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Abstract

Magnetization dynamics of a nanomagnet, when strongly coupled with a topological insulator

(TI) via the proximity interaction, is examined theoretically in the presence of electrical current

on the TI surface under realistic transport conditions. Due to the spin-momentum interlock,

the magnetic state and TI electron transport depend significantly on each other. Such an inter-

dependence leads to a variety of nonlinear dynamical responses in all transport regimes including

the scattering dominant diffusive cases. Generation of the anomalous Hall current, in particular,

is found to be a key to the unique features that have not been observed previously. For instance,

the anomalous Hall current can result in antiparallel alignment of the final magnetization state

in reference to the effective driving magnetic field by inducing an extra term that counters the

damping effect. Similarly the calculation also reveals steady oscillation of the magnetization under

a broad range of conditions, offering a robust mechanism for highly efficient magnetization reversal

and/or spin wave excitation under a DC bias.

PACS numbers: 72.25.-b, 73.20.-r, 73.50.Jt, 85.75.-d

1



I. INTRODUCTION

Magnetic devices have been an essential component in the development of information

technology. Information can be easily encoded into and decoded from the stable magnetiza-

tion states of nanomagnets. Much effort has been devoted to improving the magnetization

switching efficiency and reliability,1–5 among which the search for electric control has been

a major focus. For instance, the transition from the Ampere-field driven magnetic switches

to the spin transfer torque (STT) driven counterparts has already seen significant advance-

ments during the past decade. Apart from the applications to magnetic switches, the STT

effect has also been shown to excite steady oscillations when the additional torque from spin

transfer accurately cancels the magnetic damping effect.1–3 In the case of magnetic insula-

tors, where the STT mechanism is not applicable owing to the absence of free electrons, the

electrical control can be achieved by exploiting the intrinsic multiferroic properties that exist

in some crystal groups and heterostructures.6–8 Most of them rely on the strain to mediate

the piezoelectric and magnetostrictive effects. The magnetization orientations are restricted

by the crystalline anisotropy that the strain can manipulate.

In the context of electric control of magnetization, the unique advantage of spin-

momentum interlock in the topological insulators (TIs) offers a promising alternative.9 The

flow of electrons on a TI surface is naturally spin polarized; as such, an adjacent magnet

in direct contact can potentially experience the exchange field through the proximity inter-

action and change its magnetization.10–16 In this scenario, electron spin is the medium that

couples the electrical variable (i.e., the electron momentum) with the magnetic variable (i.e.,

the magnetization of the adjacent magnet). Intuitively, the magnetization would align with

the exchange field from the electron spin. However, electron transport on the TI surface

is also strongly affected by the magnetization state,17 thus forming a correlated nonlinear

system. Complex dynamical behaviors can be expected.

Figure 1(a) illustrates a typical structure that utilizes the combination of a ferromagnetic

insulator (FMI) and a TI. As indicated, the magnet (i.e., FMI) is in direct contact with

the TI. Two surface electrodes are used to drive the electron flow through the interface

region between the layers. An earlier theoretical investigation based on a self-consistent

treatment of the TI-FMI system revealed the previously unidentified magnetic responses

such as magnetization reversal and sustained oscillations under a DC bias condition.12 The
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key to this nontrivial outcome is the inter-dependent nature of the dynamics; namely, the

spin polarized TI current modulating the magnetization via the effective magnetic field

and conversely, the magnetization affecting the TI surface current via the electronic band

modification. However, the study assumed coherent electron transport between the two

contacts, greatly limiting the range of practical application at room temperature.

In a realistic device, the coherence is unlikely to hold even if electrons could travel through

the magnetic barrier ballistically. Furthermore, a fully diffusive treatment may be more

appropriate for a large device or with an imperfect sample, where substantial scattering is

anticipated. Here, we extend the study of the coupled dynamic response to the practicable

realm; i.e., the ballistic but non-coherent transport and the fully diffusive transport in the

interface region of interest. The loss of coherence in both cases is attributed conveniently to

the phase breaking events that electrons suffer in the TI surface channel before entering the

portion covered by the FMI. This investigation aims at extending the coupled dynamics to

all transport regimes and identifying the key influencing factors.

