the manner outlined in the previ-
ous section [see Fig. 3(d)–(f)]. Differences between these
finite-frequency results and their infinite-frequency coun-
terparts only begin to manifest themselves on timescales
of order t∗ = 104 T , where, according to the scaling ar-
gument in the previous paragraph, the k = 1 correction
begins to become important.

The main difference that arises at large but finite
frequencies is the appearance of an envelope timescale,
much longer than t∗, on which the end spins oscillate
(see Fig. 4). For example, in Fig. 4(a), the dynamics
shown in Fig. 3(e) is plotted out to a time t = 10 t∗,
where the appearance of the envelope timescale is very
clear. At the “magic” values of λ where the end spins
are frozen in the infinite-frequency limit [c.f. Fig. 3(a)],
the envelope timescale also manifests itself in oscillations
of the previously-frozen end spins due to the appear-
ance of symmetry-breaking finite-frequency corrections
at long times. This is already evident in Fig. 3(d), where
ω = 100h, and is exaggerated in Fig. 4(b), where the
frequency has been lowered to 10h.
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FIG. 4. (Color online) Finite-frequency corrections to strobo-
scopic evolution of 〈σz

i (t)〉. The system size and initial state
are the same as in Fig. 3. Panel (a) shows the evolution de-
picted in Fig. 3(e) over a longer time, so that the envelope
timescale discussed in the main text is more apparent. Panel
(b) uses the same parameters as Fig. 3(a) and (d), but at
frequency ω = 10h.

To summarize this discussion, we have argued in this
section that the dynamical signatures of the SSPT phase
discussed in the previous section are immune to finite-
frequency corrections for a window of time whose size
increases monotonically with the driving frequency and
approaches infinity in the infinite-frequency limit. At
high but still reasonable frequencies ω ∼ 100h, this time
window is sufficiently large to extract these dynamical
signatures before the corrections begin to take over.

III. RATIONALE, GENERALIZATIONS, AND
POSSIBLE EXPERIMENTS

The rationale behind the ability to engineer the SSPT
Hamiltonian (6) can be stated as follows. First, recall
that, when the driving vanishes, the mapping from the
trivial phase to the SPT one can be achieved via a prod-
uct of local unitary transformations7. In the Z2×Z2 case,
the generator of this transformation is proportional to the
Ising interaction in Eq. (5)21. On the other hand, in the
driven system, the unitary transformation UR(t) to the
rotating frame is also generated by the Ising interaction.
Consequently, at infinite frequency, we found parameter
regimes in which this transformation effectively mapped
a trivial paramagnet to an SPT one, and gave rise to an
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emergent Z2 × Z2 symmetry that is not shared by the
time-dependent Hamiltonian (5).

The above discussion suggests a principle for obtaining
an SSPT phase in a periodically-driven system: the in-
teraction term in Eq. (1) should be chosen to be the gen-
erator of the unitary transformation connecting a trivial
to an SPT system. In order to demonstrate that this
stroboscopic approach to SPT phases applies beyond the
1D case discussed above, we consider a 2D system on the
triangular lattice with a driven three-spin interaction,

H2D(t) = −h
∑
j

σyj + Θ(t) f(t)
∑
〈ijk〉

σzi σ
z
j σ

z
k , (12)

where the summation in the second term runs over all
the triangles of the lattice and we assume the same form
for f(t) as in Eq. (5). Interestingly, for λ ≈ 0.51 and
ϕ ≈ ±0.27π, we find that (see Appendix B)

H(0)
F ≈ heff

∑
j

σxj e
i π4

∑
〈``′〉;j (1−σz` σz`′) . (13)

Remarkably, the Hamiltonian (13), which involves up to
seven-spin interactions, is the exactly-solvable model of a
Z2 SPT paramagnet studied by Levin and Gu in Ref.17.
The model (13) can be obtained from a trivial param-
agnet by a product of local unitary transformations that
each depend on three σz spins (see Appendix B), which
then justifies the need for a three-spin interaction in (12).

