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Abstract 

We find that the multi-valued character of the G factor as a function of the reduced gradient (s) 

still exists after accounting for pseudopotential artifacts and the kinetic energy global upper 

bound. We also find that the VT84F functional indeed exhibits stable convergence and more 

reasonable results for self-consistent bulk properties compared to other generalized gradient 

approximation (GGA) kinetic energy density functionals (KEDFs) that we tested earlier. 

However, VT84F generally yields overestimated equilibrium volumes, which may result from 

its inability (as with all GGAs) to reproduce the G-s multi-valued character. The analogous 

failure to predict the multi-valued character of G as a function of the reduced density (d) is 

also likely to be responsible for the inaccuracy of our vWGTF functionals reported earlier. 

Our multi-valuedness analysis therefore does not impugn any particular GGA KEDF. Instead, 

it merely confirms the importance of pointwise analysis for improving KEDFs, by 

emphasizing the need to resolve the multi-valuedness of G with respect to various density 

variables. 
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In S. B. Trickey, V. V. Karasiev, and D. Chakraborty’s interesting comment1 on our 

previous paper,2 two major issues are discussed: the multi-valuedness of the G factor versus 

the reduced gradient (s)2 and the numerical stability of the VT84F3 kinetic energy density 

functional (KEDF). On one hand, we still believe in the existence and significance of G-s 

multi-valuedness, despite possible pseudopotential artifacts and the global kinetic energy 

upper bound.1 On the other hand, we are pleased to see the improved convergence of the 

VT84F KEDF and further perform a series of tests on it, as presented below.  

First, we agree that using pseudopotentials may introduce artifacts in the G distribution, 

especially around nuclei. The electron pseudodensities are generally very small around nuclei, 

which then lead to large G values (see Fig. 2 in Ref. 2). However, even after removing the 

outer branch in G versus s, the multi-valuedness still exists (e.g., see Figure 1, which is based 

on the data points in grey (x=0) in Fig. 6 in Ref. 2). It will be interesting to do a similar 

analysis in all-electron Kohn-Sham (KS) density functional theory (DFT), where we suspect 

the multi-valuedness also exists because any artifacts due to pseudopotentials will be 

confined to near-nucleus regions. It is possible that in all-electron cases, the multi-valuedness 

of G versus s will be lessened but it awaits more studies and data to confirm. 

Second, we agree it is important to consider exact requirements when constructing 

KEDFs. However, we disagree that the data points with G>1 can be cut out or ignored due to 

the kinetic energy upper bound4,5 of the Thomas-Fermi6-8 plus von Weizsäcker KEDF.9 As 

also mentioned in Ref. 1, the upper bound only applies to the total kinetic energy, while the 

corresponding pointwise upper bound for local kinetic energy density is only sufficient but 



 

3 
 

not necessary. In the Appendix, we provide a proof for the vWGTF1 KEDF proposed in our 

original paper,2 which always satisfies the global upper bound but not the pointwise one, for 

any periodic or finite-volume system. The proof does not hold for isolated systems with 

infinite volumes where the average density is ill-defined. However, the vWGTF1 KEDF 

(simply using ρ0 rather than ρmax in the scale function) still can be used for such systems in 

any practical calculations in which periodic or finite-volume unit cells are used as an 

approximation. The KEDF would be by no means accurate or physical in these calculations, 

but it still possesses the properties described above according to the proof. There are very 

possibly other KEDFs that can meet this criterion more rigorously for all systems. The exact 

KEDF (in KSDFT) should be one of them, at least in pseudopotential calculations as shown 

in Ref. 2. Furthermore, we pointed out in Ref. 2 that G versus d (the reduced electron density) 

has one desirable feature in our analysis: G(d=1)=1 in the materials we studied. For many 

regions where the densities are smaller than the average density, the G value from KSDFT is 

larger than 1. Assuming the pseudopotentials only introduce differences near nuclei, it is 

therefore very possible that such G values will also be present in all-electron cases.   

Finally, we are glad to learn that the VT84F functional can exhibit better numerical 

convergence. It is unfortunate that the VT84F KEDF was not among the many tested in our 

original paper,2 simply because there are too many KEDFs in the literature for all to be tested. 

After communication with S. B. Trickey, we implemented the VT84F KEDF in PROFESS10 

and confirmed its convergence. We then performed tests similar to those in Ref. 2 for VT84F 

(see Tables I-IV). Encouragingly, the non-self-consistent errors are significantly smaller than 

other generalized gradient approximation (GGA) KEDFs,2 especially for Li phases. However, 
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the errors for the alloy and vacancy structures are slightly larger. In self-consistent 

calculations, the VT84F KEDF also provides reasonable results for bulk moduli and phase 

ordering energies, while the equilibrium volumes are overestimated, especially for Al, Mg, 

and their alloys, with errors around 10%. Overall, this GGA KEDF not only provides stable 

convergence but also offers much improved bulk properties compared to other GGA KEDFs. 

Although the results are not as good as the vWGTF and Wang-Govind-Carter (WGC) 

KEDFs,2 the accuracy is rather impressive considering that it was not specifically designed 

for the systems tested.  