II. MODELS AND THEORETICAL ANALYSIS

The fully coupled dynamics must incorporate both the magnetization dependent TI sur-

face transport and the influence of the surface current on the magnetization rotation. In the

previously reported analysis,12 the system was modeled essentially as the quantum mechani-

cal wave tunneling through a barrier by coherently matching the boundary conditions at the

two magnetic junctions. Thus the resultant solutions such as the magnetization state and

the current exhibit the inherent dependence on the interference. Accordingly, it is rather

difficult to discern if an observed nonlinear behavior is the consequence of the nontrivial

magnetization dynamics or simply the interference effect. This is important since the latter

phenomenon (i.e., interference), as mentioned above, is unlikely to survive at the ambient

temperature. Moreover the model Hamiltonian that was based on a relatively simple form

of the surface exchange interaction, may have missed out some of the more complex physical

processes. For instance the impact of inter-band exchange−a source for the anomalous Hall

effect−has not been considered.

The key difference in the non-coherent regime (i.e., the present study) is that each mag-

netic junction (or boundary) is treated independently and the electron transport between
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them accounted for in a particle-like manner (no interference). The presence or absence of

the scattering events while traveling in the TI region covered by the magnet just separates

the diffusive vs. ballistic cases. When the electrons suffer no scattering (i.e., ballistic but

non-coherent), the TI surface channel can be described by a classical double barrier problem.

Then the total transmission may be given as T0/(2−T0) [=
∑

∞

i=0
T0(1−T0)

2iT0] by summing

over all possible sequential transmission events.18 Here, i represents the number of reflections

back-and-forth between the two boundaries before the eventual passage and T0 the proba-

bility associated with each boundary as discussed in the literature.19 To be more specific,

the transmission probability T0 is obtained as a function of the magnetization M, the elec-

tron energy E, and the lateral momentum ky. Subsequently the channel conductance can

be calculated by the usual Landauer formalism; viz., GM ∝
∑

ky

∫

TM(E, ky)
∂f

∂E
dE, where

TM(E, ky) = T0/(2− T0) and f(E) is the Fermi-Dirac function. The corresponding current

(Jx) is simply the linear product of the conductance GM and the driving voltage V . The

diffusive case, on the other hand, may be considered as two boundaries separated by an

ohmic resistor in the middle. As such, three resistors connected in series could be an ade-

quate description. The M-dependent conductance at each junction can be obtained from T0

following the Landauer approach (defined as G0
M

by setting TM = T0 in the expression given

above), while the additional resistance (Rc) of the diffusive channel is readily estimated from

the electrical resistivity of the TI surface. Then, the current is simply given as V divided

by the total resistance; i.e., Jx = V/(Rc +
2

G0

M

). Strictly speaking, the resistivity of the TI

surface may also be affected by the band modification and thus potentially a function of M.

However, this effect appears relatively minor if the TI chemical potential is sufficiently away

from the band extremum (see also the numerical values given in Sec. III). Accordingly, the

standard models described above are expected to capture the key dependence of the driving

current (Jx) on the magnetization. On the other hand, they do not account for the poten-

tial presence of the transverse current−the anomalous Hall effect. Indeed, this transverse

current flow provides a key component as demonstrated later in the discussion. Again, the

magnetization and the current are inter-dependent and must be solved for simultaneously.

Figures 1(b) and 1(c) illustrate schematically the mechanisms of the anomalous Hall cur-

rent in the TI-magnet system. The in-plane magnetization along the +x axis shifts the TI

surface electronic dispersion and causes the transmitted electron to have a net momentum

toward the −y direction, resembling light transmission through the media with a refractive
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index mismatch.19 In the ballistic but non-coherent case (where the FMI length L is limited

to the electron mean free path λ), the transmission through the two magnetic boundaries

are independent processes as mentioned above and the trajectory beneath the magnet is de-

termined by the refraction at the incoming edge [Fig. 1(b)]. Consequently, the net nonzero

momentum along the −y axis constitutes the anomalous Hall current that is accompanied

by the corresponding −x spin polarization via spin-momentum interlock. A detailed study

of the quasi-optic behavior found the anomalous Hall current ratio β (i.e., the ratio between

the anomalous Hall current and the driving current) to be around 0.5 that is also invariant

to the direction of current flow.19 As this Hall current concerns only the x component of the

magnetization, it can be expresses as Jy = −βxmx|Jx|, where m = M/|M| = (mx, my, mx)

denotes the FMI magnetization normalized to the saturation magnetization |M| (≡ M0).