We close by commenting on possible experimental re-
alizations of SSPT phases. Recent developments in quan-
tum simulation with trapped ions31–34 and superconduct-
ing quantum circuits35,36 have shown that it is possible
to engineer tunable multi-spin interactions and trans-
verse fields in a laboratory setting. These developments
suggest the possibility that SSPT phases like the ones
discussed in this paper could be realized in an experi-
ment, if the appropriate sinusoidal drive can be imple-
mented. The superconducting quantum circuit architec-
ture described in Ref.36 appears particularly well-suited
to these purposes, as it was demonstrated in that work
that the couplings between the superconducting qubits
in that system can be tuned dynamically. The periodic

modulation of the interaction strength required by our
proposal is already feasible in that setup, making it an
ideal candidate for a possible experimental realization. A
thorough assessment of the suitability of this proposal for
the experimental platforms mentioned above is necessary,
but beyond the scope of this work.

To summarize, we have shown in this work that, by
adding appropriately chosen periodically-driven multi-
spin interactions to a trivial paramagnetic Hamiltonian,
it is possible to realize SPT phases in the high-frequency
limit. We further illustrated via a 1D example that the
SPT phase can be probed with stroboscopic measure-
ments of local observables. We also characterized nu-
merically (and analytically, in the Appendices) the finite-
frequency corrections to the pure infinite-frequency SSPT
Hamiltonian, and found that driving frequencies of order
a hundred times the characteristic bare energy scale of
the problem are sufficient to observe signatures of the
phase. Finally, we illustrated how this construction can
be extended to higher dimensions and different symmetry
classes, such as the above example of the Z2 SPT phase
in 2D. In future work, it would be interesting to further
explore the possibility of generating nontrivial patterns
of entanglement by driving. The work presented here
can also be used as a springboard to future progress in
the development of out-of-equilibrium and non-eigenstate
probes of topological and symmetry-protected topologi-
cal order. In particular, it would be interesting to de-
termine, along the lines of Ref.30, how the presence of
disorder can protect SPT order in the novel context, ex-
plored here, of periodically driven systems.

ACKNOWLEDGMENTS

We thank Marin Bukov and Anushya Chandran for
useful discussions. T.I. was supported by the National
Science Foundation Graduate Research Fellowship Pro-
gram under Grant No. DGE-1247312, and C.C. was sup-
ported by DOE Grant DEF-06ER46316. Research at the
Perimeter Institute is supported by the Government of
Canada through Industry Canada and by the Province
of Ontario through the Ministry of Economic Develop-
ment and Innovation.

Appendix A: One-Dimensional SSPT Hamiltonian

1. Stroboscopic Hamiltonian

We derive an effective Hamiltonian that encapsulates the stroboscopic dynamics generated by

H1D(t) = h

N∑
i=1

σxi + Θ(t) f(t)

N−1∑
i=1

σzi σ
z
i+1 , (A1a)
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with

f(t) = λω cos(ωt+ ϕ) , λ > 0 . (A1b)

To do this, we employ the time-dependent unitary transformation

UR(t) = exp
[
i

∫ t

−∞
dt′Θ(t) f(t)

N−1∑
i=1

σzi σ
z
i+1

]
= exp

[
i g(t)

N−1∑
i=1

σzi σ
z
i+1

]
, (A2)

where g(t) = λ [sin (ω t+ ϕ)− sinϕ], which transforms the Hamiltonian to the rotating frame as follows:

HR(t) = UR(t)H1D(t)U†R(t)− iUR(t) ∂t U
†
R(t) = hUR(t)

(
N∑
i=1

σxi

)
U†R(t). (A3)

Explicitly we find

HR(t) =

N−1∑
i=2

{
cos2(2g(t))σxi − sin2(2g(t))σzi−1σ

x
i σ

z
i+1 − cos(2g(t)) sin(2g(t)) (σyi σ

z
i+1 + σzi−1σ

y
i )
}

+ cos(2g(t)) (σx1 + σxN )− sin(2g(t))
(
σy1 σ

z
2 + σzN−1 σ

y
N

)
.

