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Usual paradigm in the theory of electron transport is related to the fact that the dielectric per-
mittivity of the insulator is assumed to be constant, no time dispersion. We take into account the
“slow” polarization dynamics of the dielectric layers in the tunnel barriers in the fluctuating electric
fields induced by single-electron tunneling events and study transport in the single electron transis-
tor (SET). Here “slow” dielectric implies slow compared to the characteristic time scales of the SET
charging-discharging effects. We show that for strong enough polarizability, such that the induced
charge on the island is comparable with the elementary charge, the transport properties of the SET
substantially deviate from the known results of transport theory of SET. In particular, the Coulomb
blockade is more pronounced at finite temperature, the conductance peaks change their shape and
the current-voltage characteristics show the memory-effect (hysteresis). However, in contrast to
SETs with ferroelectric tunnel junctions, here the periodicity of the conductance in the gate voltage
is not broken, instead the period strongly depends on the polarizability of the gate-dielectric. We
uncover the fine structure of the hysteresis-effect where the “large” hysteresis loop may include a
number of “smaller” loops. Also we predict the memory effect in the current-voltage characteristics
I(V ), with I(V ) 6= −I(−V ).

PACS numbers: 77.80.-e,72.80.Tm,77.84.Lf

I. INTRODUCTION

The single electron transistor (SET) is one of the most
studied nanosystem.1–7 This is possibly the simplest de-
vice where strong electron correlations and quantum na-
ture of electron can be directly observed. It consists of
two electrodes known as the drain and the source, con-
nected through tunnel junctions to one common electrode
with a low self-capacitance, known as the island. The
electrical potential of the island can be tuned by a third
electrode, known as the gate, capacitively coupled to the
island, see Fig. 1 for equivalent circuit.

For decades there was nearly a paradigm in the the-
ory of electron transport at nanoscale that calculating
dc-current the permittivity of dielectric layers in tunnel
nanojunctions may be taken constant, without any fre-
quency dispersion.4,5,8–10 However, this paradigm is not
always true. A number of physical processes contribute
to the polarization of a dielectric. Some of them are fast
and some are slow compared to the time scales of elec-
tric field change in the nanojunctions.11–20 There is a
progress in the development of dielectric materials with
strong and at the same time quite slow response to the
external electric field.19,21,22 The SET is a perfect labora-
tory device where this physics can be studied: charging-
discharging effects in the SET are controllable and have
the well-defined time scales.

The Coulomb blockade suppresses electron transport
except for values of the gate voltage where electrons se-
quentially tunnel one by one through SET from source to

drain. Electric fields in the tunnel junctions are chang-
ing in time while electrons tunnel through the island.
Dielectric layers in the tunnel junctions are polarized at
finite electric field. The usual assumption in the the-
ory of SET that the polarization of any dielectric layer
in the tunnel barrier instantly follows the electric field
in time: P(t) = χ̂E(t), where the constant χ̂ is the di-
electric permittivity (tensor) of the dielectric layer.4,10 It
follows from the last expression that the capacitance C of
any tunnel junction in the SET is related to the geometric
capacitance C(0) as C = εC(0), where for a flat capacitor
with isotropic dielectric, ε = (1 + 4πχ).23 And this is the
only place where the polarization appears in the “classi-
cal” theory of SET. However, these relations have limited
applicability. In general, the polarization of the dielectric

is nonlocal in time: P(t) =
∫ t
−∞ χ̂(t − τ)E(τ)dτ , where

χ̂(t) is the dynamical electric permittivity. [Here we as-
sume the linear response regime.] The time dependence
of χ̂(t) implies that tuning of dielectric polarization P(t)
by an electric field can not be done arbitrary fast. This is
happening, for example in dielectric materials with polar-
ization being due to shift of heavy and inert ions.12,18,20

The response of polarization P(t) to the external field
is characterised by the time-scale τP , the decay time of
χ̂(t). The second characteristic time-scale in the prob-
lem: the time of the electric field correlation, τE . For
τP � τE the polarization has the form P(t) ≈ χ̂0E(t),
where χ̂0 =

∫∞
−∞ χ̂(τ)dτ . In the opposite case, τE � τP ,

the polarization P(t) does not follow the electric field
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FIG. 1. (Color online) The equivalent scheme of single elec-
tron transistor (SET).4

E(t) instantaneously and it has the form

P(t) ≈ χ̂ 〈E〉, (1)

where 〈E〉 is the electric field averaged over the time scale
τP . It follows from Eq. (1) that the simple relation for ca-
pacitance, C = εC(0), is not valid. Therefore the theory
of single-electron tunneling in the SET should be modi-
fied and this is the main goal of our paper.

The characteristic time of charge relaxation in the SET
is τE = RΣCΣ, where RΣ is of the order of the bare tunnel
resistance of the left and right tunnel junctions and CΣ

is the sum of all the capacitances, see Fig. 1. The time
scale τE is in the range of dozens of nano- to picoseconds
depending on the system geometry and materials. The
switching time of a dielectric material, τP , is in the range
of seconds to femto-seconds depending on the material
and the particular physical process standing behind the
polarization phenomena.18,20

Therefore the regime of “slow” insulator, τE � τP ,
is very important for SET-devices. However, there is
paradigm that the existing theories with τP � τE sat-
isfactory explain most experiments with SETs. What
is the justification for new theory? The answer is sim-
ple: the effects discussed in this paper are especially pro-
nounced in SETs when on average the polarization of a
dielectric tunnel junction in the SET is strong enough
meaning that the charge induced on the grain by the po-
larized dielectric is of the order of the electron charge.
This condition can be reached for large enough dielectric
permittivity ε only. How large we will discuss below.

Recently we have found a number of transport effects
in the SET with slow ferroelectric in the capacitors, see
Refs. 6 and 7. In particular, we investigated the memory
effect in this SET. Here we uncover new physical phe-
nomena and report about the memory-effect (hystere-
sis) where conductance periodicity in the gate voltage is
not broken. Instead, the period strongly depends on the
polarizability of the gate-dielectric due to the linear de-
pendence of the polarization on the external field in the
dielectric. Also, we uncover the unusual fine structure of
the hysteresis-effect, where “large” hysteresis loop may
include a number of “smaller” loops. We predict that
the memory effect exists in the current-voltage charac-
teristics, meaning that I(V ) 6= −I(−V ) for a given hys-
teresis branch even at Vg = 0. The last two effects may
exist in the ferroelectric SET, however non of them have

been found before. These results are important: SET de-
vice with hysteresis may be promising for the “shuttle”
of charge24–26 free from moving nanomechanical degrees
of freedom: cycling the gate voltage along the hystere-
sis loop might allow transfer of several charge quanta
through the SET. Other promising applications include
transistor4 and memory-cell. For example, the memory
effect in I(V ) and G(Vg) might help writing and reading
data in(from) the polarization state.

