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The Majorana code is an example of a stabilizer code where the quantum information is stored in
a system supporting well-separated Majorana Bound States (MBSs). We focus on one-dimensional
realizations of the Majorana code, as well as networks of such structures, and investigate their
lifetime when coupled to a parity-preserving thermal environment. We apply the Davies prescription,
a standard method that describes the basic aspects of a thermal environment, and derive a master
equation in the Born-Markov limit. We first focus on a single wire with immobile MBSs and
perform error correction to annihilate thermal excitations. In the high-temperature limit, we show
both analytically and numerically that the lifetime of the Majorana qubit grows logarithmically
with the size of the wire. We then study a trijunction with four MBSs when braiding is executed.
We study the occurrence of dangerous error processes that prevent the lifetime of the Majorana
code from growing with the size of the trijunction. The origin of the dangerous processes is the
braiding itself, which separates pairs of excitations and renders the noise nonlocal; these processes
arise from the basic constraints of moving MBSs in 1D structures. We confirm our predictions with
Monte Carlo simulations in the low-temperature regime, i.e. the regime of practical relevance. Our
results put a restriction on the degree of self-correction of this particular 1D topological quantum
computing architecture.

PACS numbers: 03.65.Yz, 05.30.Pr, 03.67.Pp, 03.67.Lx

I. INTRODUCTION

Topological quantum computation (TQC) describes
the general idea of storing and processing quantum infor-
mation in topological states of matter.1,2 The most ap-
pealing aspects of TQC reside in the intrinsic protection
of the ground-state subspace against local (static) per-
turbations; topological ground states are thus viewed as
a good place to hide quantum information. Furthermore,
quantum gates are executed by performing highly non-
local operations that consist in the exchange (or braid-
ing) of quasi-particles in the form of non-abelian anyons.
While it is difficult for the environment to induce such
exchanges, an external observer is able to do it by adia-
batically controlling the parameters of the system. Also,
the applied quantum gates depend only on the topology
of the exchange and are thus insensitive to local imper-
fections.

In the last decade, it has appeared that Ising anyons
are the non-abelian particles most likely to occur in phys-
ical systems in the laboratory, see Ref. 2 and references
therein. Although their braiding statistics is not rich
enough to generate a universal set of gates, they allow
the implementation of the Clifford group in a topologi-
cally protected fashion and are thus of strong interest for
quantum computation. In this context, the so-called Ki-
taev wire3,4 has recently attracted tremendous attention.
In fact, unpaired Majorana modes appear in this model
and, when braided in a network of one-dimensional wires,
they behave as Ising anyons.5 Considerable theoretical6–9

and experimental10–15 efforts have been invested to inves-
tigate semiconducting hybrid structures that could real-

ize the Kitaev wire.

Although Majorana qubits exhibit many favorable
properties, more and more studies have focused on the
fragility of such topological qubits. In particular, several
sources of noise that limit the applicability of such setups
have been reported.16–30

In this paper we start from a microscopic model and
study the lifetime of the Majorana code, see Refs. 16, 31,
and 32, as well as Sec. II B for a definition, when coupled
to a parity-preserving thermal environment. We apply
the Davies prescription to derive a Born-Markov master
equation. We first focus on a single wire with immo-
bile Majorana Bound States (MBSs) and discuss how to
perform error correction to counteract the effect of the
environment. We demonstrate in the high-temperature
limit, both analytically and with Monte Carlo methods,
that the lifetime grows logarithmically with the system
size. This result is not unexpected as similar behavior
was observed by Bravyi and Koenig for a closed system
with Hamiltonian perturbations.16 As a next step, we
study a trijunction with moving MBSs. Our main result
is the investigation of details of dangerous error processes
that prevent the lifetime of the system from increasing
with the system size. The origin of dangerous errors is
the braiding itself that renders a local error source highly
non local by dragging excitations across the trijunction.
In particular, we demonstrate that performing error cor-
rection at the end of the braid does not allow the danger-
ous errors to be cured. We confirm our predictions with
a Monte Carlo simulation. Our work is an extension of
Ref. 32. Here, we present additional physical results as
well as the technical details leading to the main results
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of Ref. 32.
In the context of a full quantum computing protocol,

where several braids are executed, our results imply that
error correction at the end of all the braids, i.e. purely
passive, is not enough. Our results show also that a more
active scheme, in which error correction is executed at the
end of each braid, is also too weak to solve the problem
of dangerous errors. We are led to the view that error
correction will only be successful if it is fully active, i.e.,
where several error correction steps are executed dur-
ing each braid, to counteract the decoherence effects of
dangerous errors. Therefore, our work brings additional
evidence that even in non-abelian topological codes ac-
tive error correction, in the same sense as for ordinary
quantum error correction codes, is necessary.34–37

The paper is organized as follows. In Sec. II we present
the main aspects of a single Kitaev wire that carries
MBSs at the junction between topological and nontopo-
logical segments. In Sec. II A we introduce a box repre-
sentation of the wire that turns out to be useful to under-
stand the phenomenology of the wire as well as the way
we simulate it. In Sec. II B we define the Majorana code,
i.e. a stabilizer code that encodes a logical qubit in the
ground-state subspace of the Kitaev wire. In Sec. II C we
define string operators that create, annihilate, and move
excitations in the wire. The string operators give us a
rigorous way to perform error correction. In Sec. II D we
study the coupling between the Kitaev wire and a bosonic
bath. We follow the Davies prescription and derive a
Markovian master equation in Sec. II D 1. In Sec. II E we
focus on the lifetime of the single wire Majorana code at
high temperatures. We derive an analytical formula for
the lifetime in Sec. II E 1 and confirm it with Monte Carlo
simulations in Sec. II E 2. In Sec. III we introduce the tri-
junction setup used to braid MBSs and in Sec. III A we
show how the logical qubit is encoded in four well sepa-
rated MBSs. In Sec. IV we study in detail the unitary
evolution arising when MBSs are moved. In particular,
we focus on the behavior of excitations. In Sec. IV A, we
present a rigorous definition of what adiabaticity means
in our study. In Sec. V we show how the master equation
for the time-independent Kitaev wire generalizes to the
time-dependent trijunction setup in the adiabatic limit.
In Sec. VI we present the algorithm we use to perform
error correction in the trijunction. Section VI A contains
our main results; we identify dangerous error processes
that prevent the lifetime of the trijunction logical qubit
from increasing with system size when braiding is exe-
cuted. Finally we confirm our predictions with Monte
Carlo simulations in Sec. VII. The Appendices contain
additional information and details about the derivations.

II. SINGLE WIRE

We review here the basic aspects of the physical model
considered here and already exposed in our previous
work, see Ref. 32.

We start our study with a single wire of size L sup-
porting immobile MBSs. The wire Hamiltonian is3,4

HW = −
L∑
j=1

µja
†
jaj −

L−1∑
j=1

t(a†jaj+1 + a†j+1aj)

+

L−1∑
j=1

(∆ajaj+1 + ∆∗a†j+1aj) , (1)

where a†j and aj are fermionic creation and annihila-
tion operators at site j. The first term describes a
site-dependent chemical potential µj 6 0. The second
and third terms describe respectively nearest-neighbor
hopping with t > 0 and superconducting pairing with
∆ = |∆|eiθ.

To understand the physics of HW in simple terms, it
is useful to go to a representation in terms of Majorana

operators, aj = e−iθ/2

2 (γ2j−1 + iγ2j) with {γi, γj} = 2δij

and γ†i = γi. For the case t = |∆| and µj = 0∀j, we
obtain the simplified expression

Htop
W = −|∆|

L−1∑
j=1

iγ2j+1γ2j . (2)

The first Majorana mode γ1 as well as the last Majo-
rana mode γ2L are decoupled from the rest of the chain
and

[
Htop

W , γ1

]
=
[
Htop

W , γ2L

]
= 0. This allows one to

define a zero-energy delocalized fermionic mode with an-
nihilation operator

d0 =
1

2
(γ1 + iγ2L) . (3)

Using the eigenmode operators dj = 1
2 (γ2j + iγ2j+1), the

wire Hamiltonian takes the fully diagonal form

Htop
W =

L−1∑
j=0

εj (2d†jdj − 1) , (4)

where ε0 = 0 and εj = |∆| for j = 1, . . . , L − 1. As
originally proposed by Kitaev,4 it is tempting to encode
a qubit in the ground-state subspace of HW. The reason
is that local (static) perturbations lead to a ground-state
splitting exponentially small in L. Therefore, the de-
coherence induced by such undesirable splitting can be
exponentially suppressed by increasing a parameter that
is easy to control, namely the size of the wire.

