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Non-zero thickness of MoS2 single layer (SL) manifests in electron states forming classes of states
even and odd with respect to reflections through the central plane. These states are energetically
well separated: in particular, we show that pristine MoS2 SL exhibits two bandgaps Eg‖ = 1.9 eV
and Eg⊥ = 3.2 eV for the optical in-plane and out-of-plane susceptibilities χ‖ and χ⊥, respectively.
Because of this, odd states are often neglected, which effectively reduces MoS2 SL to a perfect 2D
system. We study states bound to defects in MoS2 SL with three types of vacancy defects (VD):
(i) Mo-vacancy, (ii) S2-vacancy, and (iii) 3×MoS2 quantum antidot — and show that odd states
play equally important role as even. In particular, we show that odd states bound to VD lead to
resonances in χ⊥ inside Eg⊥ in MoS2 SL with VDs. Additionally, we demonstrate that the states
bound to VDs are not necessarily confined to the bandgap in the even subsystem, which necessitates
extending the energy region affected by the bound states.

PACS numbers: 61.72.jd,42.65.An,71.15.-m,73.22.-f

Introduction. Monolayer transition metal dichalco-
genides (TMDCs) (MX2; M= transition metal such as
Mo, W and X=S, Se, Te) have attracted substantial at-
tention due to intriguing electronic properties. Mono-
layer TMDCs are semiconductors with direct bandgap
Eg‖ in the visible range, which makes them suitable for
optoelectronic, spintronic, valleytronic, and photodetec-
tor devices.1–7 In order to increase their performance, it
is crucial to characterize the defects present in TMDC
SLs.

Here we show that the bandgap Eg⊥ = 3.2 eV for the
optical out-of-plane susceptibility χ⊥ in pristine MoS2

SL provides a large energy window to characterize va-
cancy defects (VDs). Pristine MoS2 SL is invariant with
respect to σh reflection about the z = 0 (Mo) plane,
where the z axis is oriented perpendicular to the Mo
plane. Therefore, electron states break down into two
classes: even and odd, or symmetric and anti-symmetric
with respect to σh. We show below that this leads to
the nontrivial consequence that χz = χ⊥ has a bandgap
of Eg⊥ = 3.2 eV, which is substantially larger than the
bandgap Eg‖ = 1.9 eV for the in-plane component of
the optical susceptibility χx = χy = χ‖. As we show,
due to the optical selection rules for the even and odd
states, there are no π transitions, driven by z-polarized
photons, below 3.2 eV. Hence, χ⊥ for pristine MoS2 SL
must vanish for energies below 3.2 eV. While the even
states enjoyed the most attention,4,6–8 here we show that
the odd states need to be considered on equal footing
with the even states.

Several studies on VDs in 2D materials have emerged
recently. The minibands resulting from quantum antidot
(QAD) superlattices can be used to tune the bandgaps
of graphene9 and MoS2 SL10,11. Substitutional oxy-
gen defects lead to suppression of conductivity12 and
photoluminescence13. VDs in MoS2 SL have been char-
acterized theoretically in terms of magnetic properties.14

Scanning transmission electron spectroscopy was used to
characterize several types of defects in MoS2 SL, includ-
ing Mo, S, and S2 VDs.15 MoS2 SL with S-vacancies
might catalyze alcohol synthesis from syngas.16

While it has been unclear so far how to characterize
VDs by means of χ‖,

8 here we show that VDs yield strong
resonances in χ⊥, which provides the opportunity to opti-
cally characterize VDs in MoS2 SL with VDs (denoted by
MoS2 SLVD). We consider the optical signatures of states
bound to three types of VDs in MoS2 SLVD: (i) Mo-
vacancy, (ii) S2-vacancy, and (iii) a hexagonal 3×MoS2