The paper is organized as follows. In Sec. II we dis-
cuss the general properties of SET with slow dielectric
and the methods for investigation of transport proper-
ties. In Sec. III we investigate the SET with slow di-
electric located in the gate electrode at zero bias voltage,
V2−V1. In Sec. IV we consider the case with slow dielec-
tric in the left and right tunnel barriers of the SET and
uncover the memory effect in the current-voltage charac-
teristics, I(V ). Finally, in Sec. V we discuss the validity
of our approach and the requirements for slow dielectric
materials which are necessary to observe the effects pre-
dicted in this paper. In the same section we show that
the Coulomb blockade in SET with slow dielectrics is less
affected by temperature.

II. ELECTRON TRANSPORT THROUGH SET
WITH SLOW TUNNEL BARRIERS

A. Model

Consider the single electron transistor depicted in
Fig. 1. Two side electrodes serve as the transistor source
and drain. Electric current flows through the transis-
tor channel which is the metal island placed in between
leads and connected to the source and drain by the tunnel
junctions. Bottom gate electrode controls electron trans-
port through the channel. Current does not flow through
the gate electrode (similar to the field effect transistors).
Theory of “classical” SET is developed in Refs. 2–5. Es-
sential feature of the SET discussed here is related to
the fact that the gate capacitor or (and) tunnel junction
capacitors are filled with a dielectric material with some
special properties. This dielectric material has a very
long response time, leading to essential time dispersion
of the capacitor. As a result the electric polarization of
the gate capacitor should be considered in a special way.

In the following it is convenient to distinguish between

the geometrical junction capacitances C
(0)
i and the low-

frequency capacitances Ci that include the slow dielectric
response. The difference between them, aside from the
unimportant geometrical factor, is

∆Ci = Ci − C(0)
i = αiSi/di, (2)

where αi is the dielectric polarizability of the i-th junc-
tion (i = 1, 2, g), Si is the junction surface area and di
is the effective electrode-island distance. So defined αi
includes all the demagnetization factors related to the
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geometry of the capacitors and effects related to nonuni-
form and anisotropic dielectric layers.23 For a flat capac-
itor with isotropic dielectric, C(0) = S/4πd and α = χ.

We assume that the electrodes are biased with the volt-
ages V1 = −V/2, V2 = V/2 and Vg. The grain potential
φ(n) at a given number of excess electrons n can be found
balancing the induced charges:

n e =
∑
i

C
(0)
i (φ(n)− Vi) +

∑
i

∆Ci(〈φ〉 − Vi), (3)

〈φ〉 =

∞∑
n′=−∞

pn′φ(n′), (4)

where pn is the probability to find n excess charges on the
grain. Two terms originate in (3) because we distinguish

the electric field produced by the capacitance C
(0)
i and

the contribution due to polarized dielectric with slow re-
sponse. So the terms proportional to the coefficient ∆Ci
in Eq. (4) can be considered as charges induced on the
grain by the polarized dielectric layers that are constant
in tunneling events.

The probability distribution pn in the steady state can
be found using the detailed balance equation2–5

pnΓn→n+1 = pn+1Γn+1→n, (5)

where the rate Γn→n+1[Vi, n, 〈φ〉] describes the change
of grain charge from n to n + 1 electrons. The electric
current has the form

I = e

∞∑
n=−∞

pn
[
Γn→n−1
s − Γn→n+1

s

]
. (6)

Here the lower index of Γ refers to the tunneling rate
corresponding to the particular tunnel junction, s = 1 or
2 and the rate Γ in Eq. (5) is equal to Γ1 + Γ2. Solving
Eqs. (3)-(5) self-consistently we find the current-voltage
characteristics of the SET using Eq. (6).

We use the “orthodox” theory2–5 to calculate the
Coulomb-blockade peaks in the differential conductance
of the SET. It implies that the tunnel junction resis-
tances R1,2 are much larger than the resistance quantum
Rq = h/e2: this condition insures perfect quantization of
the excess charge on the island. The temperature T must
be much smaller than the charging energy (it is of the or-
der of electrostatic energy of one excess electron on the
island), see Sec. V D for discussion about the correct defi-
nition of the charging energy. Also electron level spacing
on the island should be smaller than temperature, see
Sec. V.

In the leading order the probability per unit time to
change the island occupation number from n to n ± 1
through the first junction is given by the Fermi golden
rule

Γ
(1)
n→n±1 =

1

e2R1
·∆Fn→n±1

1 NB
(
∆Fn→n±1

1

)
, (7)

where NB(ω) = 1/[exp(ω/T )−1] is the Bose-function,4,27

R1 is the tunnel junction resistance and ∆Fn→n±1
1 de-

notes the free energy change with Q′0 being the effective
charge

∆Fn→n±1
1 = ∆U±n ∓W1, (8)

where ∓W1 is the work done by the leads and the gate to
transfer an electron to/from the grain through the first
tunnel junction. The calculation of Γ-rates requires the
knowledge of the difference in the electrostatic energies
when the number of excess charges on the grain differ by
one elementary charge: ∆U±n = U(n± 1)− U(n). If the
polarization in dielectric layers on electron jumps follow
φ adiabatically, Pi = αi(φ − Vi)/di, we have ∆U±n =
Ec(1±2n), where Ec = e2/2CΣ with all the capacitances

CΣ =
∑
i Ci being properly renormalized, Ci = C

(0)
i (1 +

4παi). However, for slow dielectric layers the polarization
Pi = αi(〈φ〉−Vi)/di stays constant during the tunneling,
and for the energy difference we find (see App. A)

∆U±n = E(0)
c (1± 2n∓ 2

∑
i
PiSi/e), (9)

where E
(0)
c = e2/2C

(0)
Σ , C

(0)
Σ =

∑
i C

(0)
i and PiSi =

∆Ci(〈φ〉 − Vi).
The work done by the leads and the gate to transfer

an electron to/from the grain remains the same as in
the “orthodox” theory2–5 except for the fact that only

the geometrical capacitances C
(0)
i should be taken into

account:

W1 =
e
(

[C
(0)
g + C

(0)
2 ]V1 − C(0)

2 V2 +Q′
)

C
(0)
Σ

, (10)

W2 =
e
(

[C
(0)
g + C

(0)
1 ]V2 − C(0)

1 V1 +Q′
)

C
(0)
Σ

, (11)

where the effective gate-induced charge Q′ is

Q′ = −C(0)
g Vg +

∑
i
∆Ci (〈φ〉 − Vi). (12)

This in particular implies that for temperature T → 0
the effective ground state free energy is defined as

F0 = E(0)
c min

n
(n−Q′/e)2, (13)

Below we use the notation Q = −CgVg for the tradi-
tional gate-induced charge. We show that although the
effects of slow polarization are far from being a simple

renormalization of capacitances C
(0)
i → Ci, the conduc-

tance periodicity in Q holds and maintains its period |e|
for any values of the parameters ∆Ci.

B. Nature of the memory effect: analytical
estimates

The detailed balance equation (5) can be solved an-
alytically for the set of voltages Vg near the “degener-
acy points”, where the ground state energy of the SET
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FIG. 2. (Color online) Graphical solution of Eq. (14) show-
ing three possible solutions for an average grain potential 〈φ〉
at a given gate voltage Vg. Parameters are: Q = −0.07|e|,
C

(0)
g = 0.5C

(0)
Σ , ∆Cg/C

(0)
Σ = 0.5, and T = 0.4E

(0)
c . The

three distinct solutions for 〈φ〉 at a given Q0 correspond to
the memory effect instability.

changes from n to n±1 excess charges. The last condition
requires the effective charge Q′ to be close to e(n+ 1/2).
In this case the only two probabilities pn are finite while
the other probabilities are exponentially suppressed by

the factor e−E
(0)
c /T . In order to illustrate the origin of

the memory effect, we will focus on the degeneracy point
between n = 0 and n = 1 at V1,2 = 0. Using Eqs. (3)-(4)
we find for the average potential 〈φ〉

nF [(1− 2Q′/e)E(0)
c ] = e〈φ〉/2E(0)

c +Q′/e, (14)

where nF is the Fermi-function. Equation (14) has one
or three solutions for a given gate voltage Q. The latter
case is shown in Fig. 2. The presence of three distinct
solutions for the average potential 〈φ〉 at a given param-
eter Q indicates the memory effect instability. Using the
graphical solution of Eq. (14) we estimate the criteria for

the memory effect instability,
∑
i ∆Ci/C

(0)
Σ & 2T/E

(0)
c .

This criterion corresponds to the critical value of ∆CΣ

when the memory effect just appears, see Eq. (36) below
for the exact expression.

III. SET WITH SLOW INSULATOR IN THE
GATE CAPACITOR

A. Numerical study of electron transport through
SET

Here we study electron transport through SET numer-
ically. We consider the SET with slow dielectric layer in
the gate capacitor. This set-up is the most favourable
for experiment since in this case there is no electron tun-
neling through the gate electrode and it can be arbitrary
thick to allow a wide choice of dielectric materials. More-
over, as we will show in the following Sec. IV, at V = 0
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FIG. 3. (Color online) Conductance peaks for ∆Cg/C
(0)
Σ =

0, 0.3, 0.6. The “unit” of conductance GT1 is the conductance
of the first tunnel junction of the SET. Parameters are: ca-

pacitances C
(0)
1 = 0.3C

(0)
Σ , C

(0)
2 = 0.5C

(0)
Σ and C

(0)
g = 0.2C

(0)
Σ

and temperature T = 0.2E
(0)
c . The slow dielectric in the gate

capacitor modifies the shape of the conductance peaks but
preserves the periodicity in parameter Q in contrast to the
SET with ferroelectric in the gate capacitor.7

by considering the gate capacitor we still preserve all the
qualitative effects introduced by slow dielectrics in a gen-
eral case.

Thus, for a time, we assume that the only non-zero
∆C is ∆Cg.

For ∆Cg = 0 the conductance is a periodic function of
the effective gate voltage Q, see the gray curve in Fig. 3.
The conductance peaks are well fitted by the orthodox
theory where near the peak maximum the conductance
is

G(0)(δQ(0)) ≈ e δQ(0)/C
(0)
Σ T

2(R1 +R2) sinh(eδQ(0)/C
(0)
Σ T )

. (15)

Here δQ(0)/e = mink[−C(0)
g Vg/e− (2k + 1)/2]� 1.

At finite but small ∆Cg, when the induced charge on
the island due to polarization is smaller than the elemen-
tary charge, the conductance peaks change their shape,
but preserve their amplitude and position (see Fig. 3).

The opposite case, with dielectric polarization being
strong enough to induce the charge on the island of
the order of the elementary charge or larger, is more
interesting. In this case the conductance peaks show
the hysteresis and their shape depends on the direction
of Q-evolution, see Fig. 4. The hysteresis appears for

∆Cg & C
(0)
Σ 2T/E

(0)
c (see Eq. 29). Despite the memory

effect the conductance remains periodic in the renormal-

ized gate voltage Q = −(C
(0)
g + ∆Cg)Vg with the same

period |e| for any ∆Cg. This behavior is in striking con-
trast to the SET with ferroelectric in the gate where due
to the nonlinearity of polarization–electric field depen-
dence the periodicity of conductance is broken, see Ref. 7.

Now we discuss the structure of the memory effect.
Above the critical value of ∆Cg there are many brunch-
solutions of the self-consistency equation for the average
grain potential, Eq. (4), for the given temperature, bias
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FIG. 4. (Color online) Memory effect instability in the SET
with slow insulator in the gate capacitor. (a) and (b) the
conductance branches corresponding to the increasing and de-

creasing parameter Q and ∆Cg/C
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Σ = 0.6, 1, 2, 4, (c) polar-

ization and (d) the average grain potential (arrows show the

direction ofQ evolution for a given branch) for ∆Cg/C
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Grey lines show stable and unstable branches of polariza-
tion and the average potential. Parameters are: capacitances

C
(0)
1 = 0.3C

(0)
Σ , C

(0)
2 = 0.5C

(0)
Σ and C

(0)
g = 0.2C

(0)
Σ and tem-

perature T = 0.2E
(0)
c as in Fig. 3.

and gate voltage. The question is - how to choose the
right branch? Figure 5 provides an answer to this ques-
tion. According to the branching theory28 the jumps oc-
cur at the “branching points” where the observable has
an infinite derivative in parameter Q. On the other hand,
the branch should correspond to the minimum of some
effective energy functional. In our case (no bias) the role
of the effective energy plays the free energy

F = −T lnZ, Z =
∑
n

exp

(
−E

(0)
c (n−Q′/e)2

T

)
.