Away from the limit µj = 0, MBSs localized at the
end of the chain persist as long as |µj | 6 2t; we call
this the topological phase. However, when µj 6= 0 the
MBSs are not localized anymore on a single site but have
support in the bulk of the chain; the amplitude of the
MBS wave function decreases exponentially away from
the end sites. For |µ| > 2t the localized modes disappear;
this characterizes the nontopological phase. Deep in the
nontopological phase, with |µj | � |∆| = 0, the Majorana
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Hamiltonian approaches

Hnontop
W = − i

2

L∑
j=1

µj γ2j−1γ2j . (5)

In Eq. (5), the Majorana modes are paired in a shifted
way as compared to the topological case, see Eq. (2). We
present a pictorial representation of these two different
pairings in Fig. 1a.

non topological topological
a)

b)
µj

j

1	
   2	
   L	
  

�10|�|

FIG. 1. a) Pictorial representation of the Kitaev wire with
topological (black) and nontopological (gray) segments. The
large black dots describe the fermionic sites, while the line in-
between describe hopping and superconducting pairing. The
smaller dots below represent the Majorana modes whose pair-
ing are depicted by lines connecting the dots. Pairings in the
topological segment are shifted as compared to pairings in
the nontopological segment. A possible pattern of ψ- and
ψ′-excitations is shown. b) Value of the chemical potentials
µj corresponding to the situation in a). The chemical poten-
tials in the nontopological segment have a gradient in order
to localize the ψ′-excitations.

Having in mind the Majorana pairing pattern in the
topological and non topological segments, it is straight-
forward to see that MBSs appear at the junctions be-
tween topological and nontopological segments of the
wire, see Fig. 1a. By varying the chemical potential,
one can increase or decrease the size of the nontopologi-
cal segments and thus move the position of the localized
MBSs.5 This idea will be used later in Sec. III to braid
the MBSs.

A. Box representation of the wire

It is useful to use a box representation of the wire to
understand the phenomenology of the model and the way
we will simulate it. In Fig. 2 we present the details of
our representation; if the wire contains L sites, its box
representation contains L+ 1 boxes. It is worth pointing
out that a box is used to represent either a Majorana
mode or a fermionic mode. While the size of the boxes
vary in Fig. 2 for clarity, the size of each box has no

aj

�2j�1 �2j

topological

topologicalnontopological

a)

b)

FIG. 2. Box representation of the Kitaev wire. A wire of
length L is represented by L+1 boxes. A box represents either
a full fermionic mode or a Majorana mode. Here and below,
the boxes in the non topological sections are colored gray.
The blue links carry an excitation and we draw a ψ inside
the corresponding box. A ψ inside an MBS describes a flip
of the logical parity S0. a) The wire is completely topological
with two MBSs at the ends and four excitations. b) The wire
carries a topological and a nontopological segment, with two
MBSs at the boundary of the topological segment. Here the
topological segment hosts two excitations.

meaning. In the rest of this work, all the boxes will have
the same size.

B. Majorana Code

Following the approach of our previous work Ref. 32, it
is convenient to take an information-theoretical approach
to the encoding of logical qubits into the ground states of
the Kitaev wire.16,31 The ground-state subspace of Htop

W
forms a stabilizer code38,39 with stabilizer operators Sj =
iγ2j+1γ2j i.e., the terms in the Hamiltonian Eq. (2). As
usual for a stabilizer quantum error correcting code, two
logical qubit states |0̄〉 and |1̄〉 have the property

Sj |0̄〉 = |0̄〉 and Sj |1̄〉 = |1̄〉 . (6)

The Majorana code can then be interpreted as a one-
dimensional version of Kitaev’s toric code.1,40 Excita-
tions above the ground states are localized and defined
through the conditions Sj = −1. These excitations are
denoted as quasi-particles ψ. We represent the code with
boxes where the first and last boxes host the MBSs, while
the other sites support either vacuum (Sj = +1) or a ψ
(Sj = −1), see Fig. 2a. We represent a flip of the logical
parity S0 = iγ1γ2L → −S0 by drawing a ψ inside the left
or right MBS. A ψ inside an MBS does not correspond
to a real excitation since it does not cost any energy to
be created, rather it signifies that the logical qubit has
been flipped. A ψ inside the left MBS is proportional to
a X Pauli, a ψ inside the right MBS is proportional to a
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Y Pauli, and a ψ inside both MBSs is proportional to a
Z Pauli.

C. String Operators, Fusion, and Error Correction

We solely consider parity-conserving perturbations and
ψ particles are thus always created in pairs. Pairs of
excitations are generated by string operators; a string
operator creating excitations Sj = −1 and Sk = −1 reads

Sjk = γ2j+1γ2j+2 · · · γ2k , (7)

see Fig. 3. We define the weight of a string operator Sj k
as |j − k|. It is then clear that

Z ∝ S0L = γ1γ2 · · · γ2L (8)

maps the ground-state subspace into itself creating a ψ
inside the left MBS and a ψ inside the right MBS. Since
X and Y logicals are generated by an odd number of
ψ particles, they cannot be implemented in a parity-
preserving scenario with immobile MBSs. As we will see,
when MBSs are braided the situation changes drastically.

1	
  1 2 10	
  3 4 5 6 7 8 9 11	
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   13	
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   17	
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   21	
   22	
   23	
   24	
  

S6 9 = �13�14�15�16�17�18S0 3 = �1�2�3�4�5�6

1	
  

FIG. 3. Excitations created by application of string operators
Sj k defined in Eq. (7).

String operators give us a way to fuse excitations
and thus to perform error correction. Two ψ particles
Sa = −1 and Sb = −1 are fused by applying Sab. The
effect is to bring back the system into its ground state
by annihilating the quasi-particles. Similarly, a ψ par-
ticle Sa = −1 can be fused to the left (right) MBS by
applying S0 a (SaL).

In light of the above considerations, it is clear that the
phenomenology of the Majorana wire is the same as the
Ising anyon model,41,42

ψ × ψ = 1 , σ × ψ = ψ , and σ × σ = 1 + ψ , (9)

where σ is the standard label for an Ising anyon and 1 for
vacuum. Here σ particles are identified with the MBSs.
The second Eq. (9) indicates that, as we have seen, a ψ
inside an MBS is invisible to an external observer. Also it
is clear that two MBSs give us a two-dimensional Hilbert
space, σ×σ = 1+ψ; as we have seen 1 corresponds to an

empty delocalized mode with d†0d0 = 0 and ψ to a filled

delocalized mode d†0d0 = 1.
In the following, we assume that the wire is in contact

with a thermal bath that generates excitations. In order

to conserve the information stored in the ground states of
Htop

W , one needs to define a protocol for error correction
based on the knowledge of the positions of ψ in the bulk
(recalling that ψ inside an MBS is invisible), the so-called
error syndrome. If a pair of ψ’s is created in the bulk
of the chain and not annihilated, then one particle can
diffuse to the left end, while the second one diffuses to
the right end. The operation performed on the logical
qubit is then proportional to Z.

The goal of error correction is to counteract the effect
of the environment by finding a procedure that annihi-
lates the excitations in a definite manner such that the
stored quantum information is retrieved. Since it is rea-
sonable to assume that nearby ψ’s originate from the
same error event (as is the case at small times), we anni-
hilate them following a Minimal Weight Perfect Match-
ing (MWPM) algorithm for the single wire. In one di-
mension there are only two possibilities to perform such
pairings.16 One of them will lead to a successful logical
qubit recovery, while the second one will introduce a Z
error, see Fig. 4. Which of the two schemes is chosen
depends on the total number of moves to be applied. We
choose the scheme with minimal weight. Note that we
will eventually use a different algorithm when we study
the trijunction, see Sec. VI.

weight 4

weight 9

FIG. 4. Two examples of the Minimal Weight Perfect Match-
ing (MWPM) algorithm. The total weight of the algorithm is
defined as the sum of the weights of all the strings operators
applied to remove the excitations in the bulk of the chain, see
Eq. (7). Top: The first ψ is fused with the left MBS. The total
weight is 4. It leads to a successful recovery of the encoded
logical qubit. Bottom: The first ψ is fused to the second ψ.
The total weight is 9. This leads to a faulty procedure and
the logical qubit is lost.

D. Coupling to thermal bath

The total Hamiltonian for the wire and the thermal
bath is the one considered in Ref. 32,

H = HS +HB +HSB . (10)
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Here we choose the system Hamiltonian HS = Htop
W , see

Eq. (2). This choice ensures that all the errors originate
purely from thermal fluctuations. Bravyi and Koenig
have considered the opposite regime where errors are
solely due to Hamiltonian imperfections with µj 6= 0 and
t 6= |∆|.16 In their scenario, they showed that the life-
time of the Majorana code increases logarithmically with
L. As we will see, this is also true for our thermal-bath
model at large temperatures.

The bath Hamiltonian is bosonic and take the generic
form

HB =
∑
j

Bj , (11)

where Bj are local bosonic operators associated with
fermionic site j.