(A4)

The time average of Eq. (A4) yields

H(0)
F =

N−1∑
i=2

{
a(λ, ϕ)σxi − b(λ, ϕ)σzi−1σ

x
i σ

z
i+1 − c(λ, ϕ)

(
σyi σ

z
i+1 + σzi−1σ

y
i

) }
+ d(λ, ϕ) (σx1 + σxN )− e(λ, ϕ)

(
σy1 σ

z
2 + σzN−1 σ

y
N

)
,

(A5)

where the coefficients a(λ, ϕ), ..., e(λ, ϕ) are given by

a(λ, ϕ) = 1− b(λ, ϕ) =
1

2π

∫ 2π

0

dτ cos2
[
2λGϕ(τ)

]
, (A6a)

c(λ, ϕ) =
1

2π

∫ 2π

0

dτ
1

2
sin
[
4λGϕ(τ)

]
, (A6b)

d(λ, ϕ) =
1

2π

∫ 2π

0

dτ cos
[
2λGϕ(τ)

]
, (A6c)

e(λ, ϕ) =
1

2π

∫ 2π

0

dτ sin
[
2λGϕ(τ)

]
, (A6d)

where Gϕ(τ) = sin (τ + ϕ) − sinϕ. Observe that for the choice ϕ = 0, the two-body terms that break the Z2 × Z2

symmetry vanish and we recover the stroboscopic Hamiltonian in Eq. (6) of the main text.

2. Leading Finite-Frequency Correction to the SSPT Hamiltonian

We now present the order-1/ω Magnus correction to the SSPT Hamiltonian, namely

H(1)
F = −i

1

2T

∫ T

0

dt1

∫ t1

0

dt2 [HR(t1), HR(t2)], (A7)

where HR(t) is given by Eq. (3). We will work exclusively with an infinite chain in this section, as our aim is only to
show that the bulk Z2 × Z2 symmetry is broken by this correction. After calculating the necessary commutators, we
find that

H(1)
F = h1

∑
i

(σzi σ
z
i+1 − σ

y
i σ

y
i+1) + h2

∑
i

(σzi−1σ
x
i σ

x
i+1σ

z
i+2 − σzi−1σ

z
i ), (A8a)
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1.

FIG. 5. (Color online) Couplings in the first-order correction to the Magnus expansion, c.f. Eq. (A8), as functions of the scaled
driving amplitude λ. White and gray regions are used to distinguish the trivial and stroboscopic SPT phases, as in Fig. 1, and
the Bessel function J0(2λ) is plotted for reference.

where the coefficients are given by

h1 = − 1

πω

∫ 2π

0

dτ1

∫ τ1

0

dτ2 cos(2λ sin τ1) cos(2λ sin τ2) sin[2λ(sin τ2 − sin τ1)] (A8b)

h2 =
1

πω

∫ 2π

0

dτ1

∫ τ1

0

dτ2 sin(2λ sin τ1) sin(2λ sin τ2) sin[2λ(sin τ2 − sin τ1)]. (A8c)

These coefficients are plotted as functions of λ in Fig. 5. Observe that each term above breaks the Z2×Z2 symmetry.
The Z2 × Z2 symmetry of the zeroth-order Hamiltonian (6) is therefore an emergent symmetry that appears only at
high frequencies.