To conclude, we show that the G versus s multi-valuedness still exists after considering 

pseudopotential artifacts and the kinetic energy upper bound. All-electron calculations may 

possibly share this multi-valuedness feature, which awaits future research to confirm. Such 

multi-valuedness was discussed previously in GGA exchange-correlation (XC) functional 

studies.11-12 However, the accuracy requirement of XC functionals is much lower since the 

XC energy is smaller than the kinetic energy by orders of magnitude. For example, the local 

density approximation XC functionals work surprisingly well for many systems, while the 

counterpart in KEDFs (namely Thomas-Fermi) is of little practical use. Thus, the 

multi-valued character of G is likely to be more important in KEDF development. 

The multi-valuedness analysis does not aim to undervalue or discourage GGA KEDF 

development. More GGA KEDFs are being developed with improved stability and accuracy, 

such as the VT84F KEDF. Nevertheless, the VT84F KEDF still features considerable defects 

(overestimated equilibrium volumes) when describing bulk metals, which might be due to its 

failure to capture the multi-valuedness. Similarly, our vWGTF models2 also fail to reproduce 
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the G versus d (the reduced density ρ/ρ0) branching structure in alloys and defective 

structures. They thus yield unsatisfying results for such systems. By contrast, the WGC 

KEDF generally gives accurate results for pointwise G distributions, including remarkably 

the multivaluedness, which may be the underlying reason for its outstanding accuracy for 

main group metals. As a result, we, in our original paper,2 did not intend to undervalue 

existing or future GGA KEDFs. Instead, we merely aim to emphasize the significance of 

analyzing pointwise distributions, including G, s as well as other density variables like d and 

the Laplacian of the density. Employing more density variables other than s may help to 

resolve the multi-valuedness problem and improve the accuracy of KEDFs. 
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Table I. The VT84F KEDF non-self-consistent total kinetic energy errors and mean absolute errors (MAEs) 

(in %) with respect to KSDFT benchmarks for bulk Al, Mg, and Li in the fcc, bcc, hcp, and sc structures at 

KSDFT equilibrium volumes. See numerical details in Ref. 2. 

KEDF fcc Al hcp Al bcc Al sc Al hcp Mg fcc Mg bcc Mg sc Mg bcc Li fcc Li hcp Li sc Li MAE 

VT84F 0.51 0.25 -0.09 2.05 1.70 1.37 1.49 -0.19 -0.10 -0.11 -0.12 -0.08 0.56 

 

Table II. The VT84F KEDF non-self-consistent total kinetic energy errors and MAEs (in %) with respect to 

KSDFT benchmarks for fcc Al, hcp Mg, and bcc Li vacancy structures, as well as Al3Mg, at KSDFT geometries. 

KEDF Al3Mg Al Vac Mg Vac Li Vac MAE 

VT84F 1.20 1.05 2.07 -0.01 1.08 

 

Table III. Equilibrium volumes (V0), bulk moduli (B), and equilibrium total energies (Emin) for various Al, Mg, 

and Li phases calculated by self-consistent KSDFT and OFDFT-VT84F. See numerical details in Ref. 2. 

Al fcc hcp bcc sc 

V0 (Å3) 
KSDFT 16.575 16.733 17.025 19.937 
VT84F 18.101 18.116 18.163 19.638 

B (GPa) 
KSDFT 77 75 70 57 

VT84F 90 90 90 81 

Emin (eV/atom) 
KSDFT -57.202 0.024 0.081 0.334 
VT84F -57.273 -0.001 0.022 0.574 

Mg fcc hcp bcc sc 

V0 (Å3) 
KSDFT 22.899 23.073 22.839 27.107 
VT84F 25.425 25.385 25.300 27.432 

B (GPa) 
KSDFT 38 38 38 24 

VT84F 33 34 33 28 

Emin (eV/atom) 
KSDFT -24.246 0.013 0.029 0.408 
VT84F -24.204 -0.001 0.009 0.332 

Li fcc hcp bcc sc 

V0 (Å3) 
KSDFT 19.397 19.308 19.324 19.932 
VT84F 19.417 19.304 19.331 20.229 

B (GPa) 
KSDFT 16 17 17 17 

VT84F 16 16 16 16 

Emin (eV/atom) 
KSDFT -7.550 -0.001 0.000 0.136 
VT84F -7.553 -0.002 -0.001 0.129 
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Table IV. Equilibrium volume (V0), bulk modulus (B), and alloy formation energy (Efm) for Al3Mg calculated by 

self-consistent KSDFT and OFDFT-VT84F. 

 B (GPa) V0 (Å3) Efm (eV/atom) 

KSDFT 63 71.828 -0.019 
OFDFT-VT84F 78 77.073 0.083 

 

 

 

 

Figure 1. KSDFT G versus s with x=0 for fcc Al (zoomed in for Fig. 6 in Ref. 2). 
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Appendix 

Proposition: Consider the vWGTF1 KEDF2 
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where a = 0.9892 and b = -1.2994. Although the local pointwise G factor can be any positive 

value (including those greater than 1), the total kinetic energy always satisfies the TFvW 

upper bound, namely 
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for all periodic or finite-volume systems. 

Proof: to show Equation (2) is true, we rewrite the Equation (1) as 
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We only need to show 
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where V is the unit cell volume. Since –b=1.2994>1, the function f(x)=x-b is convex. We thus 

have 

V

d
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d b
b
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Along with the fact that a<1 and that all densities are always nonnegative, we have 
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Since 5/3+b>0 and –b>0, [ ]bb ++ − 3/53/5 )'()( rr ρρ  and [ ]bb −− − )'()( rr ρρ  always have the same 

sign, which gives 
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Equation (5), (4), and (2) are thus true. QED 