QAD (see Fig. 1).
Bandstructure. First we start with the numerical

bandstructure calculation of MoS2 SLVD using stan-
dard density functional theory (DFT) with meta-GGA
functionals,17 providing accurate estimates of bandgaps
without the need to perform computationally intensive
DFT calculations using the GW approximation.18,19 The
calculations are implemented within Atomistix Toolkit
2014.2.20 The resulting bandstructures are shown in
Fig. 2. The periodic structure of the superlattice allows
one to characterize the electron states by the bandstruc-
ture εn(k), where k is the vector in the first Brillouin zone
of the superlattice and n enumerates different bands. We
consider supercells with dimensions 7 × 7 × 1 (Fig. 2 b,
c) and 8 × 8 × 1 (Fig. 2 d) having 147 and 192 number
of atoms, respectively. For Brillouin zone integration we
consider k sampling of 7 × 7 × 1. The cut off energy is
set to 300 eV and the structure is optimized by using a
force convergence of 0.01 eV/Å.
Tight-binding model (TBM) and symmetries. Within

the TBM approximation the electron wavefunction can

be presented as |ψ〉 =
∑
j,µ∈Oj

ψ
(j)
µ ϕ

(j)
µ (r−R(j)), where

j enumerates atoms in the layer and the summation over
µ runs over respective atomic orbitals, whose set for the
j-th atom is denoted Oj . Choosing ex,y in the plane
of the layer and ez perpendicularly, for Mo the real or-
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FIG. 1. (a) Bandstructure of MoS2 SL, showing the out-of-plane bandgap Eg⊥ = 3.2 eV determined by the transition T0. The
Fermi level is set at εF = 0 eV. (b) Mo-vacancy in 7x7 supercell, (c) S2-vacancy consisting of a pair of S atoms removed in 7x7
supercell, (d) hexagonal 3×MoS2 QAD in 8x8 supercell.

bitals of main importance are the d-orbitals dx2−y2 , dxy

and so on, while for S atoms these are p-orbitals p
(t,b)
i

with i = x, y, z and t and b denoting the top and bot-
tom layers, respectively. The classification of the elec-
tron states simplifies when the symmetry with respect
to σh : z 7→ −z is taken into account. The electron
states transform according to A and A′, the irreducible
representations of Z2 = {e, σh}. The respective even
and odd orbitals are locally spanned by the bases:21,22

{dx2−y2 , dxy, dz2 , (p
(t)
x,y + p

(b)
x,y)/

√
2, (p

(t)
z − p(b)z )/

√
2} and

{dxz, dyz, (p(t)x,y − p(b)x,y)/
√

2, (p
(t)
z + p

(b)
z )/
√

2}.
The full group of the point symmetries of MoS2 SLVD

with our considered VDs is D3h = C3v ⊗ Z2. Thus the
states bound to the VDs, even and odd with respect to
σh, must transform according to A1,2 and E, the irre-

(a) (b)

(c) (d)

FIG. 2. Bandstructure of different kinds of VDs. The Fermi
level is set at εF = 0 eV. Red (blue) lines show odd (even)
states. Arrows indicate transitions corresponding to reso-
nances in χ⊥(ω) (see Eq. (4) and below) shown in Fig. 4.
(a) Mo-vacancy. (b) S2-vacancy. Here singlets and doublets
are in different half-planes with respect to the Fermi level.
Therefore there are no π transitions. (c) S2-vacancy with
charge added to MoS2 SLVD, raising the Fermi level such
that π transitions become allowed. (d) 3×MoS2 QAD.

ducible representations of C3v. Respectively, the bound
states must appear as singlets and doublets. It should be
noted that such classification holds if the overlap between
states bound to different VDs is absent.