The last term HSB in Eq. (10) stands for the bath-wire
interaction that we assume to be parity conserving,

HSB = −
∑
j

Bj ⊗ (2a†jaj − 1) = −i
∑
j

Bj ⊗ γ2j−1γ2j .

(12)
This form of the coupling seems quite natural since it
corresponds to quantum fluctuations of the chemical po-
tential. Note that ψ excitations are created in pairs by
the bath since [γ2j−1γ2j , Sk] = 0 for k 6= j, j − 1 and

{γ2j−1γ2j , Sj−1} = {γ2j−1γ2j , Sj} = 0 , (13)

with j = 1, . . . , L and SL = S0 = iγ1γ2L is the parity of
the logical qubit.

1. Davies Prescription

Following the prescription of Davies,43,44 that
has become standard in many quantum information
problems,45–48 we derive the master equation for the wire
in the memoryless (Markov) limit,

ρ̇S(t) = −i[HS , ρS(t)] +D(ρS(t)) . (14)

The first term describes unitary evolution while the sec-
ond one the exchange of energy between the bath and
the wire. The so-called dissipator is

D(ρS(t)) =
∑
i,j

∑
ω

γij(ω)
(
Ai(ω)ρS(t)(Aj(ω))†

−1

2
{(Aj(ω))†Ai(ω), ρS(t)}

)
,(15)

where γij(ω) =
∫∞
−∞ ds eiωs 〈B†i (s)Bj(0)〉 are the bath

spectral functions. Here, 〈· · · 〉 = Tr
(
· · · e−βHB

)
is the

thermal expectation value at inverse temperature β.
In Appendix A, we derive explicit expressions for the

jump operators Ai(ω). Importantly, they are local and
satisfy detailed balance. The Davies prescription en-
sures that the steady state of Eq. (14) is the Gibbs state

ρGibbs = exp
(
e−βH

top
W

)
/Tr

(
e−βH

top
W

)
.

The jump operators Ai(ω) cause transitions between
eigenstates of HS, with energy difference ω. We distin-
guish between the following categories of transitions, see
Fig. 5:

• Pair creation (annihilation) of ψ in the bulk, with
ω = −4|∆| (ω = +4|∆|).

• Pair creation (annihilation) of ψ at the boundary,
with ω = −2|∆| (ω = +2|∆|). More precisely,
one ψ is created (annihilated) and the eigenvalue
of S0 = iγ1γ2L changes sign.

• Hopping of a ψ to a nearest-neighbor site inside the
bulk, with ω = 0.

• Hopping of a ψ into a nearest-neighbor MBS, with
ω = +2|∆|.

• Hopping of a ψ out from an MBS to a nearest-
neighbor site of the bulk, with ω = −2|∆|.

Here we use the convention that a negative sign of ω
describes an energy transfer from the bath to the wire.

�4|�|

+4|�|

�2|�|

+2|�|

0

+2|�|

�2|�|

FIG. 5. Pictorial box representation of all the possible error
processes generated by the environment. Here we consider
the simple time-independent problem where the MBSs are
immobile at the end of the wire. On the right is shown the
energy costs of the processes. A positive energy means that
energy is transferred from the wire to the bath.

The time evolution of the diagonal elements of ρS(τ)
decouple from the off-diagonal elements, see Appendix A,
and the Pauli master equation for the population P (n, τ)
in an eigenstate |n〉 of HS satisfies

dP (n, τ)

dτ
=
∑
m

[W (n|m)P (m, τ)−W (m|n)P (n, τ)] ,

(16)
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with transition rates

W (n|m) = γ(ωmn)|〈m|Aimn(ωmn)|n〉|2 . (17)

Here ωmn is the energy difference between the eigenstates
|m〉 and |n〉. Note that |m〉 and |n〉 can be degenerate,
with ωmn = 0. We have removed the superscripts on
the spectral function γ(ω) as it does not depend on the
position; we assume that the sites are coupled to identical
and independent baths.

In this work we consider an Ohmic bath where the
rates γ(ω) are

γ(ω) = κ

∣∣∣∣ ω

1− exp(−βω)

∣∣∣∣ , (18)

with coupling constant κ and inverse temperature β.

E. Lifetime of Majorana Code: Infinite
Temperature

We focus here on the infinite-temperature limit, where
we derive transparent analytical results for the lifetime
of the Majorana code. As mentioned in Ref. 32, the Ma-
jorana code represents a useful quantum memory with
a lifetime that grows with the wire’s size L. A similar
scaling behavior was discovered by Bravyi and Koenig
in Ref. 16 and Kay in Ref. 40. However, these refer-
ences considered unitary evolution, while we focus here
on dissipative dynamics. Unfortunately, the scaling is
logarithmic and thus very modest. Here we present an
analytical proof of this result.

1. Analytic derivation

It is convenient to map the problem to spins via a
Jordan-Wigner transformation

aj =

(
j−1∏
k=1

Szk

)
S+
j and Szj = 2a†jaj − 1 . (19)

In spin language Htop
W takes the simple form

Htop
W = −4|∆|

L−1∑
j=1

Sxj S
x
j+1 . (20)

In spin language the logical states |0̄〉 and |1̄〉 are recog-
nized as the states with all spins pointing along x and
−x. The logical Z Pauli is then obtained by application
of the parity operator

Z ∝
L∏
j=1

Szj . (21)

We model the error process taking place on the spin
chain as follows. All spins point initially along −x.

After a time step τ , we assume that a number n of
spin flips has been applied on randomly chosen sites,
where n is taken from a Poisson distribution with mean
N0 = τ Wtot. Here Wtot is the total rate of all al-
lowed error processes. We assume that Wtot is state
independent; this corresponds to an infinite tempera-
ture scenario where γ(0) = γ(±2|∆|) = γ(±4|∆|), see
Eq. (18) in the limit β → 0. For simplicity we choose
γ(0) = γ(±2|∆|) = γ(±4|∆|) = Wtot/L =: wtot. Since
events in a Poisson process are independent, one can sim-
plify the problem by just considering a single spin. We
have

〈Sxj 〉 = −
∞∑
k=0

(−1)k
(τ wtot)

k

k!
e−τwtot = −e−2τwtot . (22)

Similarly, the standard deviation is given by

σS =
√
〈(Sxj )2〉 − 〈Sxj 〉2 =

√
1− e−4τwtot . (23)

We thus have

µtot = 〈Sxtot〉 =

〈
L∑
i=1

Sxi

〉
= L〈Sxj 〉 = −Le−2τwtot .

(24)
From the central limit theorem we derive the probability
distribution g(s) of the random variable s = Stot

x with

standard deviation σtot =
√
L
√

1− e−4τ |∆|, namely

g(s, τ, L) =
1

σtot

√
2π
e
− (s−µtot)2

2σ2tot . (25)

Error correction in the spin chain is performed
straightforwardly: one flips either all the spins point-
ing along −x or along x, such that all the spins point
along the same direction after the error correcting step.
The choice of which spins to flip is done according to
the total number of spins that need to be addressed; we
choose to flip the minimal number of spins. In the origi-
nal fermionic language, this is the Minimal Weight Per-
fect Matching algorithm of Sec. II C, and the two choices
correspond to the possibility to fuse the first ψ with the
left MBS or not. As a direct consequence, the question
whether error correction is successful after time τ maps to
the question whether the majority of spins still points in
the same direction as the initial state. If, for example, the
initial state has all spins pointing along the −x-direction,
then the condition for successful recovery after time τ is
that (with high probability)

L∑
j=1

Sxj < 0 . (26)

The times τ for which error correction has a high proba-
bility of success are thus those for which

〈Sxtot〉+ σtot . 0 (27)
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and so

L & e4τwtot − 1 . (28)

Stated in other terms, the Majorana code has no thresh-
old ; the lifetime of the memory increases only logarithmi-
cally with L. A similar scaling behavior was discovered
by Bravyi and Koenig in Ref. 16 and Kay for the surface
code with one-dimensional Hamiltonian perturbations.40

Note that these references considered unitary evolution,
while we focus here on dissipative dynamics. The infi-
nite temperature limit is a special case which allows for
straightforward analytic treatment. However, because it
is in a sense a worst case scenario for error correction we
expect the ”no threshold” result to hold for more general
error models.
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FIG. 6. Probability of failure pfailure(τ) as function of time for
Kitaev wires of lengths L = 9, 19, 59. The results are obtained
in the high-temperature regime with Wtot = L|∆|. The two
MBSs are immobile and we perform the MWPM algorithm
to remove excitations. The solid lines represent the analytical
result of Eq. (29) while the dots are obtained via Monte Carlo
simulation. We find good agreement between analytics and
numerics; the improvement becomes better for larger L, as
expected.

