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We suggest a more nuanced view of the merit and utility of generalized gradient approximations
(GGAs) for the non-interacting kinetic energy than the critique of Xia and Carter (X-C). Specifically,
the multiple-valuedness of the Pauli term enhancement factor (denoted G[n] by X-C), with respect
to the inhomogeneity variable s can be excluded by enforcement of a bound on the Kohn-Sham KE
to achieve universality of the functional along with enforcement of proper large-s behavior. This is
physically sensible in that the excluded G values occur for s values that correspond to low densities.
The behavior is exacerbated by peculiarities of pseudo-densities. The VT84F GGA, constructed with
these constraints, does not have the numerical instability in our older PBE2 functional analyzed by
X-C.

Part of Xia and Carter’s1 (X-C hereafter) interesting
recent investigation of single-point orbital-free kinetic en-
ergy (OFKE) density functionals involved writing the
standard Kohn-Sham (KS) KE energy density as

τs([n]; r) = τvW ([n]; r) +G([n]; r)τTF ([n]; r) (1)

with τvW = |∇n|2/8n and τTF = cTFn
5/3, the canoni-

cal von Weizsäcker2 and Thomas-Fermi3,4 KE densities
respectively and n(r) the electron number density. This
is the Pauli term decomposition; see Ref. 5 and refer-
ences therein. X-C’s numerical exploration of G([n]; r)
showed, in the example of fcc Al, that G is not a
single-valued function of the reduced density gradient
sX−C = |∇n|/n4/3. See X-C’s Fig. 6 and associated dis-
cussion. (The subscript “X-C” distinguishes their gradi-
ent variable from the more common s variable used in our
papers, s = κsX−C , with κ = 1/[2(3π2)1/3] = 0.16162.
Behavior found at large sX−C corresponds to interme-
diate s-behavior. This becomes important below.) On
this basis they concluded that “. . . it is not sensible to
predict G using only s” and further that “. . . this mul-
tivalued character calls into question the validity of the
GGA’s F (s)”. GGA is generalized gradient approxima-
tion, in which G([n]; r) ≈ Fθ(s). Then, among various
informative tests, they explored the convergence behav-
ior (with respect to plane-wave cutoff) of the mildly em-
pirical GGA OFKE functional “PBE2” which came from
our group several years ago6.
We believe that X-C’s stance regarding GGAs is too

harsh and that a more nuanced perspective is useful. In
support of that view, we summarize here why it is both
feasible and useful to deal with the double-valuedness by
application of physically relevant constraints to construct
a GGA. In relation to that, we show that the lack of
convergence with respect to plane-wave cutoff which X-C
found for PBE2 is eliminated in a fully constraint-based
GGA, namely VT84F7.
At the outset we stipulate that no OFKE GGA can

meet all the requirements derivable for the exactG[n] any
more than an exchange-correlation (xc) GGA can meet
all the exact requirements on it8. The issue is whether

a useful GGA can be developed by judicious determina-
tion and use of the physically most important constraints.
In that context, for simplicity of comparison with prior
work, consider the behavior of G for which x = 0, x being
the coefficient of ∇2n in X-C’s definition of τs, X-C Eq.
(11). Begin at s = 0 and consider first only the lower
branch of G([n]; r) as shown in X-C Fig. 6. There exists
a global bound on the KS KE, conjectured by Lieb9 and
proved, at least to the rigor typical in physics, by the in-
finite particle limit of the inequality due to Gázquez and
Robles10, namely

Ts ≤ TvW + TTF . (2)

To compel an approximate functional to be univer-

sal, that is to obey this bound for all possible den-
sities, necessitates imposition of the constraint locally,
τs ≤ τvW + τTF . This imposition corresponds to com-
mon usage of the Lieb-Oxford bound in GGA exchange
functionals11,12. Though evidently not a necessary con-
dition, this point-wise constraint yields a non-empirical
GGA (for which G([n]; r) ≈ Fθ(s)) that automatically
cuts out all of the values above unity on the lower branch
of G since Fθ ≤ 1 because of the constraint.
In the case of xc GGAs, multivaluedness has been

known for some time12,13, yet there are highly success-
ful xc GGAs. The corresponding issue for an OFKE
GGA is whether anything useful is left after removing
G > 1 by requiring Fθ ≤ 1. First, the region of the lower
branch in which X-C found G([n]; r) substantially in ex-
cess of unity is roughly sX−C > 6 → 10 or s > 1 to 1.6.
But it is well documented that even many isolated sys-
tems, which have very diffuse density tails (hence, large
s), have essentially zero density beyond roughly s > 4
and very little density for s > 2.5. See Fig. 6 in Ref.
12 as well as earlier work in Ref. 13. Often the KS
KE is nearly totally determined by the behavior of G
over a smaller range of s. In the SiO molecule, for ex-
ample, the KS KE is dominated by contributions from
0.26 ≤ s ≤ 1.3017. Where there are non-zero contribu-
tions to the KE density for larger values of s, what the
cutoff in a proper GGA does is to approximate the lower
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branch of G in that region by unity, at most. (To meet
other constraints, our actual GGAs use a smaller value7.)
The physical justification is that such contributions are
comparatively small even though the lower branch of G
substantially exceeds unity because n is small (hence one
expects n5/3 to be smaller yet), so a GGA underestimate
of G in that region should be a satisfactory approxima-
tion. Note also that it is an exact requirement for any
OFKE GGA that lims→∞ τGGA(s) = τvW . Physically
this is because arbitrarily large s corresponds to density
tail regions. Those are 1-electron densities, hence cor-
respond to the von Weizsäcker KE density. Cutting off
is eminently sensible therefore on grounds of both con-
straints.