Appendix B: Two-Dimensional SSPT Hamiltonian

1. Exactly Solvable Z2 SPT Model

In this section, we review the 2D Z2 SPT model introduced by Levin and Gu in Ref.17. We start with the trivial
paramagnetic Hamiltonian on the triangular lattice (see Fig. 6),

H0 = −
∑
j

σxj , (B1)

and the 2D Z2 SPT Hamiltonian17

H2D,SPT = −
∑
j

Oj =
∑
j

σxj e
i π4

∑
〈``′〉;j (1−σz` σz`′) , (B2)

where the sum over `, `′ in Eq. (B2) extends over pairs of nearest neighbor spins around the spin at site j as depicted
in Fig. 6. The Hamiltonian Eq. (B2) is invariant under spin flips generated by SZ2

=
∏
j σ

x
j .

The Hamiltonians Eq. (B1) and (B2) are related by the unitary transformation

W =
∏
j

e−i π2 (1−σzj )−i π8 σ
z
j

∑
〈``′〉;j (1−σz` σz`′) , (B3)
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j

1

2

34

5

6

FIG. 6. Triangular lattice where the model Eq. (B2) and the driven Hamiltonian Eq. (B6a) are defined. The sites nearest
neighbors to site j are labeled 1 through 6.

that implements

Oj = Wσxj W−1 = −σxj e
i π4

∑
〈``′〉;j (1−σz` σz`′) . (B4)

Now for every site j we expand the exponent:

ei π4
∑
〈``′〉;j (1−σz` σz`′) = ei 3π

2

∏
〈``′〉;j

[cos (π/4)− i sin (π/4)σz` σ
z
`′ ]

=
1

4

{
σz1 σ

z
2 σ

z
3 σ

z
4 σ

z
5 σ

z
6 + σz1 σ

z
2 σ

z
3 σ

z
5 + σz1 σ

z
3 σ

z
4 σ

z
5 + σz1 σ

z
2 σ

z
4 σ

z
6 + σz2 σ

z
3 σ

z
4 σ

z
6 + σz1 σ

z
3 σ

z
5 σ

z
6 + σz2 σ

z
4 σ

z
5 σ

z
6

+ σz1 σ
z
4 + σz2 σ

z
5 + σz3 σ

z
6 − (σz1 σ

z
2 + σz2 σ

z
3 + σz3 σ

z
4 + σz4 σ

z
5 + σz5 σ

z
6 + σz6 σ

z
1)
}
,

(B5)

where σz1 , ..., σ
z
6 denote the six spin operators around the site j, as in Fig. 6.

2. Driven Three-Spin Interaction

Motivated by the unitary transformation Eq. (B3), we are led to consider a time dependent three-spin interaction

H2D(t) = −h
∑
j

σyj + Θ(t) f(t)
∑
〈ijk〉

σzi σ
z
j σ

z
k , (B6a)

where the summation in the second term runs over every triangle of the lattice and

f(t) = λω cos(ωt+ ϕ) , λ > 0 . (B6b)

The unitary transformation to the rotating frame

UR(t) = exp
[
i g(t)

∑
〈ijk〉

σzi σ
z
j σ

z
k

]
, (B7)

where g(t) = λ [sin (ω t+ ϕ)− sinϕ], yields the rotating-frame Hamiltonian

HR(t) = UR(t)

−h∑
j

σyj

 U†R(t) . (B8)
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The relevant object to compute is then

UR(t)σyj U
†
R(t) = σyj exp

−i 2 g(t)σzj
∑
〈``′j〉

σz` σ
z
`′


= σyj

∏
〈``′j〉

[
cos(2g(t))− i sin(2g(t))σzj σ

z
` σ

z
`′
]

≡ σyj Aj(t) .