(16)

For zero temperature it reduces to the free energy F0

discussed above.
The plots of the free energy have a similar dependence

on the parameter Q as the zero-bias conductance G. To
illustrate this point we show in Fig. 6 the free energy for

∆Cg/C
(0)
Σ = 0.6, 1.3. Figure 5b shows that the conduc-

tance branch between points “A” and “B” is metastable:
the free energy for this curve is larger than the free en-
ergy for branch below. However, during the adiabatically
slow increase of parameter Q the system does not switch
to the lowest branch at point A, instead it may go up
to the metastable branch. The same applies to all other
plots in Fig. 6. The external perturbation can drive the
system to outside of the metastable branch before the bi-
furcation point. Usually the role of this “perturbation”
plays the Langevin forces induced by the thermostat. In
this case the jumps occur randomly within the same re-
gion before the bifurcation point. This scenario is typical
for any hysteresis.

Intuitively one may suppose that if conductance
“jumps” from one branch to another the final branch
should have the lowest possible free energy for the pa-
rameter Q corresponding to the jump. Indeed, this is the
case in Figs. 5(a)-(c). However, in Figs. 5(d) and (f) this
rule is violated. The system could jump, for example, to
the point marked by the red-ball in Fig. 5(d), instead of
finishing at the point marked by the grey-ball which has a
larger free energy. However, this energetically favourable
transition is “forbidden”: while continuously changing
the polarization in such a process the system would have

to pass the energy barrier of approximately E
(0)
c /4 (free

energy maximum). Thus the higher order jumps (over
the average charge difference) are suppressed by the fac-

tor exp(−E(0)
c /4T ).

B. The fine structure of the memory effect

Doing numerical studies of memory effect we assumed
that parameter Q increases (or decreases) monotonically
from minus to plus infinity (or vice-versa). However, for
large enough parameter ∆Cg, when polarization induces
more than one electron on the grain, the hysteresis loop
depends on the interval where the parameter Q changes.
This is shown in Fig. 7 with two possible hysteresis loops:
The red hysteresis loop corresponds to back and forth
change of parameter Q in the interval (−2, 1) while the
blue curve corresponds to the interval (−2, 2). In the
second case the larger hysteresis loop “includes” smaller
loops. As a result, the understanding of memory effect
at finite intervals of parameter Q evolution requires con-
sideration of all branches of the SET observables such as
conductance and polarization.

C. Analytical description of the conductance peaks
and the memory effect

Here we present the analytical description of transport
properties of SET. At V = 0 and within the two-state
approximation the form of the conductance peaks G(Q)
can be found using Eq. (15) with the proper substitution
Q(0) → Q′, where Q′ is defined in Eq. (12): with this
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FIG. 5. (Color online) Memory effect: Plots (a)-(d) and (f) show the conductance for ∆Cg/C
(0)
Σ = 1.3, 3.3, 5.3, 10, 20 for stable

and unstable branches of Eq.(4) for the average grain potential. Plot (e) shows the polarization for ∆Cg/C
(0)
Σ = 10. Arrows

indicate the position of hysteresis jumps for particular branch with increasing Q. All plots are shown at fixed temperature

T = 0.2E
(0)
c .

substitution we have for conductance G(Q) = G(0)(Q′).
For average potential, generalizing Eq. (14), we obtain

〈φ〉 =
e

C
(0)
Σ

(
1

2
tanh

(
E

(0)
c

T

δQ′

e

)
− δQ′

e

)
, (17)

where δQ′/e = mink(Q′/e − (k + 1/2)). Combining
Eqs. (17) with (12) we find,

δQ′
CΣ

C
(0)
Σ

− e

2

∆Cg

C
(0)
Σ

tanh

(
E

(0)
c

T

δQ′

e

)
= δQ, (18)

where δQ = Q− (k+ 1/2)e is the deviation of parameter

Q, k is the same as for δQ′ and CΣ = C
(0)
Σ + ∆Cg. It

should be noted that the above equations are valid for
any δQ as long as δQ′ � 1.

1. Small polarization

Here we discuss the limit of small polarization, mean-
ing that the induced charge on the island is small com-
pared to the elementary charge e. Using the small pa-

rameter, ∆Cg/C
(0)
Σ � 1, we expand Eq. (18) up to the

second order

(δQ′)0 = δQ
C

(0)
Σ

CΣ
, (19)

(δQ′)1 = (δQ′)0 +
e

2

∆Cg
CΣ

tanh

(
E

(0)
c

T

(δQ′)0

e

)
. (20)

The conductance now may be found by substituting
δQ(0) with (δQ′)0,1 in Eq. 15.

G(δQ) = G(0)(δQ′) (21)
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FIG. 6. (Color online) Free energy in Eq.(16) for ∆Cg/C
(0)
Σ =

0.6, 1.3 and temperature T = 0.2E
(0)
c . The shape of free

energy plot is similar to the conductance G(Q) plot in Fig. 5a.

FIG. 7. (Color online) Memory effect in (a) the conductance
and (b) the polarization of the gate-insulator. The red hys-
teresis loop corresponds to back and forth change of param-
eter Q in the interval (−2, 1), while the blue curve corre-

sponds to (−2, 2) interval. Parameters are: ∆Cg = 7.5C
(0)
Σ ,

T = 0.2E
(0)
c , while C

(0)
i , i = 1, 2, g and Rj , j = 1, 2 similar

to Fig. 3.

The numerical calculations in Fig. 8(a) show that the
first order approximation, Eq. (20), well describes the

peak shape for small parameter ∆Cg/C
(0)
Σ ≈ 0.1, while

the zero order approximation is not sufficient. We note

that parameter ∆Cg/C
(0)
g and thus the renormalization

of the conductance period over Vg can be arbitrary in
this approximation.