What about the other branch of G? For small val-
ues of s on that branch, it appears that G([n]; r) is par-
ticularly large because of pseudo-density properties that
are qualitatively different from physical densities. X-C
Fig. 6(b) shows that G for fcc Al is largest (roughly 14)
for very small s, and X-C Figs. 2 and 3 confirm that
this is true for small d = npseudo/n0. X-C Fig. 8 shows
that small npseudo occurs at the nuclear sites. Since for
pseudo-densities τKS 6= τvW at those sites, but τTF eval-
uated with that small pseudo-density is small, G from
the pseudo-densities is forced to be large. Such exagger-
ated behavior would not occur with the true all-electron
density, which obeys the Kato cusp condition and has
local maxima at the nuclear sites. Consequently τvW
dominates in the near-nucleus region14 and the corre-
sponding G is much smaller than the G forced by the
pseudo-density in that region. We note that VT84F7

was parameterized in part against the Kato condition.
(As an aside, we suspect that the pseudo-density also
may be problematic for GGAs as well as functionals with
higher-derivative dependence because of unphysical zeros
of the pseudo-density gradient along bonds. This may
be a real problem for the OFDFT agenda, since local
pseudo-potentials are technically very useful.)

Of course, these two diagnoses (on the lower and upper
branches) of the sources of large G and how to control
them do not entirely eliminate the challenge of the mul-
tivaluedness of the exact KS G. The diagnoses do help
understand how a meaningful non-empirical GGA is fea-
sible. The detail lost by exclusion is offset, at least in
part, by the addition of guaranteed physical behavior via
the constraints. Thus, while a GGA cannot reproduce all
the exact KS OFKE functional behaviors, it can repre-
sent the most important part of G on the most important
range of densities and gradients.

We turn to instability of our PBE2 GGA with re-
spect to plane-wave cutoff. PBE2 has been supplanted
by our VT84F, a non-empirical OFKE GGA functional
which obeys all of the foregoing bounding and asymp-
totic properties7. X-C did not test it. We have. Fig. 1
shows that VT84F is fully stable against plane-wave cut-
off. Note that this is precisely the same test as X-C did
for PBE2, including use of their prescription for the lo-
cal pseudopotential. (For reference, the calculated equi-
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FIG. 1: Energy vs. unit-cell volume for fcc Al computed at
three plane-wave cut-off energies using the VT84F OFKE
functional and PBE exchange-correlation functional.

librium lattice constants in increasing order of the three
cutoffs are 4.157 Å, 4.166 Å, 4.164 Å.) We had noted the
stability distinction of VT84F versus PBE2 in Ref. 15.
There the passage just below Fig. 3 reads “Our . . . PBE2
. . . [has] worse numerical convergence than VT84F be-
cause of the same wrong large-s limit.” Wang, Stott,
and von Barth16 had found such GGA OFKE instabili-
ties earlier.
X-C also note that the near-nucleus density from PBE2

is peculiar. This is almost inevitable with any properly
positive-definite GGA17. A singularity at the origin in
the Pauli potential causes the artifact. It is on a very
small scale. Only a specially selected pseudopotential
construction can remove it. It is removed if the pseudo-
density is completely flat at nuclear sites, equivalent to
s = 0 there19. One example of removing the singularity
is the GGA Pauli potential for the model pseudo-density
in Ref. 16 with a particular parameter choice.
An essential difference between standard GGA KE

functionals (e.g. P9220 and E0021 tested by X-C) and
our GGAs (VT84F, PBE2) is that the former do not
predict binding in small molecules at all, while the latter
do predict semi-quantitatively correct binding in those
molecules and simple solids6,17,18. This categorical dis-
tinction and the broad utility of these GGAs is sugges-
tive of having achieved a universal functional (though
certainly not a proof). X-C had a different goal, namely
functionals which represent well the behavior of a class
of periodically bounded materials. In fact, their fit-
ted vWGTF1 functional obeys the global Lieb-Gázquez-
Robles bound22 for such materials, but not for free
molecules with a fixed parameter (ρ0 = ρmax in X-C
notation). This non-universality can be viewed as a con-
sequence of the different emphasis of their work and ours.
While there are distinct limitations on what can be

expected of a GGA OFKE functional, the multivalued-
ness of G is not a prohibitive barrier to a useful, non-
empirical GGA. The current situation is substantially
better than the limitations of the mildly empirical PBE2
functional (which is almost 10 years old) analyzed by
X-C. In particular, both the empirical parameterization
and the numerical convergence limitations of PBE2 have
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been eliminated in the entirely constraint-based VT84F
functional7.
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