The simplest model describing the arrangement of the
bound states is the TBM considering only the atoms on
the edge of the VD, which is justified by the small local-
ization radius of the bound states. For the case of the
hexagonal 3×MoS2 QAD one finds

ε = ε̄±
√
δε2 + 4|t|2 cos2(ξ), (1)

where ε̄ = (εMo + εS) /2, δε = (εMo − εS) /2 and ξ = 0
for singlet states (invariant with respect to C3 rotations)
and ξ = 2π/3 for doublets (states aquiring the phase
factor exp(±i2π/3)). Here εMo, εS are the phenomeno-
logical parameters describing the energy of the electron
on Mo and S atoms, respectively, and t is the hopping
parameter. Equation (1) correctly reproduces the se-
quence {A′1, E′, E′, A′1} for even and {A′′1 , E′′, E′′, A′′1}
for odd states, i.e. {singlet, doublet, doublet, singlet},
while traversing the gap Eg‖ from the bottom of the con-
duction band down over the bound states (see Fig. 2d).

It may appear that this model contradicts the numer-
ical results for the Mo-vacancy, where the numerical cal-
culations show only 5 bound states (see Fig. 2a). How-
ever, the simplest TBM model suggests that in addition
to the bound states appearing inside the gap Eg‖ of MoS2

SL there must be states, in this particular case a singlet
state, hidden inside the bands. Indeed, there is such a
state inside the valence band at energy ε ≈ −0.5 eV be-
low the top of the valence band (see Fig. 3b). It should
be emphasized that these states, which lay outside of the
bandgap in the bandstructure of even states, are rou-
tinely overlooked.

Moreover, the parameters εMo and εS are deter-
mined by the microscopic Hamiltonian, e.g. εS =〈
φ
(S)
µ

∣∣∣H ∣∣∣φ(S)µ

〉
. Thus, we can expect that there is a va-

riety of states bound to VDs besides the ones inside the
gaps Eg‖, Eg⊥. An example of such states is provided
by the case when the bound state is made of Sulfur’s
s-orbitals (see Fig. 3c) at energy ≈ −12 eV below the
Fermi level.
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FIG. 3. Examples of the electron probability distributions in
states bound to Mo-vacancy. Single super-cell is shown, black
and gray dots indicate positions of Mo and S atoms, respec-
tively. The distances are measured in Å. (a) Odd doublet at
energy ≈ 0.5 eV above the top of the valence band, (b) odd
singlet inside the valence band at energy ≈ 0.5 eV below the
top of the valence band, (c) deep defect state at energy ≈ −12
eV below the Fermi level formed by Sulfur’s s orbitals.

Dirac model. The TBM considered above relates the
structure of the spectrum of the bound states to the sym-
metry of the VD. Due to the fact that its parameters
should be fitted to the energies of electron states obtained
by other means, however, it cannot explain neither the
smallness of the localization radius of the bound states
nor their energies. In particular, it cannot explain why
the odd states may form bound states inside the gap Eg‖.
These features, however, can be understood with the help
of an analysis of circularly symmetric QADs based on
the Dirac equation which emerges as the two-band model
within the k · p-approximation near the K-point of the
Brillouin zone of MoS2 SL.

Considering two bands with the energy separation 2∆
between them, the equation describing the spatial dis-
tribution of the pseudo-spin has the form HτΦτ = εΦτ ,
where τ = ±1 enumerates the valleys, the energy refer-
ence level is chosen to be positioned at the center be-
tween the bands, and Hτ = τσz∆ + vσ · p. Assum-
ing that the QAD has circular shape, we rewrite this
equation in the polar coordinates and with respect to

Φ̃τ = exp(iσzφ/2)Φτ
√
r we obtain H̃τ Φ̃τ = εΦ̃τ , where

H̃τ = τσz∆− iv
[
σx

∂

∂r
+ σy

1

r

∂

∂φ

]
. (2)