(B9)

Explicitly, we have

Aj(t) = AI
j(t) +AII

j (t) , (B10a)

where

AI
j(t) = iσzj

[
β1(t)

(
σz1 σ

z
4 + σz2 σ

z
5 + σz3 σ

z
6

+ σz1 σ
z
2 σ

z
3 σ

z
5 + σz1 σ

z
3 σ

z
4 σ

z
5 + σz1 σ

z
2 σ

z
4 σ

z
6

+ σz2 σ
z
3 σ

z
4 σ

z
6 + σz1 σ

z
3 σ

z
5 σ

z
6 + σz2 σ

z
4 σ

z
5 σ

z
6

+ σz1 σ
z
2 σ

z
3 σ

z
4 σ

z
5 σ

z
6

)
− β2(t) (σz1 σ

z
2 + σz2 σ

z
3 + σz3 σ

z
4 + σz4 σ

z
5 + σz5 σ

z
6 + σz6 σ

z
1)
]
,

(B10b)

AII
j (t) = β3(t) + β4(t)

(
σz1 σ

z
2 σ

z
3 σ

z
4 + σz1 σ

z
2 σ

z
3 σ

z
6 + σz1 σ

z
2 σ

z
4 σ

z
5

+ σz1 σ
z
2 σ

z
5 σ

z
6 + σz1 σ

z
3 σ

z
4 σ

z
6 + σz1 σ

z
4 σ

z
5 σ

z
6

+ σz2 σ
z
3 σ

z
4 σ

z
5 + σz2 σ

z
3 σ

z
5 σ

z
6 + σz3 σ

z
4 σ

z
5 σ

z
6

+ σz1 σ
z
3 + σz1 σ

z
5 + σz2 σ

z
4 + σz2 σ

z
6 + σz3 σ

z
5 + σz4 σ

z
6

)
,

(B10c)

where

β1(t) = 2 c3(t) s3(t) ,

β2(t) = c(t) s5(t) + c5(t) s(t) ,

β3(t) = c6(t)− s6(t) ,

β4(t) = c2(t) s4(t)− c4(t) s2(t) ,

(B10d)

and we use the shorthand notation c(t) ≡ cos(2g(t)) and s(t) ≡ sin(2g(t)).
The Floquet Hamiltonian at infinite frequency, obtained from the time average of the Hamiltonian Eq. (B8),

H(0)
F = −h

∑
j

σyj

( 1

T

∫ T

0

dtAj(t)
)
, (B11)

upon using Eq. (B10), depends on the following parameters

β1(λ, ϕ) =
1

2π

∫ 2π

0

dτ 2 cos3
[
2λGϕ(τ)

]
sin3

[
2λGϕ(τ)

]
, (B12a)

β2(λ, ϕ) =
1

2π

∫ 2π

0

dτ
{

cos
[
2λGϕ(τ)

]
sin5

[
2λGϕ(τ)

]
+ cos5

[
2λGϕ(τ)

]
sin
[
2λGϕ(τ)

]}
, (B12b)

β3(λ, ϕ) =
1

2π

∫ 2π

0

dτ
{

cos6
[
2λGϕ(τ)

]
− sin6

[
2λGϕ(τ)

]}
, (B12c)
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β4(λ, ϕ) =
1

2π

∫ 2π

0

dτ
{

cos2
[
2λGϕ(τ)

]
sin4

[
2λGϕ(τ)

]
− cos4

[
2λGϕ(τ)

]
sin2

[
2λGϕ(τ)

]}
, (B12d)

where Gϕ(τ) = sin (τ + ϕ)− sinϕ. Whenever

β1(λ∗, ϕ∗) = β2(λ∗, ϕ∗) ≡ β∗ 6= 0 , (B13a)

β3(λ∗, ϕ∗) = β4(λ∗, ϕ∗) = 0 , (B13b)

the Hamiltonian Eq. (B11) acquires the form

H(0)
F = 4β∗ h

∑
j

σxj e
i π4

∑
〈``′〉;j (1−σz` σz`′) , (B14)

which is the same model Eq. (B2) shown in Ref.17 to describe the 2D SPT paramagnet with Z2 symmetry. We have
found numerically that condition Eq. (B13) is satisfied, for example, for λ∗ ≈ 0.51 and ϕ ≈ ±0.27π. It is fundamental
to stress that even though the driven Hamiltonian Eq. (B6a) does not have the Z2 symmetry, this symmetry emerges
in the ω →∞ limit.
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