In the fully diffusive transport, on the other hand, it gives a negligible contribution as the

refracted momentum would be quickly relaxed by scattering events (i.e., βx ≈ 0). Note that

the current actually refers to the electron flux throughout the discussion; hence, there is a

sign difference with the convention. Another point worth a comment is that the transverse

electron flow is not induced when the driving current and the magnetization are aligned

orthogonal to each other in the plane (e.g., mx with the y-directional driving potential).

Hence, the phenomenon discussed above deviates somewhat from the conventional anoma-

lous Hall effect. Nevertheless it can cause a transverse current under a certain magnetization

condition and is termed as such.

Unlike the in-plane component discussed above, the out-of-plane magnetization induces

the transverse current under both ballistic and diffusive conditions [Fig. 1(c)].20–23 A sizable

anomalous Hall effect has been discovered in magnetically doped and magnet capped TIs,

indicating the potential significance in the coupled magnetization-current response.22–24 The

physical origin of this phenomenon follows from the traditional models of the anomalous Hall

effect, with the contributions of both the intrinsic and the extrinsic nature.25 As it turns out,

the intrinsic factors such as the field induced inter-band exchange have shown to be dominant

in most TI materials.20–23 Unfortunately, simple governing equations for the amplitude of

the Hall current are yet to be provided in the literature due to the theoretical complexities.

Nevertheless, there are sufficient results that lead to quasi-quantitative estimations with

a degree of confidence. Similar to the in-plane counterpart, this component of the Hall

current can be expressed as Jy = −βzmzJx with the corresponding ratio βz. In comparison,
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the earlier study based on the coherent treatment did not fully consider the Hall contribution

by the z-magnetization for the lack of appropriate physical treatments.12

Following the description of the anomalous Hall effect given above, a qualitative picture

of the coupled TI-magnet system can be developed. In the ballistic transport, both the in-

plane (‖x̂) and the out-of-plane (‖ẑ) magnetization can induce the anomalous Hall current

(‖ŷ), which brings additional spin polarization or the effective magnetic field that in turn

affects the magnetization. On the other hand, just the effect of mz needs to be considered in

the diffusive transport because the mx-induced anomalous Hall current exists only around

the magnetic boundaries and, thus, becomes negligible in terms of the magnet as a whole.

To circumvent the numerous unknowns in calculating the magnitude of the Hall effect, we

treat the ratios βx,z as variables in the analysis around the values found in the literature

(for instance, βz ≈ 0.05).23,24,26 It is interesting to note that in most cases, the anomalous

Hall current with βz > 0 exhibited a p-type (hole-like) ordinary Hall character even though

the examined TI samples could be both n-type and p-type.24,26 The physical reason for this

behavior is outside the scope of the present investigation. We assume that the TI sample

is n-type and the anomalous Hall effect is larger than the ordinary Hall effect due to the

magnet’s stray field so that βz is positive.

To compute the response of the coupled TI-FMI system, the expressions describing the TI

surface current and those for the magnet must be solved simultaneously. With the driving

current Jx and the corresponding anomalous Hall current Jy = −βxmx|Jx| − βzmzJx, the

net spin polarization can be expressed as S = Jy
evF

x̂ − Jx
evF

ŷ (vF being the Fermi velocity).

Considering the exchange magnetic field Hex = (Hx, Hy, 0) = G
µ0LzM0

S, where Lz denotes

the thickness of the magnet, µ0 the permeability of vacuum, and G the TI-magnet exchange

coupling energy, we have a well defined relation between the x and y components:

Hx = −βxmx|Hy|+ βzmzHy . (1)

Then, the dynamics of the magnetic layer can be expressed in the Landau-Lifschitz (LL)

equation as
∂m

∂t
= −

γ

1 + α2
m×Htot −

γα

1 + α2
m× (m×Htot) , (2)

where γ is the gyromagnetic ratio and α the Gilbert damping factor. In addition, Htot

represents the total effective field that includes the TI-magnet exchange interaction (i.e.,
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Hex) and the anisotropy field of the magnet. The inter-dependence between J and m makes

it very difficult to get an analytical solution.