2. Amplitude and form of the conductance peak in the
hysteresis regime

Solution of Eq. (18) becomes ambiguous for large val-
ues of parameter ∆Cg, where conductance G(Q) acquires
hysteresis. In this case the form of conductance peaks
becomes nonsymmetric and the conductance G(Q) has
a maximum at the branching (bifurcation) point corre-
sponding to the jump of the polarization. The bifurcation
points in Eq. (18) can be found as follows

d

dQ′

(
δQ′

CΣ

C
(0)
Σ

− e

2

∆Cg

C
(0)
Σ

tanh

(
E

(0)
c

T

δQ′

e

))
= 0, (22)

that reduces to

cosh2

(
E

(0)
c

T

(δQ′)max

e

)
=
E

(0)
c

2T

∆Cg
CΣ

. (23)

The two solutions of Eq. (23) correspond to the in-
creasing and decreasing evolution of parameter Q (solu-
tions with δQ′ < 0 and δQ′ > 0 respectively). These two
solutions result in mirror-reflected shapes for the peaks,
so we focus only on the decreasing parameter Q. For
conductance maximum we find

Gmax =
1

2(R1 +R2)

arccosh

(√
E

(0)
c

2T
∆Cg

CΣ

)
√

E
(0)
c

2T
∆Cg

CΣ

(
E

(0)
c

2T
∆Cg

CΣ
− 1
) . (24)

The predicted conductance maximum amplitude varia-
tion is shown in Fig. 8. One can see that the curve breaks
at critical value of parameter ∆Cg indicating the start of
the hysteresis regime.

We note that since within the scope of the two-state
approximation and for ∆Cg above the critical value the
Eq. (24) gives exact maximum, its applicability depends
only on temperature. At finite ∆Cg the conductance
maximum does not exactly correspond to a degeneracy

point δQ′ = 0, but still δ(Q′)max � 1 for T � E
(0)
c .

For example, for temperature T = 0.06E
(0)
c and ∆Cg →

∞ we have δ(Q′)max/|e| ≈ 0.1 � 1, meaning that our
consideration is valid (see Fig. 8).

Now we find the form of conductance peaks. Expand-
ing Eq. (18) up to the second order near δ(Q′)max we
obtain

A0 +A2(δQ′ − δ(Q′)max)2 = δQ, (25)

where

A0 =
eT

E
(0)
c

CΣ

C
(0)
Σ

arccosh

(√
Ec
2T

∆Cg
CΣ

)
−

e

2

∆Cg

C
(0)
Σ

√
1− 2T

E
(0)
c

CΣ

∆Cg
, (26)
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FIG. 8. (Color online) (a) Numerical solution for conductance peak for ∆Cg/C
(0)
Σ = 0.05 (blue line), orange line is the zero

order solution from Eq. (19), and the red line is the first order solution from Eq. (20). (b) Numerical and analytical solutions

of conductance for ∆Cg/C
(0)
Σ = 0.1. The first order approximates well the conductance peak at small ∆Cg. (c) Conductance

at critical ∆Cg, where hysteresis appears. (d) Conductance hysteresis. (e) Amplitude of conductance peak vs ∆Cg. Points
represent the numerical solution; the dashed curve is Gmax = 1/2(R1 +R2); and the green solid curve shows Eq. (24) for Gmax.

Parameters are: T = 0.06E
(0)
c , while C

(0)
1 , C

(0)
2 , C

(0)
g and R1,2 are the same as in Fig. 3.

and

A2 =
E

(0)
c

eT

CΣ

C
(0)
Σ

√
1− 2T

E
(0)
c

CΣ

∆Cg
. (27)

It follows from Eqs. (25) and (21) that the conductance
derivative in δQ diverges as 1/

√
x near its maximum

value.

3. The peak form at the bifurcation point

To find the conductance peak at the critical value of
parameter ∆Cg we expand the hyperbolic tangents in
Eq. (18) up to the third order. As a result we obtain

δQ′

(
1− ∆Cg

C
(0)
Σ

(
E

(0)
c

2T
− 1

))
+
e∆Cg

6C
(0)
Σ

(
E

(0)
c

T

δQ′

e

)3

= δQ. (28)

The linear term equals zero at the critical point. For
critical polarizability of the gate-insulator we find

∆C(c)
g = C

(0)
Σ (E(0)

c /2T − 1)−1. (29)

Also we find that

δQ′ =
eT

E
(0)
c

3

√√√√6
δQ

e

(
E

(0)
c

2T
− 1

)
. (30)

Using Eq. (21) we find that the peak maximum can be ap-
proximated with the function 1/(1+x2/3) (here x ∝ δQ),
while the derivative diverges at the conductance maxi-
mum as 1/ 3

√
x. As follows from Fig. 8(c) and Eq. (30)

this approximation for conductance works well near its
maximum value only.

IV. SINGLE ELECTRON TUNNELING
THROUGH SLOW DIELECTRIC LAYER

A. Conductance peaks with slow dielectrics in all
capacitors

Here we consider the general case, with slow dielectric
layers in all capacitors with polarizabilities ∆C1, ∆C2
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FIG. 9. (Color online) Current-voltage characteristics, I(V ) of SET with zero gate-capacitance, Cg = 0. Plot (a) shows I(V ) for

∆C1/C
(0)
Σ = 0.0, 0.25, 0.5, 0.75, 1.0, 1.25. Smoother curves correspond to smaller ∆C1. Plot (b) corresponds to ∆C1/C

(0)
Σ = 1.5.

The jumps in I(V ) in (b),(c), and (e),(f) correspond to the memory effect: the branch depends on the direction of voltage

change. Plot (c) shows I(V ) for ∆C1/C
(0)
Σ = 3.5. The I(V )-curve can have many hysteresis loops depending on the amount

of electron charge induced on the grain by the dielectric polarization. Inserts in (b),(c) show the details of the hysteresis. Plot

(d) shows I(V ) for ∆C1/C
(0)
Σ = 1.25, ∆C2/C

(0)
Σ = 0 (black curve) and ∆C1/C

(0)
Σ = ∆C2/C

(0)
Σ = 1.25 (orange curve), while

plot (e) shows the graphs for ∆C1/C
(0)
Σ = 1.5, ∆C2/C

(0)
Σ = 0 (black curve) and ∆C1/C

(0)
Σ = ∆C2/C

(0)
Σ = 1.5 (orange and blue

curves). Plot (f) shows I(V ) for ∆C1/C
(0)
Σ = ∆C2/C

(0)
Σ = 3.5. Parameters are: T = 0.06E

(0)
c , C

(0)
1 = 0.6C

(0)
Σ , C

(0)
2 = 0.4C

(0)
Σ ,

and Ri, i = 1, 2 similar to Fig. 3. The unit of voltage is E
(0)
c /|e|, and the current is normalised to E

(0)
c /|e|RT1.