Finally, the probability that error correction fails after
time τ is then simply given by

pfailure(τ, L) =

∫ ∞
0

g(s, τ, L)ds =
1

2

(
1 + Erf

(
µtot√
2σtot

))
.

(29)
In Sec. II E 2, we compare our analytical result with a
Monte Carlo simulation and find very good agreement.

2. Monte Carlo Simulation for the wire

We have applied standard Monte Carlo methods to
sample Eq. (16). We use the box representation of Fig. 2
to describe the simulation. An error caused by a system
operator γ2j−1γ2j , see Eq. (12), is implemented in the

simulation by adding a ψ in boxes 2j − 1 and 2j. An
even number of ψ in a box is identical to vacuum. Note
that a ψ and an MBS can coincide in the same box. To
be more precise, we implement the effect of the error
operator γ1γ2 (γ2L−1γ2L) by adding a ψ in boxes 1 and
2 (L and L+ 1), although box 1 (L+ 1) carries an MBS.
This is just to signify that the parity of the logical qubit
has been flipped, S0 → −S0. A logical Z Pauli occurs
when two ψ only are present in the chain, namely in boxes
1 and L+ 1, see Fig. 9.

An iteration of the simulation decomposes into the fol-
lowing steps. i) We register all the relevant parameters of
the system, in particular the actual configuration of exci-
tations. ii) For a given time interval δτ , if τ + δτ 6 τsim,
we update the time to τ + δτ and go to step iii). If
τ + δτ > τsim we go directly to step v). The time τsim is
the simulation time and describes how long the wire and
the thermal bath have been in contact with each other.
iii) We draw the number n of error processes from a Pois-
son distribution with mean Wtot δτ . It is worth pointing
out that Wtot is a state-dependent quantity; for a given
eigenstate |n〉 of HS , the total transition rate is

Wtot(n) =
∑
m

W (m|n) , (30)

where |m〉 are eigenstates of HS .
However, in the infinite-temperature limit considered

here, the total error rate becomes state independent. iii)
We apply n error processes randomly according to their
relative rates35 and go back to step i). v) We perform
the MWPM algorithm described in Sec. II B and finally
record whether the error correction was successful or not.

To obtain reliable statistics we perform these five steps
on several thousands of samples for each τsim. In Fig. 6
we plot the probability of failure as function of time for
different lengths of the wire. The solid lines describe
the analytical results (29), while the dots are obtained
from the Monte Carlo simulation just described. We see
that both results coincide very well (with the agreement
improving for bigger L) and the logarithmic lifetime of
the memory is confirmed.

At low temperatures (i.e. β � 1/|∆|), the dominant
processes leading to faulty error correction is the diffusion
of a single pair of ψ particles. The reason is that, at low
temperature, it is not favorable to create quasi-particle
pairs and it costs much less energy for an existing pair to
diffuse than for a new pair to be created. We will treat
this case in the following sections, when we consider the
trijunction.

III. TRIJUNCTION

In this section we follow our earlier approach32 and
present the main aspects of the trijunction setup.

As a one-dimensional wire does not have enough space
to exchange MBSs, Ref. 5 proposed to use a trijunction
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and to move MBSs by tuning locally the different chem-
ical potentials. Reference 5 demonstrated that, when
MBSs are exchanged in the trijunction, they obey the
same non-abelian braiding statistics as Ising anyons. It is
thus very important to understand their properties when
coupled to a thermal environment. In particular, below
we will determine how the induced thermal noise affects
braiding in a nontrivial way.

The trijunction Hamiltonian is taken to be time de-
pendent,

Htrij(τ) = −
2L∑
j=1

µj(τ)a†jaj −
2L−1∑
j=1

t(a†jaj+1 + a†j+1a
†
j)

+

2L−1∑
j=1

(∆ajaj+1 + ∆∗a†j+1aj)− t(a†L/2aL+1 + a†L+1aL/2)

+(∆aL/2aL+1 + ∆∗a†L+1a
†
L/2). (31)

The sites 1, . . . , L correspond to the horizontal wire and
the sites L + 1, . . . , 2L to the vertical wire, see Fig. 7.
The last two terms in Htrij(τ) describe the coupling be-
tween the vertical and horizontal wires of the trijunction.
In terms of Majorana operators, the trijunction Hamil-
tonian becomes

Htrij(τ) = − i
2

2L∑
j=1

µj(τ)γ2j−1γ2j + i|∆|
2L−1∑
j=1

γ2jγ2j+1

+i|∆|γLγ2L+1 , (32)

where the last term describes the coupling at the tri-
junction point. Note that the time-dependent chemical
potentials satisfy µj(τ) 6 0 at all times τ .

The set of chemical potentials µj(τ) is controlled exter-
nally such that the full braid depicted in Fig. 7b is imple-
mented. In the following, topological segments are char-
acterized by µj = 0 with Hamiltonian Htop

W , see Eq. (2).
Nontopological segments have |µj | � |∆|, such that they

are well approximated by Hnontop
W , see Eq. (5).

For clarity, Fig. 8 shows the box representation of the
full trijunction when the horizontal wire carries three
MBSs i.e., in braiding stage iii) of Fig. 7b. Indeed, one
must pay attention that a Majorana mode of the hori-
zontal wire will be paired with a Majorana mode of the
vertical wire during this braiding and this is reflected in
the box representation as shown in Fig. 8.

A. Encoding

Consider four MBSs γ1,2,3,4 as in Fig. 7. Following
the procedure of Ref. 49, we encode the logical qubit
in a fixed-parity sector, say iγ1γ2 iγ3γ4 = +1. Thus,
while the ground-state subspace is fourfold degenerate,
we use only two states to encode the qubit. This is
required since the overall parity is fixed by the super-
conducting pairing terms, so that gate operations can
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FIG. 7. a) Pictorial representation of the trijunction setup.
It is composed of a horizontal wire coupled to a vertical wire
through hopping and superconducting pairing. The black
(larger) dots represent the fermionic sites and the black bonds
represent hopping and superconducting pairing. The red
(smaller) dots describe the Majorana modes and the lines in-
between their pairings. The four Majorana modes γ1,2,3,4 are
depicted. b) Representation of the braiding motion considered
in this work. MBSs 2 and 4 remains immobile, while MBSs
1 and 3 are exchanged. The black and gray regions represent
respectively topological and non topological segments of the
trijunction.

only be performed within a fixed-parity sector. The log-
ical qubit states satisfy iγ1γ2|0̄〉 = iγ3γ4|0̄〉 = |0̄〉 and
iγ1γ2|1̄〉 = iγ3γ4|1̄〉 = −|1̄〉.

Again, the logical X, Y , and Z Pauli operators are rep-
resented in terms of ψ particles inside MBSs, see Fig. 9.

IV. UNITARY EVOLUTION AND MBS
MOTION IN THE TRIJUNCTION

The motions of MBSs in a braiding sequence are per-
formed unitarily. Therefore it is worth spending time
to describe the unitary evolution of excited states when
MBSs are moved. Indeed, it is essential to understand
how moving MBSs interact with ψ-particles if one wants
to simulate the dynamics of the system. The rules gov-
erning the interactions between moving MBSs and excita-
tions were reported in Ref. 32, here we present a detailed
analysis leading to these rules.

A. Adiabaticity

For any braiding protocol to be valid, the MBSs must
be moved sufficiently slowly with respect to the gap sep-
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FIG. 8. a) Pictorial representation of the trijunction during
braiding stage iii) of Fig. 7b; three MBSs lie on the horizontal
wire. b) Box representation of a).

arating the ground states and the rest of the spectrum;
here this is the superconducting gap |∆|. In other words,
the chemical potential µj(τ) at site j must be varied
slowly enough. This was a central assumption to our
previous work Ref. 32; here we give an explicit formula
for the time-dependent chemical potentials. We imple-
ment adiabaticity by choosing

µj(τ) = −10−3|∆|2 ϑ(τ |∆| − τj |∆|) (τ − τj) , (33)

where ϑ(τ) is the Heaviside theta function and τj is fixed
by the details of the braiding motions and determines
when the chemical potential at site j starts to change.
We have tested numerically whether the above functional
form of the chemical potential is good enough to remain
within the adiabatic regime. We have diagonalize a time-
dependent four-site model; starting from the ground-
state we have calculated its time evolution up to time
τ and its overlap with the instantaneous ground state at
time τ . The overlap was very close to 1 at any time; for
example the value of the non-adiabatic matrix elements
at time τ |∆| = 104 was not larger than 1.6× 10−8.

We find that a good rule of thumb is that an MBS has
moved from site j to site j+ 1 when µj = 10|∆|; in other
terms it takes a time τ |∆| ≈ 104 to move an MBS from

Logical Z

Logical X Logical X

Logical Y Logical Y

�1 �2

�3

�4

Logical Z
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�1 �2
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�4

�1 �2

�3

�4
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�3

�4

�1 �2
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FIG. 9. Pictorial box representation of logical Z-, X-, and Y -
errors in terms of ψ-particles inside MBSs.

one site to a nearest-neighbor site.