For a physical insight into the nontrivial influence of the anomalous Hall current, a

simplified example is also considered before Eq. (2) is treated numerically. It can be readily

recognized from Eq. (1) that the term containing βx behaves essentially like an additional

hard-axis anisotropy along the x axis with the anisotropy energy of 1

2
µ0M0βx|Hy|. The

corresponding impact can be intuitively understood as lowering the barrier for the switching

between the ±x magnetization. Once βx and all of the anisotropy contributions are ignored

(for the sake of the more interesting βz), the total effective field is reduced to Htot =

(βzmzHyx̂+Hyŷ) and the right-hand side of Eq. (2) becomes

RHS =
γ

1 + α2
Hy





















mz
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−mx
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(3)

It is important to note that the terms containing α are associated with the damping while

the rest drive the precession. In particular, the y-component of the above expression clearly

illustrates the competition between the damping and the counter force that is induced by

the anomalous Hall current [see the term with (α− βz)]. When βz is set to zero (i.e., no

Hall effect), the magnetization m would eventually settle along the direction parallel to

Hy (i.e., the natural spin polarization of the driving current) after transient dynamics as

in the conventional cases. If βz becomes non-zero and larger than α, on the other hand,

the resulting change of sign (i.e., α − βz < 0) could mean the final magnetization in the

antiparallel orientation with Hy − a rather unprecedented prospect. In the limiting case of

βz ≈ α, a third possibility may be realized where the damping is effectively canceled and the

magnetization enters into the state of sustained oscillations. The addition of the βx term (in

the ballistic transport) is not expected to qualitatively alter the picture since it essentially
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mimics the hard-axis anisotropy.

III. NUMERICAL RESULTS AND DISCUSSION

For the detailed quantitative analysis, the magnetization dynamics of each transport

condition is examined by numerically solving the LL equation in the presence of βz, βx, and

magnetic anisotropy. Figure 2 shows the results for the diffusive transport as a function of

the driving voltage V and the damping parameter α. In this case, βx is set to zero due to its

negligible contribution following the discussion given earlier. The magnet is assumed to have

a dimension of 90× 40× 2.2 nm3 and the saturation magnetization of 1200 G. A hard-axis

anisotropy of 2.5 × 104 J/m3 along the y direction is also considered. In combination with

other anisotropy terms, this in effect makes the x an overall easy axis for the magnet. We

also suppose that Bi2Se3 is used as the TI layer with a chemical potential of u0 = 50 meV

(by setting the Dirac point as the reference) and the Fermi velocity vF = 4.6 × 107 cm/s.

The resistivity of the TI surface is taken to be ∼ 103 Ω/� and the TI-magnet exchange

constant G = 40 meV. For convenience, the bias is chosen such that electrons flow rightward

and the resulting effective field points toward the −y direction, i.e., Hy < 0. Consequently,

the intuitive behavior for a normal magnet is to relax to the same (i.e., −y) direction. This

is indeed the case as indicated in Fig. 2(a) when α = 0.08. If the damping constant is

smaller than the βz factor, on the other hand, Fig. 2(b) with α = 0.01 clearly illustrates

that the final state could reverse and settle down to the opposite orientation (my = 1) in the

manner consistent with the analysis based on Eq. (3). Note that both switching dynamics

look almost identical except the final convergence points. The corresponding trajectories in

the magnetization space are provided in Fig. 2(c) (see the blue vs. orange curves).

Another important consequence of the competition between α and βz is the generation

of steady oscillations when the two values are comparable, as illustrated in Fig. 2(d). While

only 3 ns is plotted, the oscillations continue with negligible damping well past the simulated

time of 10 ns. Furthermore, the resonant frequency is controllable via the applied voltage or

the damping factor. Although α is often considered a fixed parameter for a given material, it

can also be tuned through doping or by introducing nonmagnetic cap layers.27,28 Along with

the sustained oscillations, the random flip-flops between the ±x magnetization are possible

as well before relaxing to a stable configuration [see Fig. 2(e)]. Figure 2(f) provides the
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magnetization trajectories for both the oscillations and the flip-flops.