∆Cg. Using Eq. (12) we find

Q′ = Q+ ∆CΣ × 〈φ〉(Q′, V )− (∆C2 −∆C1)
V

2
, (31)

where we introduce the parameter

∆CΣ =
∑

i=1,2,g

∆Ci. (32)

Here we explicitly show that the functions Q′ and 〈φ〉
depend on voltage V . In general, this dependence results
in an additional contribution to the conductance propor-
tional to ∂Q′/∂V :

G(Q,V ) =
∂I(0)(Q′, V )

∂V
=

G(0)(Q′, V ) +
∂I(0)(Q′, V )

∂Q′
∂Q′

∂V
, (33)

where I(0)(Q,V ) is the current in the orthodox theory,
generally not limited by the two-state approximation.
However, the current I is zero for zero bias voltage for
any Q, therefore the last term can be omitted at V = 0.
This explains why in two-state approximation we can cal-
culate the conductance by replacing Q by Q′ in Eq. (15)
of the orthodox theory.

For zero voltage, V = 0, Eq. (31) reduces to

Q′ = Q+ ∆CΣ × 〈φ〉(Q′). (34)

Then

δQ′

(
1 +

∆CΣ

C
(0)
Σ

)
− e

2

∆CΣ

C
(0)
Σ

tanh

(
E

(0)
c

T

δQ′

e

)
= δQ.

(35)
As we can see, the only distinction of the Eq. 35 from
Eq. 18 is the replacement of ∆Cg with ∆CΣ. It follows
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that for V = 0 the SET with slow insulators in tunnel
junctions behaves qualitatively similar to the only ∆Cg >
0 that was considered previously. The only difference is
related to the fact that the slow dielectric in the gate
capacitor renormalizes the period of the Q-oscillations of
conductance while slow dielectrics in all other capacitors
of the SET do not.

Now we can generalize our results for positive ∆Cg > 0
obtained earlier. In particular, the critical polarization,
where memory effect in the conductance G(Q) first ap-
pears, becomes the integral quantity, see Eq. (32), that
includes properties of all the slow dielectric layers:

∆C
(c)
Σ = C

(0)
Σ (E(0)

c /2T − 1)−1. (36)

The amplitude of conductance peaks can be found using
the substitution, ∆Cg → ∆CΣ in Eq. (24). The shape of
the peaks can be obtained using the same substitution in

the equations of Sec. III C 3 where still δQ = −(C
(0)
g +

∆Cg)Vg.

B. Memory effect in current-voltage characteristics

Above we discussed the properties of SET with slow
dielectric barriers, related to the variation of the gate
voltage Vg at bias V = 0. In this subsection we instead
concentrate on the current-voltage characteristic I(V ) of
SET in the case of electron tunneling through slow insu-
lator in the left and the right capacitors, see Fig. 1. We
neglect the gate to simplify the situation, putting thus
Cg = 0. Such systems have been extensively studied in
experiments over the last two decades. They can exhibit
Coulomb blockade at room temperature(21, 29–31) and
their ease of fabrication makes a wide range of barrier
materials available for experiments. Following Ref. 21
we consider the current-voltage characteristic of the SET
in a wide range of bias voltages.

The typical current-voltage characteristics I(V ) are
shown in Fig. 9; in Fig. 9(a)-(c) the coefficients ∆C2 = 0
and ∆C1 are finite. It follows that there is a memory
effect in I(V ) at large enough ∆C1 and this effect de-
pends on the direction of the bias voltage evolution. The
jumps in plots (b) correspond to the regions of hysteresis
while the arrows show the evolution of voltage. Plot (c)

shows the hysteresis in I(V ) for ∆C1/C
(0)
Σ = 3.5. The

current-voltage characteristics may have many hystere-
sis loops, depending on the amount of electron charge
that the dielectric polarization may induce on the grain.
The hysteresis in the current-voltage characteristics ap-
pears for the first time for parameter ∆C1 being larger

than C
(0)
Σ . This is the first critical value of polarization.

For ∆C1 & 2C
(0)
Σ the second hysteresis loop appears in

I(V ). Therefore this is the second critical value of ∆C1.
For larger values of ∆C1 we expect further increase in
the number of hysteresis loops.

Two cases of current-voltage characteristics are com-
pared in plots (e)-(d) : i) finite ∆C1 and zero ∆C2 and

ii) ∆C1 = ∆C2. In both cases the set of critical values
of ∆C is the same and for large bias voltage the current-
voltage characteristics asymptotically coincide.

Figure 9 shows that the current-voltage characteristics
of the SET strongly depend on the direction of bias volt-
age V . Moreover, for a given hysteresis branch

I(V ) 6= −I(−V ) (37)

that happens in the absence of Q, notably different from
the result for a regular SET.

C. Influence on Coulomb staircase

By Coulomb staircase in this section we mean a step-
like behavior of I(V ) in the regime of Coulomb blockade.
The Coulomb staircase is often used as an indication of
Coulomb blockade (Ref. 21, 29, 32–34). In the following
we show how the slow polarization influences the shape
of the staircase. Again we take Cg = 0 and, consider the
conditions when the staircase is the most pronounced,
i.e. T = 0 and strongly asymmetric barriers R1 � R2.
At zero temperature tunneling may occur only in the di-
rection of chemical potential drop, that is from the 1-st
electrode to the 2-nd assuming V > 0. Due to the rel-
atively high tunneling rate through the 2-nd electrode,
the number of excess electrons on the island is almost
always stays at the minimum energetically allowed num-
ber nmin. It can be determined as the lowest n for which
∆Fn+1→n