B. Linear Motion

For the linear motion along the horizontal or verti-
cal wires, our analysis is based on numerical diagonal-
ization of a small Kitaev wire composed of four sites
where we successively decrease the chemical potentials
on the different sites, see Fig. 10a. This is done very
slowly such that the system remains in an instantaneous
energy eigenstate. We have computed numerically the
time-ordered exponential

U(0, τ) = T exp

(
−i
∫ τ

0

dτ ′HS(τ ′)

)
, (34)

that describes the unitary evolution under HS(τ). Here
T is the time-ordering operator.

Consider the initial configuration of ψ shown in
Fig. 10b, i.e. one ψ inside the leftmost MBS and an-

other one in the second box, such that d†1d1 = 1.
The initial state is thus an eigenvector with eigenval-

ues d†0d0 = 1, d†1d1 = 1, d†2d2 = 0, d†3d3 = 0. At
time τ = 0, the parity of the logical qubit is given by

2d†0d0 − 1 = iγ1γ8 = +1. After decreasing the chemi-
cal potential according to µ1(τ) = −10−3|∆|2 τ until it
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FIG. 10. Four-site Kitaev wire model. a) The black dots
represent the sites of the Kitaev wire. The chemical poten-
tials µ1(τ) and µ2(τ) on the first two sites are successively
decreased according to µ1(τ) = −10−3|∆|2τ and µ2(τ) =
−10−3|∆|ϑ(τ |∆| − 104)(τ |∆| − 104). The solid black lines
describe hopping and superconducting pairing. Below you
can find the Majorana representation of the same wire, where
smaller (red) dots represent Majorana modes. The double
lines describe the varying chemical potentials. b) Box repre-
sentation of the four-site model. The ψ- and ψ′-excitations
are explicitly shown and gray shaded boxes correspond to
nontopological segments. The initial state supports two ψ-
excitations that evolve during the unitary evolution i) and
ii).

reaches the value µ1(104/|∆|) = −10|∆|, the MBS has
moved to the right and the parity of the logical qubit
is changed to iγ3γ8. The amplitude of the chemical po-
tential on site 1 being large, the operator iγ1γ2 becomes
close to an eigenoperator of the Hamiltonian.

In Fig. 11, we plot the expectation values of iγ1γ2 and
iγ3γ8 as function of time. As both go to +1 at time
τ |∆| = 104, we interpret the results as follows: the ψ
carried by the MBS stays bound to the MBS, while the
other ψ is transferred from the topological segment into
the nontopological one. An excitation in a nontopologi-
cal segment is called a ψ′ to notify that it has different
attributes, e.g. a higher energy. In order to localize the
ψ′-excitations, the chemical potentials in the nontopolog-
ical segments have a gradient as shown in Fig. 1b.

Let us now decrease the second chemical potential ac-
cording to µ2(τ) = −10−3 |∆|2 τ while, at the same time,
we continue to decrease µ1(τ) until time τ |∆| = 2× 104,
see Fig. 10b. We thus have µ1(2×104/|∆|) = −20 |∆| and
µ2(104/|∆|) = −10 |∆|. The parity of the logical qubit
becomes iγ5γ8. We expect to see the ψ′ excitation im-
mobile in the nontopological segment, while the ψ bound
to the MBS moves together with the MBS further to the
right. This is exactly what we observe in Fig. 12 where

we have plotted 〈iγ1γ2〉 and 〈iγ5γ8〉 as function of time.
We point out that it is necessary to maintain different
chemical potentials on the different sites of the nontopo-
logical segment in order to localize the ψ′-particles, see
Fig. 1b.
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FIG. 11. Expectations of iγ1γ2 and iγ3γ8 as a function of
time for the four-site model of Fig. 10. The plots correspond
to transition i) of Fig. 10b. We see that both quantities goes
to 1 as µ1(τ) is decreased from 0 to −10|∆|. When the chem-
ical potential on the first site is as low as −10|∆|, then the
MBS has moved to the right and the parity of the Majo-
rana qubit becomes iγ3γ8. The fact that 〈iγ1γ2〉 → 1 and
〈iγ3γ8〉 → 1 show that the ψ bound to the MBS stays bound
to the MBS while the other ψ-excitation is transferred to the
nontopological segment and thus becomes a ψ′-particle.

We have performed several similar tests, starting from
different configurations of ψ-excitations. All the conclu-
sions are the same and can be summarized in terms of the
following rules. i) When an MBS moves into a topological
segment and crosses a ψ-excitation, then the ψ-excitation
is transferred to the first site to the left of the MBS into
the nontopological segment and stays immobile. ii) A ψ
inside an MBS moves together with the MBS. In case
of reverse motion, i.e. when the MBS moves into the
nontopological segment, then a ψ′ from the nontopologi-
cal segment will be transferred back into the topological
segment. We have represented these two rules pictorially
in Fig. 13. It is important to recognize that while the
overall parity of the system is conserved, the parity of in-
dividual topological segments is not preserved. This is a
crucial difference as compared to the previous case with
two immobile MBSs, as now logical X and Y errors are
possible.

In Ref. 33 we summarize all the unitary evolutions nec-
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FIG. 12. Expectations of iγ1γ2 and iγ5γ8 as a function of
time for the four-site model of Fig. 10. The plots correspond
to transition ii) of Fig. 10b. Here the second chemical po-
tential, µ2(τ), starts to decrease while the first chemical po-
tential, µ1(τ), continues to decrease. When µ2(τ) is negative
enough, then the MBS has moved to the nearest-neighbor site
and the parity of the logical qubit becomes iγ5γ8. The fact
that 〈iγ1γ2〉=1 confirms that ψ′-particle remains bound at its
position in the nontopological segment. Since 〈iγ5γ8〉 → 1 as
the chemical potential is decreased, we conclude again that
the ψ-particle inside the MBS remains inside the MBS during
the unitary evolution.

i)

ii)

FIG. 13. Box representation of the unitary evolution of
moving MBSs in the presence of excitations. i) When a
MBS moves over an existing ψ-excitation, the ψ-excitation
is transferred to the nontopological segment and becomes a
ψ′-excitation. ii) A ψ-excitation trapped inside a MBS re-
mains trapped during the motion of the MBS.

essary to simulate the system; the unitary motions of an
MBS over the trijunction point need to be obtained by
simulating a minimal six-site trijunction model.

V. ADIABATIC DAVIES EQUATION

We must take the time-dependence of the trijunction
Hamiltonian into account when writing down the master
equation.32 In the adiabatic limit, it is correct to gener-
alize Eq. (14) to

D(ρS(τ)) =
∑
i,j

∑
ω(t)

γij(ω(τ))
(
Ai(ω(τ))ρS(τ)(Aj(ω(τ)))†

−1

2
{(Aj(ω(τ)))†Ai(ω(τ)), ρS(τ)}

)
,

(35)

where ω(τ) are the time-dependent energy differences in
the spectrum of Htrij(τ).

The populations follow an adiabatic Pauli master equa-
tion

dP (n(τ), τ)

dτ
=
∑
m(τ)

[W (n(τ)|m(τ))P (m(τ), τ)

−W (m(τ)|n(τ))P (n(τ), τ)] , (36)

with

W (n(τ)|m(τ)) = γ(ωmn(τ))
∣∣〈m(τ)|Aimn(ωmn(τ))|n(τ)〉

∣∣2 .
(37)

The bulk error processes and the associated rates re-
main the same as in the time-independent scenario, see
Sec. II D 1. To be more precise, the error processes away
from the moving MBSs, including at other MBSs that
are for the time being stationary, are the ones presented
in Sec. II D 1. However, more complicated boundary pro-
cesses appear because of the motion of the MBSs. In
Appendix B we present some examples. An exhaustive
table of the more than 200 distinct allowed processes can
be found in Ref. 33.

It is worth pointing out that the system-bath interac-
tion of Eq. (12) does not support the creation of excita-
tions in the nontopological segments of the trijunction.
Indeed, when the chemical potential is very negative,
the eigenstates of a nontopological segment approaches
the eigenstates of Hnontop

W and the coincidence becomes
better as the chemical potential becomes more negative.
Since [Hnontop

W , HSB ] = 0, creation of excitations in the
nontopological segment is suppressed as the chemical po-
tential decreases. However, this does not mean that no
excitations will ever be present in the nontopological seg-
ments, as we discussed in Sec. IV.