The solution is subject to the condition of vanish-
ing radial component of the probability current at the
boundary23,24 〈Φ(r0) |nB · σ |Φ(r0)〉 = 0, where r0 is the
radius of the QAD and nB is the unit vector perpendicu-
lar to the boundary. The straightforward implementation
of such boundary condition is provided by the infinite
mass model,25 where the QAD is represented by a region
with renormalized width of the gap ∆ → ∆(1 + d(r)),

with d(r) = 0 for r > r0 and d(r) → ∞ when r < r0.
In our case we identify ∆ = Eg‖. Within this model
the boundary condition is satisfied if |Φ(r0)〉 ∝ |τy〉,
i.e. the pseudo-spin |Φ(r0)〉 is tangent to the bound-
ary of the QAD. Next, observing that σz |τy〉 = |−τy〉
and σx |τy〉 = iτ |−τy〉, one can see that H̃τ has an an-
gularly independent solution |Φ(r0)〉 ∝ exp(−r/rc) |τy〉
corresponding to ε = 0, which exponentially decays for
r > r0 with the localization radius rc = v/∆.

Thus, independently of its radius the QAD may sup-
port a bound state with very short localization length and
with the energy in the middle between the energies of the
coupled bands. Comparing this finding to the distribu-
tion of energies of even and odd bands,21 the conclusion
can be drawn that, indeed, both even and odd bands may
support bound states with the energy near the energy of
the Fermi level, i.e. inside the gap Eg‖ of MoS2 SL.
Optical spectrum. In view of nontriviality of the ap-

pearance of odd bond states inside the gap Eg‖ it is im-
portant to note that the presence of the bound states of
different parities manifests itself in the optical spectrum
of MoS2 SLVD. Therefore, they are available for a direct
experimental observation.

When VDs form a superlattice the problem of the op-
tical response can be approached along the same line as
for single layered systems.26 Let k be a point in the first
Brillouin zone of the superlattice. At this point the elec-
tron wave function satisfies

εn(k) |ψn(k)〉 = H(k) |ψn(k)〉 , (3)

where n enumerates the superlattice bands. Implement-
ing the k · p-approximation of Eq. (3) in the usual way
and using the Peierls substitution we obtain the Hamilto-
nian of interaction with the elecromagnetic field HEM =
e
mA ·p. Treating HEM as a perturbation within the lin-
ear response theory we find the Kubo-Greenwood optical
susceptibility (see e.g. Ref. 27)

χ̂(ω) =
πe2~4

m2ε0ω2

∑
n,n′

∫
dkPn,n′(k)⊗Pn′,n(k)

× f [εn(k)]− f [εn′(k)]

εn(k)− εn′(k)− ω − iγ
,

(4)

where f(ε) is the Fermi distribution, ⊗ denotes the tensor
product and Pn,n′(k) = 〈ψn(k)|p |ψn′(k)〉.

The appearance of the states inside the gap Eg‖ of
MoS2 SL leads to resonances at frequencies of corre-
sponding transitions. Several transitions, however, are
prohibited due to symmetry, i.e. when Pn,n′(k) does not
transform according to the symmetric representation of
the symmetry group of the superlattice. Pn,n′(k) trans-
forms according to I(C3v)

2 ⊗ I(Z2)2 ⊗ I(P), where I(G)
and I(P) denote irreducible representations of group G
and the momentum operator P, respectively, and pow-
ers are shorthand notations for direct products. One
needs to consider separately the in-plane and out-of-plane
components of Pn,n′ because they transform according
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FIG. 4. (a) Resonances of Imχ‖(ω) (blue) and Imχ⊥(ω) (red)
in pristine MoS2 SL. (b) MoS2 SLVD with Mo-vacancy: T3

resonance in χ⊥(ω) is due to the odd doublet inside the va-
lence band. (c) MoS2 SLVD with S2-vacancy: If uncharged
(green line), π transitions are suppressed; if charged (red line),
π transitions are allowed. (d) MoS2 SLVD with 3×MoS2.

to different irreducible representations of D3h, namely,
E′ = E ⊗ A′ and A′′2 = A1 ⊗ A′′, respectively. Taking
into account the multiplication rules for C3v: A

2
1,2 = A1,

A1,2 ⊗ E = E and E2 = A1 ⊕ A2 ⊕ E, we find that the
out-of-plane component of Pn,n′(k), which gives rise to π
transitions, is nonzero only between odd and even states
of the same multiplicity (either between singlets or be-
tween doublets), while the in-plane components, which
lead to σ transitions, are nonzero for all states of the
same parity. Thus χ̂ is diagonal in the basis spanned by
ex,y,z and is isotropic in the plane of the layer and, thus,
is characterized fully by two eigenvalues χ‖ and χ⊥.