The multiplicity of the magnetization dynamics can be best represented by a ”phase di-

agram” mapped on the V -α parameter space. In Fig. 3, the lines denote the boundaries

between the different dynamical regimes while the background color indicates the charac-

teristic frequency of magnetization rotation. Starting from the magnetization along the

+x direction, the responses can be identified as small deviations due to Hex, a flip (i.e.,

−x) or flip-flops between ±x, alignment along Hy (−y), sustained or auto-oscillations, and

antiparallel alignment to Hy (+y). Switching to +y and the presence of auto-oscillations

in a broad parameter space are the consequence of the anomalous Hall current (βz). By

contrast, other regimes (i.e., deviation and −y alignment) can also be found in the ordinary

dynamical processes. As each regime covers a well defined portion of the phase space, they

are relatively robust against the fluctuations. The magnetization rotation frequencies are

determined from the simulated magnetization dynamics. For the sustained oscillations, it is

the generated (i.e., resonant) frequency. In the other regimes, the rotation period extracted

near the final convergence point is used for simplicity. The frequency calculation also shows

a tunable behavior with a gradual change except some abrupt transitions at the bifurca-

tion boundaries. For instance, the frequency can be modulated by more than an order of

magnitude in the range of approximately 1 ∼ 10 GHz for the sustained oscillations.

When the polarity of the bias reverses (i.e., with the electrons flowing leftward), the

magnetization dynamics under the diffusive transport conditions remain virtually unaltered.

Indeed, Fig. 4(a) is almost exactly an upside down version of Fig. 3;29 note that the exchange

field (Hy) induced by the spin-polarized surface current is now along the +y direction. In

comparison, the impact of the varying chemical potential is more substantial as it affects

the results quantitatively even though the key dynamical characteristics are mostly alike

[Fig. 4(b)]. The biggest deviation, however, is brought by the change in the Hall current

factor βz, particularly if it switches to a negative value. Figure 4(c) shows one such case

where the damping is actually enhanced (α − βz > α). Accordingly, the antiparallel align-

ment is no longer allowed while the auto-oscillation is limited to a very small region in

the parameter space. Although it is not commonly seen, the possibility of a negative βz

is not excluded either with some preliminary indications of such from recent experimental

results.24,26

As electron transport in the interface region becomes collision-free (i.e., L . λ), the in-
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fluence of βx must be accounted for in combination with the momentum refraction at the

boundaries. Figure 5(a) shows the calculation result with βx = 0.6. When compared to

the corresponding case in the diffusive transport (Fig. 3), the key features are rather alike

except that the required biases are substantially smaller. The reduction in the voltage may

be attributed to the equivalent hard-axis anisotropy provided by βx as well as the negligible

(or zero) ohmic potential. The similarities between the two figures indicate the relative

insignificance of βx in comparison to βz. This is further verified in Fig. 5(b) when βz is

artificially set to zero. Consistent with the earlier discussion, a substantially different pic-

ture emerges with the disappearance of the antiparallel alignment regime and the narrowed

parameter space for the oscillations (to small α). The case with both βx,z = 0 is also shown

in Fig. 5(c) for reference. With the exception of antiparallel alignment, it is remarkable to

see the other responses maintained under such a drastic change in the Hall coefficients βx,z.

The calculation clearly indicates the nonlinearly coupled nature of the dynamics between

the TI electrons and the magnetization of the magnet even in the absence of the anomalous

Hall effect.