The time dependence of HS(τ) must also be taken into
account to calculate the rates of all the error processes.
For example, when changing the chemical potential from
time 0 to time τ with τ |∆| ≈ 104, such that an MBS has
moved by one site, one obtains the rates associated with
the possible error processes by integrating Eq. (37); we
defer a detailed discussion to Appendix B.
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VI. ERROR CORRECTION AND DANGEROUS
PROCESSES IN THE TRIJUNCTION

The error correcting procedure applied here is an adap-
tation of the greedy algorithm proposed by Wootton in
Ref. 50. We point out that this is not a MWPM algo-
rithm in the sense described in Sec. II C. We have cho-
sen this decoder because of its great simplicity. Also,
choosing any other decoding scheme would not change
the main message of our paper, as we will see. More
generally, many matching procedures might be applied
to the same model, each of which potentially having a
different threshold.39

Our error-correcting scheme here is passive, meaning
that we apply it at the end of the quantum computing
protocol (that below will consist in a single braid only).
This is in contrast with active error correction where er-
ror correcting steps are performed in the midst of a braid
sequence of a full quantum computing protocol. We be-
lieve that it is useful to make the distinction between the
following active scenarios:

1. Error correction is executed at the end of each
braid.

2. Error correction is performed repeatedly during
each braid.

As we will see, our results imply that passive error cor-
rection and even active error correction that is performed
at the completion of braids, do not lead to a lifetime that
increases with the size of the trijunction; a scheme where
error correction is executed during each braid is required
to cure the dangerous errors.

Below we summarize the main steps of the error cor-
rection algorithm for the trijunction:

1. Loop through all sites of the trijunction to find the
pairs of quasi-particles (ψ, ψ′, or MBS ) that are
at minimal distance k. Start with k = 1.

2. If there a no multiple possibilities, annihilate the
corresponding pairs. If there are multiple possibil-
ities, e.g. in the case that three quasi-particles are
positioned such that one of them is at distance k
from the two others, we apply the following rules:

• If all the excitations are on the horizontal wire,
we pair the particles from left to right.

• If all the excitations are on the vertical wire,
we pair the particles from top to bottom.

• If two excitations are on the horizontal wire
and a third is on the vertical wire, we annihi-
late the pair composed of the leftmost quasi-
particle on the horizontal wire and the upper-
most quasi-particle on the vertical wire.

• If two excitations are on the vertical wire and
a third is on the horizontal wire, we annihilate

the pair composed of the uppermost quasi-
particles on the vertical wire and the quasi-
particle on the horizontal wire.

3. If there are still some excitations in the bulk of the
trijunction, repeat the procedure with k + 1.

To illustrate this procedure we present a pictorial repre-
sentation of one error correction step in Fig. 14.

decoder with k=1

FIG. 14. First iteration (k = 1) of the greedy decoder used in
our trijunction simulations. After having identified the pairs
of excitations at distance k, we annihilate them according to
the protocol described in Sec. VI. Our algorithm is a straight-
forward adaptation of the one presented in Ref. 50.

A. Dangerous Errors

This section contains the central result of our work: the
identification of so-called dangerous errors that prevent
the lifetime of the Majorana trijunction from increasing
with the system size.

Consider the situation in which an MBS is moving and
a pair of excitation is created, one inside the MBS and
one inside the bulk of the trijunction, see Fig. 15. While



13

the two ψ’s are originally created as a pair in neighbor-
ing boxes, the motion of the MBS drags along one of
the ψ and separates it from its partner. In other terms,
the braiding renders an originally local error source com-
pletely nonlocal. We thus call an error process that cre-
ates a ψ inside a mobile MBS dangerous. The effective
non-locality of the noise prevents our algorithm from suc-
cessfully recovering the stored quantum information. For
example in Fig. 15a, a single error event will not be cured
by our algorithm and will lead to a X error. Note that in
Fig. 15, we have drawn two error processes: a dangerous
error process, where a ψ is created inside an MBS, and
an inoffensive error process where a pair of excitations is
generated in the bulk of the vertical wire.

A natural question that arises is whether a better al-
gorithm could take into account the nonlocality of the
noise in a clever manner. Unfortunately this is impossi-
ble if error correction is not performed during braiding.
The reason is that different error processes can lead to
exactly the same error syndrome. In Fig. 15a and b, we
depict two error processes that generate the same syn-
drome. The main difference between them is the occur-
rence of ψ-particles inside MBSs. This can be traced
back to the moment where a dangerous error happens.
In Fig. 15a it happens at the beginning of the braid,
while it happens at the end of the braid in Fig. 15b. If
one syndrome is successfully cured by an algorithm, the
other one will lead to failure. A central ingredient for
the emergence of such ambiguity is that different MBSs
travel over the same segments of the trijunction during
braiding, making it impossible to identify which bulk ψ
should be paired with which MBS. Since the probability
of dangerous events is finite and does not depend on the
size of the trijunction, we expect the lifetime of coherence
of the trijunction qubit to be independent of L.

We point out that the physics of dangerous error pro-
cesses is the same at high (β � |1/∆|) and low (β �
1/|∆|) temperatures. Therefore, we expect the restric-
tion due to dangerous error processes to be qualitatively
identical in both regimes.

VII. MONTE CARLO SIMULATION OF THE
TRIJUNCTION

To confirm our predictions, we perform a standard
Monte Carlo simulation for the trijunction and determine
the evolution of the stored quantum information under
the adiabatic master equation (36). We focus here on the
low-temperature regime with β = 4/|∆|.

The Monte Carlo simulation consists essentially of
the same five steps as in the simulation described in
Sec. II E 2 for the single Majorana wire. However, some
care has to be taken in the low-temperature regime. In-
deed, in that case the total probability Wtot that an er-
ror event occurs, see Eq. (30), is strongly state-dependent
and we cannot always approximate it by a constant. This
is the case because the spectral function γ(ω) depends

i)

i)

ii)

ii)

iii)

iii)

iv)

iv)

v)

v)

error correction

error correction

a)

b)

FIG. 15. Pictorial representation of two error sequences lead-
ing to the same error syndrome. The difference between a)
and b) is the occurrence of ψ inside MBSs. Since ψ trapped
inside an MBS is invisible to an external observer, both sit-
uations have the same error syndrome. Independently of the
details of the error-correcting algorithm, if one situation is
successfully corrected, the other one will lead to failure.

very much on the value of ω at low temperatures.

One possible way to solve this issue would be to apply
an alternative set of five Monte Carlo steps: i) Register
all the relevant parameters of the system, in particular
the actual configuration of excitations. ii) Calculate the
time δτ for the next error process to occur, drawing δτ
from an exponential distribution ∝ exp(1/Wtot). iii) Up-
date the time to τ + δτ . If τ + δτ 6 τsim, go to step
iv). Otherwise go directly to step v). iv) Apply an er-
ror event randomly according to their relative rates. Go
back to step i). v) Perform the error corecting algorithm
described in Sec. VI and finally record whether the error
correction was successful or not.

Such a procedure is perfectly valid in the low-
temperature regime, but only when the MBSs are im-
mobile. Indeed, when MBSs are in the process of being
moved this method cannot be applied. The main problem
resides in the fluctuating δτ drawn from the exponential
distribution. When MBSs are moved, one needs to de-
fine a time-step δτM for an MBS to be carried to the
nearest-neighbor site. For example, here we have chosen
δτM|∆| = 104. It is however clear that, most of the time,
δτ drawn from the exponential distribution would never
be an exact multiple of δτM and thus we cannot decide
by how many steps the MBS must be moved during the
time interval δτ . Therefore, this method is applicable
only when the MBS are kept immobile; so, this method
is applicable during the time in between braids.
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During the braiding motions, we apply the sequence of
steps i)-v) from Sec. II E 2 but by taking care that Wtot

is state dependent and by ensuring that the number of
errors n drawn from the Poisson distribution is either 0
or 1; we assure this by choosing a small enough coupling
constant κ = 2× 10−4|∆|. We point out that this choice
of κ is only relevant for our numerical procedure to be
valid, but it does not hide any important physical issue.
In fact, allowing n > 1 would be problematic (in the low-
temperature regime) since each time an error is applied,
the change in total probability Wtot is very drastic and
must be taken into account.

In Fig. 16, we present the probabilities pX , pY , and pZ
that a logical X−, Y−, or Z−error occurs for trijunctions
of various lengths, see also Ref. 32. When we assume
perfect error correction, the noise acting on the logical
qubit is unital, i.e. the fixed point is a completely mixed
state, and takes the form of a generalized depolarizing
channel38

ρtrij →
∑

O=I,X,Y,Z

pO O ρtrijO , (38)

where I is the identity operator and pI+pX+pY +pZ = 1.
This is in contrast with the underlying physical noise that
is not unital here.