The numerical results for the optical spectrum are
shown in Fig. 4. The difference between χ⊥(ω) for pris-
tine MoS2 SL and for MoS2 SLVD is drastic. For pristine
MoS2 SL the lowest energy transition T0 yielding nonzero
χ⊥ (see Fig. 4a) corresponds to the transition between
the top of the valence band to the CB + 1 band with
energy 3.2 eV (see Fig. 1a). In turn, for MoS2 SLVD the
lowest energy resonance is due to the transition between
bound states of the same degeneracy with the energy dif-
ference smaller than 1 eV (see Fig. 4b, c, and d). This
result is in stark contrast to true 2D systems where π
transitions are absent, and the effect of non-zero small
thickness may be expected to be observed at energies at
least significantly higher than those characteristic to σ
transitions. In addition, the selection rules governing π
transitions present a great opportunity for experimental
characterization of states bound to VDs.

The qualitative picture based on the symmetry prop-
erties establishes the connection between the main fea-

tures of spectrum of the bound states and the optical
response. For example, for the Mo-vacancy the T2 res-
onance in χ⊥(ω) involves a bound state hidden in the
valence band. In the case of S2-vacancy the symmetry
analysis predicts that χ⊥(ω) is featureless at low energies
due to the smallness of ff −fi, which is confirmed by the
numerical calculations (see Fig. 4b). The Fermi level εF ,
however, can be shifted by means of a gate voltage to
lie between equally degenerate states with different par-
ities, which support transitions contributing to χ⊥(ω).
Then χ⊥(ω) should demonstrate a low-energy resonance.
In the numerical simulations we modified the position of
the Fermi level by adding charge to the whole layer by
means of a charge concentration of 1.4× 1021cm−3, lead-
ing to a resonance in χ⊥(ω) (see Fig. 4c). Fig. 4d shows
the resonances due to transitions between states bound
to 3×MoS2.

When there is no overlap between bound states
of neighboring VDs, we can use Imχ⊥,Ti =
(ρ/L)(d2Ti

/ε0~)γ/[γ2 + (εn − εn′ − ω)2] for the transition

Ti of a dilute gas of VDs,28 where ρ is the surface
density of VDs and L = 0.7 nm is the SL thickness.

dTi =
〈
ψnTi

(r)
∣∣ r ∣∣∣ψn′

Ti
(r)
〉

denotes the dipole moment

of the transition Ti. This formula is in excellent agree-
ment with the numerical calculations shown in Fig. 5 for
supercell sizes from 7x7 up to 13x13. The peak for the
5x5 supercell does not follow this formula because the
overlap between neighboring VDs is substantial, which
leads to a peak shift and homogeneous peak broadening
due to the formation of minibands.

(a) (b)

FIG. 5. (a) Magnitude of χ⊥(ω) as a function of VD concen-
tration ρ for Mo-vacancy around the peak T2 (see Fig. 4b)
for the five supercells 5x5, 7x7, 9x9, 11x11, and 13x13. (b)
Linear dependence of χ⊥(ω) at maximum of peak T2.

Conclusion. We show that in order to describe the
electron states bound to VDs in MoS2 SLVD, it is neces-
sary to consider odd states, which lead to the appearance
of resonances in the out-of-plane optical response χ⊥(ω).
Our results pave the way to the optical characterization
of VDs in TMDC SLVD, which is of utmost importance
for the future realization of high-performance electronic
and optoelectronic devices based on TMDC SLs.
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