2 < 0 is true, since ∆Fn→n+1
1 < 0 holds for any

n < 0. For a given nmin the current can be calculated as

I =
1

eR1
∆Fnmin→nmin+1

1 , (38)

where ∆F1 is the free energy change on tunneling through
the 1-st electrode. For a conventional SET the above
formula leads to a staircase-shaped I(V ) characteristic
with the step width

∆Vstep = |e|/C(0)
1 , (39)

jumps of the current between the steps

∆Istep = |e|/R1C
(0)
Σ , (40)

and the I(V ) slope between the jumps

dI/dV = C
(0)
2 V/C

(0)
Σ R1 (41)

Introducing slow dielectric into the tunnel junctions re-
sult in some new effects (for the details of calculations see

Appendix B). At V > |e|/C (0)
Σ slow polarization leads to

the rescaling of the staircase that may be described by
substituting the capacitances in Eqs. 39-41 with the new

values Ci = C
(0)
i + ∆Ci, exactly as when dealing with

a conventional fast dielectric (see Fig. 10(b)). But con-
trary to the fast dielectric, the slow one shifts the stair-
case, making it asymmetric and, moreover, dependent on
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FIG. 10. (Color online) Current-voltage characteristics, I(V ), of SET demonstrating the Coulomb staircase at T = 0, Cg = 0.
(a) I(V ) in the regime when the scaling of the Coulomb staircase steps at large V is the same for slow and fast dielectric

response. Here R2/R1 = 10−3, C
(0)
1 = 0.9C

(0)
Σ , C

(0)
2 = 0.1C

(0)
Σ . (b) The regime when the periods of Coulomb staircases for

slow (blue curve) and fast (red curve) dielectric of the same static polarizabilities are different. R2/R1 = 0.25, C
(0)
1 = 0.9C

(0)
Σ ,

C
(0)
2 = 0.1C

(0)
Σ . (c, d) The shifts of the staircases arising from the hysteretic behavior of I(V ) for SET with slow dielectrics.

Arrows indicate the directions of voltage change for each curve. Here R2/R1 = 10−3, C
(0)
1 = 0.7C

(0)
Σ , C

(0)
2 = 0.3C

(0)
Σ . The unit

of voltage is |e|/C
(0)
Σ , current is measured in |e|/C

(0)
Σ (R1 +R2)

the direction of the evolution of V , as illustrated at the
Fig. 10(c,d).

Interestingly, the shift of the I(V ) curve in experiments
is a well-known effect. It is usually accounted for by
assuming the presence of some additional spurious charge
Q, induced on the grain (as in Ref. 21 and 33). However
the shift that we predict is notably different at least in
one aspect — it reverses its sign with the direction of the
evolution of V .

We stress that the described rescaling and shift of I(V )

takes place only under specific conditions V > |e|/C (0)
Σ

and R1 � R2. If R2 are of the same order the intro-
duction of slow dielectric may change the staircase steps
in a more complex way. Such a situation is shown in
Fig. 10(b) where the staircase period do not correspond
to the one we would expect from the simple capacitance-
renormalization consideration. If R1/R2 is even closer
to unity, the slow dielectric barriers qualitatively change
the current-voltage curve as was discussed in the previous
section (see Fig. 9).

V. DISCUSSION

Before discussion of specific features of our SET model,
here we shortly mention limitations and possible direc-
tion of further investigations. Metallic granular is char-
acterized by important parameter: δE — the mean spac-
ing of single-electron levels. Here we focused on relatively
large metallic granular where δE is the smallest energy

parameter: δE � T � E
(0)
c . However, if, for exam-

ple, the metallic granular diameter is 5nm or smaller and
T ∼ 300K, δE may already become comparable with

T . [Semiconductor quantum dots achieve this limit for
much larger diameters.] This case has been extensively
debated for SETs.35 Than solving transport problem for
SET with active dielectric we should take into account
level statistics and calculate accordingly the statistics of
peak heights in Coulomb blocked transport problem gen-
eralizing methods developed in Refs. 36–39 This calcula-
tion we leave for the forthcoming paper.

A. Requirements for dielectric materials

Here we discuss several possible dielectric materials
which can be considered as slow insulators. At finite
external electric field the localized electric charges are
shifted and the dielectric material is polarized. There
are several physical processes contributing to the polar-
ization: 1) the shift and deformation of electron-cloud,
2) the shift of ions in the lattice, and 3) the molecular
and/or macro dipole reorientation. Electrons, ions, and
dipoles can form a different polarization. The slowest po-
larization formation corresponds to the electrocalorical
and migration (electron, ion or dipole) mechanisms with
the characteristic dispersion frequency being in the range
10−4 − 10−1 Hz and 10−3 − 103 Hz, respectively at tem-
perature T = 300K. The electromechanical mechanism
corresponds to frequencies 105 − 108 Hz, while thermal
mechanism correspond to 105 − 1010 Hz. The dielectrics
where thermal mechanism is the largest are promising for
applications in nanostructures and can be considered as
“slow” dielectrics.

Dithiol self-assemble monolayers (SAMs) have a static
dielectric permittivity ε(ω = 0) ∼ 3 and the character-
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istic relaxation frequency ∼ 104 Hz.22 These materials
are good candidates for slow dielectrics. Such dielectric
layers have been used in double junction SET21. The
hysteresis have not been observed in these experiments,
but there was a considerable discrepancy between the the
values of capacitances obtained from the fit of the exper-
imental data with the orthodox model and the ad-initio
calculations.

Another promising materials to observe the hysteresis
are polar crystal dielectrics e.g., BaTiO3 or KDP with
static dielectric permittivity ε(ω = 0) ∼ 103 and the
typical relaxation frequency ωc ∼ 106 Hz.

B. Fast capacitances

Here we discuss the geometric capacitance C
(0)
i , i =

1, 2, g. We assumed that these capacitances has an
electrostatic origin. However, in rigorous analysis
they include the high frequency dielectric permittivity
ε∞(usually between 1 and 10). Thus in our consideration
the slow polarizability αi is the difference between the low
and the high frequency αi. As an example, for BaTiO3

the difference between the high and low frequency per-
mittivities ε is ∼ 103. This difference is large enough.

C. Critical polarization

The effects of slow polarization are governed by the

ratio of ”slow” and ”fast” capacitances ∆CΣ/C
(0)
Σ . If a

capacitor is fully filled with a dielectric with permittivity

ε(ω) than ∆CΣ/C
(0)
Σ = (ε(0) − ε(∞))/ε(∞). It follows

from Sec. III and IV that at ∆CΣ/C
(0)
Σ ∼ 1 the strong

influence of slow polarization may be observed, thus re-
quiring ε(0) & 2 ε(∞).