We observe that pX and pY significantly increase dur-
ing the braiding time, while pZ remains small. This is
due to the presence of dangerous error processes during
braiding as explained in Sec. VI A. It is also interesting
to distinguish between X and Y errors. It is clear from
the plots that pX increases faster than pY and there is a
period of time where pY does not increase. In fact, con-
sidering only single-error events (a very accurate approx-
imation at short times) the environment cannot produce
a Y error during the first L/2+1 time steps. Indeed, the
only possible configuration of ψ-excitations correspond-
ing to a Y -error after error correction, resulting from
a single error event during braiding, is the one in the
bottom left of Fig. 9. Such a situation arises when a
dangerous error happens during the braiding stage i) of
Fig. 7. However, the ψ-particle created in the bulk of
the horizontal wire must lie closer to the right boundary
than to the left boundary. Therefore, such a Y -error in-
deed cannot happen during the first L/2+1 time steps of
braiding. On the contrary, an X error can be produced
by a single error events at any time during the braid. We
also point out that dangerous error processes are more
probable than creation of a pair somewhere in the bulk,
since the energy cost is lower. A transition energy of 2|∆|
vs. 4|∆| makes a considerable difference, and the strong
dependence of γ(ω) on ω also plays a role.

In Fig. 17 we plot pX+Y = pX +pY for different L. Af-
ter the end of the braid pX+Y remains constant since no
dangerous errors are possible anymore when MBSs stay
immobile, although X and Y errors can be interconverted
during this period. Indeed, X and Y errors are possible
only when the parity of topological segments is broken
and this is solely possible when MBSs move. The most

important feature of the growth of pX+Y is that it is
completely independent of L at small times; the lifetime
of the memory does not grow with L. This is in com-
plete agreement with our discussion of dangerous errors
in Sec. VI A. It is worth pointing out that the braid-
ing time grows linearly with the size of the trijunction.
Therefore, the probability that a dangerous error occurs
during braiding is higher for a larger trijunction. This is
observed in Fig. 17, where pX+Y at the end of the braid
is bigger for larger trijunctions.

At small temperature, the origin of a non vanishing pZ
probability is the creation of a pair of ψ’s that diffuse
across the trijunction. However, it takes more time for
a pair to reach the MBSs when the trijunction is longer,
therefore we expect pZ to decrease with increasing L, and
this is the case in Fig. 17a.

In the context of a full quantum computing protocol,
where several braids are executed, our results show that
performing error correction either at the end of all the
braids or at the end of each braid is not enough to cure
the failure induced by dangerous errors.

VIII. CONCLUSIONS

In this work we have investigated the self-correcting
properties of Majorana 1D quantum computing architec-
tures. In particular, starting from a microscopic model,
we focused on the situation where MBSs are braided in a
trijunction setup coupled to a parity-preserving bosonic
environment.

While a single wire with immobile MBSs represents
a truly self-correcting quantum memory with a lifetime
that increases with the size of the wire, this is not true
anymore when MBSs are exchanged in a trijunction ar-
chitecture. The main reason is the occurrence of so-called
dangerous errors that are solely due to the motion of
MBSs; an MBS can trap an excitation and drag it along
during braiding, thus rendering a local source of noise
highly nonlocal in its effect. In this case, error correction
at the end of the braid is insufficient to recover the stored
quantum information.

In the context of a full quantum computing protocol,
where several braids are executed, our results imply that
passive error correction (at the end of all braids) and even
active error correction, in which correction is performed
at the end of each braid, is too weak to counteract the
negative effects of dangerous errors. The only possibil-
ity we envision to preserve the stored quantum informa-
tion is to perform repeatedly error correction during each
braid: in the very simple example of Fig. 15, performing
error correction both at stages iii) and v) would allow
successful recovery of the logical qubit. Our results are
in agreement with the more and more popular view that
active error correction is necessary even in non-abelian
topological systems.34–37 In light of this discussion, we
point out that increasing L, far from improving the life-
time of the trijunction logical qubit, actually makes the
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FIG. 16. Plots of pX , pY , and pZ as function of time. MBSs
1 and 3 are exchanged while MBSs 2 and 4 remain immobile,
see Fig. 7b. The time to braid is proportional to the size
of the trijunction and we have τbraid = (2L+ 2)104/|∆|. For
τ < τbraid, i.e. when the exchange is not finished, we exchange
the MBSs until time τ with the coupling to the thermal bath
being on. Then we unitarily (no coupling to the thermal bath)
finish the braid and perform error correction at the end. Here
we use κ = 2× 10−4|∆| and β = 4/|∆|.

situation worse because the time to braid MBSs adiabat-
ically is proportional to L.51

We also comment that while our results put restrictions
on the self-correcting properties of this specific quantum
computing architecture, one can expect other schemes,
such as interaction-based braiding of MBSs,52,53 to be-
have in a more favorable way. Finally, it is a priori not
clear whether braiding MBSs in 2D systems suffers from

p
fa

il
u
re

⌧braid

a)

b)

pX+Y

pZ

L = 19

⌧braid

⌧braid

L = 29

L = 49

L = 19 L = 29

L = 49

⌧ |�| ⇥ 106

⌧
�⌧ �⌧

FIG. 17. a) Probability pX+Y (solid) and pZ as function of
time for trijunctions of length L = 19, 29, 49. The details of
the plot are the same as in Fig. 16. b) Artistic representation
of the probability of failure as function of time when three
consecutive braids are executed. The time interval between
two braids is δτ and the braiding time is τbraid.

the same restrictions as the 1D case studied here. In
2D setups, the paths followed by the braided MBSs must
cross at least once, but do not need to overlap over a large
region. Therefore, dangerous error processes should oc-
cur less frequently than in 1D implementations; but we
keep in mind that a single uncorrectable error is enough
to prevent the lifetime of the topological qubit from in-
creasing with the system size.
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Appendix A: Davies Prescription:
Time-Independent Hamiltonian

In this Appendix we aim to derive explicit expres-
sions for the jump operators Ai(ω) appearing in the mas-
ter equation (15) for the time-independent problem; for
simplicity we focus here on a single wire. The time-
dependent case is treated in an exactly similar fashion
because we consider only adiabatic time variation.

Let us start from the system bath Hamiltonian

HSB =
∑
j

Bj ⊗ a†jaj , (A1)

where the constant in Eq. (12) has been ignored because
it only leads to a renormalization of the bath Hamiltonian
HB . Rewrite HSB in terms of the eigenoperators dj and

d†j that diagonalize Htop
W , see Eq. (4). We have

HSB = −i2B1 ⊗ (d0 + d†0)(d1 + d†1)

−2

dL/2e−1∑
j=1

B2j ⊗ (d2j−1 − d†2j−1)(d2j + d†2j)

−2

dL/2e−1∑
j=1

B2j+1 ⊗ (d2j − d†2j)(d2j+1 + d†2j+1)

+i2BL ⊗ (dL−1 − d†L−1)(d0 − d†0) . (A2)

It is now useful to decompose HSB into three physically
relevant terms:
Hopping:

Ahopping := −i2B1 ⊗ d0d
†
1 − 2

dL/2e−1∑
j=1

B2j ⊗ d2j−1d
†
2j

−2

dL/2e−1∑
j=1

B2j+1 ⊗ d2jd
†
2j+1 − i2BL ⊗ dL−1d

†
0 + h.c.

(A3)

Pair creation:

Acreation :=

−i2B1 ⊗ d†0d†1 + 2

dL/2e−1∑
j=1

(B2j ⊗ d†2j−1d
†
2j +B2j+1 ⊗ d†2jd†2j+1)

+i2BL ⊗ d†L−1d
†
0

(A4)

Pair annihilation

Aannihilation :=

i2B1 ⊗ d1d0 + 2

dL/2e−1∑
j=1

(B2j ⊗ d2jd2j−1 +B2j+1 ⊗ d2j+1d2j)

−i2BL ⊗ d0dL−1 (A5)
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Following the Davies prescription, we calculate the
Fourier transforms of the above operators by first writing
their time evolution with respect to HS ,

eiHStAζ e
−iHSt

=
∑

m,n,k,`

|m〉〈m|eiHSt|k〉〈k|Aζ |`〉〈`|e−iHSt|n〉〈n|

=
∑
m,n

eit(εm−εn)|m〉〈m|Aζ |n〉〈n| , (A6)

where |i〉 is an eigenbasis of HS with eigenenergies εi and
ζ ∈ {hopping, creation, annihilation}. We have used the
decomposition of unity 1 =

∑
m |m〉〈m|. The Fourier

components of Aζ are then simply given by

Aζ(ω) =
∑

εm−εn=ω

|m〉〈m|Aζ |n〉〈n| . (A7)

We can then easily identify the following relevant system
operators:

Hopping terms:

A1
hopping(−2|∆|) =

∑
εm−εn=−2|∆|

|m〉〈m|2d0d
†
1|n〉〈n| ,

ALhopping(−2|∆|) =
∑

εm−εn=−2|∆|
|m〉〈m|2d0d

†
L−1|n〉〈n| ,

A1
hopping(2|∆|) =

∑
εm−εn=2|∆|

|m〉〈m|2d1d
†
0|n〉〈n| ,

ALhopping(2|∆|) =
∑

εm−εn=2|∆|
|m〉〈m|2dL−1d

†
0|n〉〈n| ,

A2j
hopping(0) =

∑
εm−εn=0

|m〉〈m|2d2j−1d
†
2j + 2d2jd

†
2j−1|n〉〈n| ,

A2j+1
hopping(0) =

∑
εm−εn=0

|m〉〈m|2d2jd
†
2j+1 + 2d2j+1d

†
2j |n〉〈n| ,

(A8)

with j = 1, . . . , dL/2e − 1.