It is worth noting that our results may serve as a theoretical guidance for experimental

verification. The parametric investigation illustrates the critical transitions between the dif-

ferent phases of dynamics. While the magnetic insulators often have a small damping factor

(< 0.01), there are other factors that could further facilitate the multiplicity of dynamical

behaviors. For one, the coefficients for the anomalous Hall effect are certainly sample de-

pendent and can be substantially smaller than those used in the present study. This tends

to shift the transition points (or lines) in the phase diagram toward the lower values of α

[see, for example, Fig. 5(a) vs. Figs. 5(b,c)], exposing broader operation spectra. Additional

measurement data are necessary for a more accurate analysis. Finally, the models and phe-

nomena discussed here apply only to the insulating magnets. The interaction between TI

electrons and the magnetic insulator is most suitably treated with the exchange field. For a

metallic magnet, on the other hand, there could be spin polarized electrons injected to the

metal as well as a shunt current through it. Thus, the spin transfer torque model would be

more appropriate.30 Plus, the electron transport on the TI surface also needs reconsideration

as the metal may pin the Fermi level.
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IV. SUMMARY

The strongly coupled dynamics of electron transport and magnetization switching is the-

oretically investigated in the TI-magnet hybrid structure in the realistic transport regimes.

The nontrivial dynamics predicted earlier in a quantum mechanical wave-like analysis are

similarly observed in the particle-like treatment, indicating the physically robust nature of

these phenomena beyond the simple interference effect in the calculation. Further, the re-

sults illustrate an additional, unusual possibility of antiparallel alignment between the mag-

net magnetization and the driving exchange field when the anomalous Hall effect dominates

over the normal damping process. The investigation also reveals that some of these nonlinear

magnetization responses (such as the flip-flop and auto-oscillation) are rather prevalent and

can be achieved under a broad range of anomalous Hall conditions as well as the transport

regimes including the diffusive cases. Accordingly, the proposed mechanism of magnetiza-

tion control is expected to offer a highly efficient alternative to the STT or spin-Hall based

approaches. In particularly, the auto-oscillation phenomenon can provide a compact and

low-power solution for spin wave generation with a range of practical applications.31–37
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FIG. 1: (Color online) (a) Schematic illustration of the TI-magnet structure under investigation.

An insulating nanomagnet (FMI) is placed on top of a TI surface, where two electrodes are used to

inject the current through the TI-FMI interface region. The red arrow (~m) denotes the magnetiza-

tion of the magnet. (b) and (c) show the mechanisms for the transverse current (i.e., the anomalous

Hall effect) due to the in-plane and the out-of-plane magnetization, respectively. The thick arrows

(yellow) represents the electron flow while the thin arrows (red) denote the corresponding spin

polarization. The inset in (b) illustrates the shift of the iso-energy contour in the momentum space

(TI) due to the in-plane magnetization (FMI).
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FIG. 2: (Color online) Dynamical response of the magnetization from the initial state mx = −1

calculated under diffusive transport conditions (i.e., βx = 0) with βz = 0.06 at different driving

voltages V and damping constants α: (a) V = 0.25 V, α = 0.08; (b) V = 0.25 V, α = 0.01; (d)

V = 0.2 V, α = 0.03; (e) V = 0.15 V, α = 0.07. (c) and (f) show the corresponding trajectories

in the magnetization space. The blue (dark) and orange (light) curves in (c) represent the results

of (a) and (b), respectively. Similarly in (f), they are for (e) (blue) and (d) (orange). The red dot

marks the initial state. The length L of 90 nm and the TI chemical potential u0 of 50 meV are

assumed in all cases.
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FIG. 3: (Color online) Magnetization dynamics mapped on the V -α parameter space. As in Fig. 2,

the diffusive electron transport is considered with βz fixed at 0.06. The solid lines separate the

different dynamical regimes. The dashed lines in the flip-flop region indicate the smeared nature

of the boundaries between the two final states (+x or −x) after the precession. The background

color provides the corresponding frequency of the magnetization rotation. AO stands for auto (or

sustained) oscillations.
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FIG. 4: (Color online) Phase diagram of the magnetization dynamics with (a) a reversed bias

(V < 0), (b) a different TI chemical potential u0, and (c) a negative βz . The rest of the conditions

and the notations are the same as in Fig. 3.

17



FIG. 5: (a) Magnetization dynamics calculated under ballistic but non-coherent transport con-

ditions with βz = 0.06 and βx = 0.6. (b) and (c) examine hypothetical cases with the specified

conditions for reference. The rest of the parameters and the notations remain the same as in Fig. 3.
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