The latter requirement become even less strict at
lower temperatures. In particular, the critical value of
ε(0)(c)/ε(∞) to observe the breakdown of conductance
peaks goes to 1 as T → 0 (see Eq. (36)). For the condi-
tions as at the Fig. 8(e) ε(0)(c) ≈ 1.14 ε(∞)

D. Temperature dependence of the
Coulomb-blockade effects

A well-known consequence from the orthodox theory
of SET is that in order to experimentally observe the
Coulomb-blockade phenomena, the temperature of the
system should be lower than Ec = e2/2CΣ. Here the
total capacitance CΣ includes dielectric susceptibility of
the barrier media. In contrast, our numerical calculations
show that if the dielectric response is sufficiently slow,

only the ratio E
(0)
c /T should be taken into account when

considering the blurring of the Coulomb effects due to
finite temperature. This must result in more pronounced
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slow dielectric

FIG. 11. (Color online). Temperature dependence of the
Coulomb staircase in I(V ) characteristics of (a) regular SET
and (b) SET with slow dielectrics in the tunnel barrier. In plot

(b) the SET parameters are C
(0)
1 = 0.7C

(0)
Σ , C

(0)
2 = 0.3C

(0)
Σ ,

∆C1 = 1.4C
(0)
Σ , ∆C2 = 0. In plot (a) C1 = 2.1C

(0)
Σ and

C2 = 0.3C
(0)
Σ . For both plots R2/R1 = 10−3 and in (b)

I(V ) is shown for increasing voltage V . The unit of voltage

is |e|/C
(0)
Σ , the current is measured in |e|/C

(0)
Σ (R1 +R2)

.

blockade for a system with slow dielectric at a given tem-
perature and electrode geometry, as illustrated in Fig. 11.

VI. CONCLUSIONS

We showed that the dielectric materials at the
nanoscale demonstrate new physical phenomena. As an
example we studied the single-electron transistor. We
found the memory effect in the conductance-gate voltage
dependence and in the current-voltage characteristics of
the SET. We uncovered the complex fine structure of the
hysteresis-effect, where the “large” hysteresis loop may
include a number of “smaller” loops. We also found, that
in order to estimate the influence of temperature on the

electronic transport one should compare T with e2/2C
(0)
Σ

where in C
(0)
Σ the slow part of the dielectric function is

not included.
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Appendix A: Calculation of the Coulomb energy
change on electron jumps

Here we show, how the energy changes ∆U±n are cal-
culated. If the number of electrons on the island changes
from n to n ± 1 in some process, than the electrostatic
energy change is

∆U±n =

∫ n±1

n

∑
i

(φ− Vi)dqi =

∫ n±1

n

∑
i

(φ− Vi)
(
C

(0)
i dφ+ SidPi

)
, (A1)

where qi are the charges of the capacitors and Pi are
dielectric polarizations in barriers. For fast and slow di-
electrics Pi behave differently during the process of elec-
tron jump. If dielectric response is fast Pi follows φ that
results in capacitance renormalization. For slow dielec-
tric layers the polarization cannot change on the electron
jump timescale and thus dP = 0 yielding

∆U±n =
1

2

∑
i

C
(0)
i (φ− Vi)2

∣∣∣∣∣
φ(n±1)

φ(n)

. (A2)

φ(n) are calculated using the charge balance equation (3)

φ(n) =
1

C
(0)
Σ

[
e

(
n−

∑
i

PiSi/e

)
+
∑
i

C
(0)
i Vi

]
. (A3)

Here Pi are constant and do not depend on n. By insert-
ing Eq. (A3) into (A2) we obtain Eq. (9).

Appendix B: The shape of the Coulomb staircase

At zero temperature the tunneling rates for the elec-
tron to and from the island are

Γn→n±1
1,2 =

1

e2R1,2

(
−∆Fn→n±1

1,2

)
Θ
(
−∆Fn→n±1

1,2

)
,

(B1)

where n is the number of excess electrons on the island
and tunneling happens through the 1-st or the 2-nd elec-
trode. Free energy changes ∆F1,2 on jumps are

∆Fn→n±1
1 =

e

C
(0)
Σ

(e
2
± (ne−Q′)± C(0)

2 V
)

(B2)

∆Fn→n±1
2 =

e

C
(0)
Σ

(e
2
± (ne−Q′)∓ C(0)

1 V
)
. (B3)

Consider V > 0. It follows from B1 that tunneling
occurs if for some n simultaneously ∆Fn→n+1

1 ≤ 0 and
∆Fn+1→n

2 ≤ 0 (there is no backward tunneling at T = 0).
These conditions may be combined into

Q′/e−1/2+C
(0)
1 V/e ≤ n ≤ Q′/e−1/2−C(0)

2 V/e. (B4)

Since the tunneling from the 1-st electrode to the island
is much slower than from the island to the 2-nd electrode
(R1 � R2), the number of electrons on the island almost
constantly stays at it’s lowest energetically allowed value
nmin. The current is, than,

I = −e Γn→n+1
1 Γn+1→n

2

Γn→n+1
1 + Γn+1→n

2

≈ −eΓnmin→nmin+1
1 . (B5)

The rest is to calculate nmin. Since we neglect Cg only
the charge induced by the slow polarization gives rise to
Q′

Q′ =
∆CΣ

CΣ
nmine+

∆C1C
(0)
2 −∆C2C

(0)
1

CΣ
V. (B6)

nmin can be determined from the equation⌈
−1

2
− nmin

1 + ∆CΣ/C
(0)
Σ

+
C1

(1 + ∆CΣ/C
(0)
Σ )

V

e

⌉
= 0,

(B7)
where dxe denote the lowest integer bigger than x. It
worth noting that the equation B7 predicts multiple so-
lutions for nmin at V close to the current jump points if
∆CΣ > 0 (see Fig. 10(d)).

The calculation of I yields

I(V ) =
1

R1CΣ

(
e

2

CΣ

C
(0)
Σ

+ nmine+ C2V

)
. (B8)

The latter formula demonstrates the full renormalization
of capacitances and a shift in the I(V ) as is illustrated
at the Fig. 10(a).
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