Creation terms:

A1
creation(−2|∆|) =

∑
εm−εn=−2|∆|

|m〉〈m|2d†0d†1|n〉〈n| ,

ALcreation(−2|∆|) =
∑

εm−εn=−2|∆|
|m〉〈m|2d†0d†L−1|n〉〈n| ,

A2j
creation(−4|∆|) =

∑
εm−εn=−4|∆|

|m〉〈m|2d†2j−1d
†
2j |n〉〈n| ,

A2j+1
creation(−4|∆|) =

∑
εm−εn=−4|∆|

|m〉〈m|2d†2jd†2j+1|n〉〈n| ,

(A9)
Annihilation terms:

A1
annihilation(2|∆|) =

∑
εm−εn=2|∆|

|m〉〈m|2d1d0|n〉〈n| ,

ALannihlation(2|∆|) =
∑

εm−εn=2|∆|
|m〉〈m|2dL−1d0|n〉〈n| ,

A2j
annihilation(4|∆|) =

∑
εm−εn=4|∆|

|m〉〈m|2d2jd2j−1|n〉〈n| ,

A2j+1
annihilation(4|∆|) =

∑
εm−εn=4|∆|

|m〉〈m|2d2j+1d2j |n〉〈n| ,

(A10)

with j = 1, . . . , dL/2e − 1.
In the box representation, see Fig. 5, the terms with en-

ergy argument ±2|∆| correspond to hopping at the ends
of the wire, where the ψ hops out from the MBS to inside
the neighboring box or vice versa, or to a process at the
boundaries where a ψ is created or annihilated inside the
MBS in conjunction with a second ψ at the neighboring
box inside the bulk of the wire. The terms with energy
argument 0 are associated with hopping processes inside
the bulk of the wire, where a ψ hops from one box into
another one without energy cost. Finally, the terms with
energy argument ±4|∆| correspond to processes where a
pair of excitations is created or annihilated in the bulk
of the wire.

1. Pauli Master Equation

We present a proof that the diagonal terms decouple
from the off-diagonal terms in the master equation (14),
leading to the Pauli master equation (16) for populations.

Consider the eigenstates |ni〉 of HS such that HS |ni〉 =
εn|ni〉. Here i = 1, 2, . . . indexes the degeneracy of the εn
energy level.

Assumption: If 〈mα|Aiη(ω)|nk〉 6= 0, (here εm − εn =

ω) then there are no other system operators Ai
′

η′ that

cause a transition between |nk〉 and any of the degenerate
states |mβ〉 with energy εm.

Note that it is straightforward to see that the above
assumption is satisfied in our case. We thus have,
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〈nk|D(ρS)|nk〉 =
∑
i,j,η,η′

∑
ω

γij(ω)

(
〈nk|Aiη(ω)ρSA

j
η′(ω)†|nk〉 −

1

2
〈nk|Ajη′(ω)†Aiη(ω)ρS |nk〉 −

1

2
〈nk|ρSAjη′(ω)†Aiη(ω)|nk〉

)

=
∑

ω,i,j,η,η′

γij(ω)

 ∑
m,κ,α,β

〈nk|Aiη(ω)|mα〉〈mα|ρS |κβ〉〈κβ |Ajη′(ω)†|nk〉 −
∑
`,u,γ,ξ

1

2
〈nk|Ajη′(ω)†|`γ〉〈`γ |Aiη(ω)|uξ〉〈uξ|ρS |nk〉


−1

2

∑
ω,i,j,η,η′

∑
r,s

∑
δ,ξ

γij(ω)〈nk|ρS |sδ〉〈sδ|Ajη′(ω)†|rξ〉〈rξ|Aiη(ω)|nk〉 (A11)

=
∑
ω,i,η

γii(ω)〈nk|Aiη(ω)|mα(i, η)〉〈mα(i, η)|ρS |mα(i, η)〉〈mα(i, η)|Aiη(ω)†|nk〉

−1

2

∑
ω,i,η

γii(ω)〈nk|(Aiη(ω)†|mα(i, η)〉〈mα(i, η)|Aiη(ω)|nk〉〈nk|ρS |nk〉

−1

2

∑
ω,i,η

γii(ω)〈nk|ρS |nk〉〈nk|Aiη(ω)†|mα(i, η)〉〈mα(i, η)|Aiη(ω)|nk〉 . (A12)

The Pauli master equation (16) follows then directly.
Here we have used the orthonormality relation

〈nα|mβ〉 = δmnδαβ . The state |mα〉 in the sums (A11)
that has non vanishing matrix element 〈mα|Aiη(ω)|nk〉
depends on the system operator Aiη(ω). For the sake
of clarity we have thus introduced the notation |mα〉 ≡
|mα(i, η)〉.

Appendix B: Error Processes: Time-dependent Case

The calculation of the rates of the error processes hap-
pening during the motion of MBSs must be performed
with great care. In the following we present a detailed
analysis of two cases. All the remaining cases shown in
Ref. 33 are treated similarly.

1. Linear case

The linear case is easily understood in terms of a four-
site model where the chemical potential on the first site
is varied according to µ1(τ) = −10−3|∆|2τ . The red dots
in Fig. 18a represent the Majorana modes, while the sin-
gle solid lines represent the coupling between them in
the Hamiltonian. The double solid lines represent the
time-dependent chemical potential. We assume that a
region is nontopological when the chemical potential sat-
isfies |µ| & 10|∆|. Therefore, we say that the MBS has
moved to a nearest-neighbor site after a time τ |∆| & 104.
The black arrows between different branches of the spec-
trum in Fig. 18b describe transitions caused by the sys-
tem operators. These transitions are also shown in box
representation in Fig. 18c.

The time dependence of the problem requires that the
rates are obtained by integrating Eq. (37) over time. The
upper integration bound T must be big enough such that
the MBS has moved, i.e. as mentioned above we choose
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FIG. 18. a) Pictorial representation of the four-site model;
the dots represent the Majorana modes and the single lines in
between represent the pairings. The double lines depict the
time-dependent chemical potential on the first site. It varies
according to µ1(τ) = −10−3|∆|2τ . b) Energy levels Ek(τ) as
function of time. The arrows describe the transitions above
the vacuum produced by the system operator γ1γ2, inducing
transition i), and γ3γ4 inducing transitions ii) and iii). c)
Box representation of transitions i), ii), and iii). When the
chemical potential is sufficiently negative, then the MBS has
moved to its nearest-neighbor site and a pair of excitations
has been produced.

T |∆| = 104. We have

W (n|m)int =
1

T

∫ T

0

dτ |〈m(τ)|A1,2|n(τ)|〉2γ(ωmn(τ)) .

(B1)
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We calculate numerically the integral (B1) by discretiz-
ing the interval [0, T ] and by replacing the integral by a
sum.

2. Trijunction

The processes that happen at the trijunction are ana-
lyzable with a six-site model, see Fig. 19a). In Fig. 19b we
show the spectrum as function of time. The black arrows
identify three transitions caused by the system opera-
tor γ3γ4, see the box representation in Fig. 19c. Similar
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FIG. 19. a) Six-site trijunction. The dots represent Ma-
jorana modes and the single lines the interactions between
them. The shaded area shows that a Majorana mode is de-
localized over the trjiunction. The double lines represent
the time-dependent chemical potential varying according to
µ(τ) = −10−3|∆|2τ . b) Spectrum as function of time. The
black arrows represent the transitions above the vacuum in-
duced by the system operator γ3γ4 . c) Box representation
of the two transitions i) and ii). The red shape on the left
trijunction represents the delocalized MBS at the trijunction.
Note that the two Majorana modes on the vertical wire are
localized on neighboring boxes because we diagonalize here a
small trijunction. In a longer trijunction, however, the third
box on the vertical wire would correspond to a fermionic mode
and the fourth MBSs would lie at the bottom of the vertical
wire. In order to calculate all the rates, it is enough to diag-
onalize such a small trijunction but one must keep in mind
that creating a ψ inside the MBS at the bottom box of the
vertical wire would correspond to creating a bulk ψ-excitation
in the longer trijunction (and thus would imply some cost of
energy).

to the linear case, the rates are obtained by integrating
Eq. (37).
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