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Abstract 

 

Dispersion relations for acoustic and electromagnetic waves guided by resonant 

inclusions located at the surface of an elastic solid or an interface between two media are 

analyzed theoretically within the effective medium approximation. Oscillators on the surface of 

an elastic half-space are shown to give rise to a Love-type surface acoustic wave only existing 

below the oscillator frequency. A simple dispersion relation governing this system is shown to 

also hold for electromagnetic waves guided by Lorentz oscillators at an interface between two 

media with equal dielectric constants. Different kinds of behavior of the dispersion of the 

resonantly guided mode depending on whether the bulk wave in the absence of oscillators can 

propagate along the surface or interface are identified.  
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I. Introduction 

Studies of the interaction of propagating waves with resonant inclusions go back to the 

Lorentz oscillator model that forms the basis of the classical dispersion theory [1]. In acoustics, 

this phenomenon has attracted renewed attention more recently [2-6] in the context of sound 

propagation in artificial media referred to as locally resonant metamaterials [2].  It is well known 

that in a medium containing resonant inclusions [2,7-12], propagating waves hybridize with the 

local resonance resulting in an avoided crossing bandgap, as shown in Fig. 1(a).   

The question we are aiming to address in this report is what happens when a wave 

propagating in a 3D medium interacts with a 2D array of local oscillators forming a locally 

resonant “metasurface” [13]. Will the hybridization with the local resonance yield a guided mode 

and how will the dispersion of this guided mode look like? While transmission and reflection of 

electromagnetic and acoustic waves by metasurfaces are being actively investigated [11,13-16], 

general waveguiding properties of  metasurfaces remain largely unexplored.  We will show that a 

2D oscillator array supports a guided mode at frequencies below the local resonance frequency, 

as shown in Fig 1(b). The dispersion of this guided mode resembles the lower branch of the 

classic “avoided crossing” case, and the mode becomes increasingly localized on the oscillators 

on approach to the resonance. Below we consider two examples: (i) horizontal mechanical 

oscillators at the surface of an isotropic elastic half-space interacting with the shear horizontal 

acoustic wave and (ii) the interaction of undamped Lorentz oscillators at an interface between 

two media having the same refractive index with a TE electromagnetic wave. The analysis is 

performed within the effective medium approximation assuming that the wavelength is much 

greater than the distance between the oscillators. We will show that both systems yield similar 

behavior, with virtually identical dispersion relation for the guided mode. A common feature of 

these two cases is that in the absence of the oscillators the bulk wave can propagate along the 

surface/interface (i.e., a bulk wave with the wave vector along the surface satisfies the boundary 

conditions). In this case the guided mode dispersion does not have a low frequency cut-off, as 

shown in Fig. 1(b).  A different situation arises when in the absence of the oscillators the bulk 

wave with the wave vector along the interface does not satisfy the boundary conditions, as in the 

case of different values of the refractive index in the two media. We will see that in this case the 

guided mode exists in a band between the lower cut-off frequency and the local resonance 
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frequency. We believe that the properties of locally resonant waveguiding discussed in this 

report are generic and will be encountered in many different physical systems.  

 

   
Fig. 1. (a) Interaction of a bulk wave with resonant inclusions dispersed in 3D results in 
hybridization and an avoided crossing bandgap; (b) interaction with resonant inclusions 
contained in 2D results in a guided mode below the local resonance frequency. 

 

II. Acoustic case: interaction of SH wave in a solid half-space with oscillators on the surface  

The mass-spring oscillator has often been used as the simplest model of a mechanical 

resonator on the surface of an elastic half-space [17-19] or a plate [20,21].  We consider the 

interaction of horizontal mass-spring oscillators of mass M and spring constant K on the surface 

z=0 of an elastically isotropic solid half-space with a shear horizontal wave propagating in the x 

direction and polarized in the y direction.  The equation of motion reads 

( )yMY K u Y= −&& ,     (1) 

whereY is the displacement of the oscillator and  uy is the horizontal surface displacement at the 

point of contact of the oscillator with the surface. We assume the dependence exp(iωt-ikx) for 

both the acoustic wave in the half-space and the vibrations of the oscillators; in the following, 

this factor will be omitted and the variables such as Y and uy will be used to represent the 

complex amplitudes.  From Eq. (1), we get the following expression relating the displacements 

of the oscillator and of the surface,  
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where ω0=(K/M)1/2 is the resonance frequency of the oscillator. We adopt the effective medium 

approach assuming that the wavelength λ=2π/k is much greater than the distance between the 

oscillators.  In this approximation, it is not essential to know whether the arrangement of the 

oscillators is regular or random; the only parameter we need is the average number of oscillators 

per unit area n. The force exerted by an oscillator on the substrate is ( )yK Y u− . In the effective 

medium approach [22], the force exerted by a distribution of oscillators is averaged over an area 

large compared to the distance between the oscillators. This average force yields the boundary 

condition for the shear stress component σzy at the surface z=0,     
2 2

0
2 2
0( )

y
zy

Mnuω ω
σ

ω ω
= −

−
 ,     (3) 

which replaces the boundary condition σzy=0 for a mechanically free surface. In the half-space, 

the displacement in a SH wave polarized along y is described by the wave equation,   
2

2 2 2
2
y

y t y

u
u c k u

z
ω

⎛ ⎞∂
− = − +⎜ ⎟∂⎝ ⎠

 ,     (4) 

where ct is the transverse acoustic velocity, with the general solution given by 

0 1 ,z z
yu u e u eγ γ−= +      (5) 

1/22
2

2 ,
t

k
c
ωγ ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

     (6) 

At 1c kω > , γ  is imaginary yielding bulk waves propagating at an oblique angle to the surface; 

those solutions are of no interest to us. At tc kω < , γ  is real, in which case the second divergent 

term in Eq. (5) should be eliminated yielding a surface wave decaying with increasing depth. 

Expressing the stress component σzy in terms of displacement, ( / )zy yu zσ μ= ∂ ∂ , where μ is the 

shear modulus, and plugging stress and displacement at the surface into the boundary condition 

given by Eq. (3), we get the following dispersion equation,  
1/22 2 2

2 2 2 0
02 ( )

t

nMk
c
ω ω ωω ω

μ
⎛ ⎞

− − =⎜ ⎟
⎝ ⎠

,     (7) 
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We note that a similar equation can be obtained from Eq. (4) of Ref. [22] describing the 

interaction of an absorbed monolayer with an elastic half-space, if the interaction within the 

monolayer is disregarded.  By introducing dimensionless frequency and wavevector,  

0 0/ , /tk kcω ω ω ω′ ′= =       (8) 

the dispersion relation can be written in the form 

( )1/22 2 2 2(1 )k Fω ω ω′ ′ ′ ′− − =       (9) 

containing a single dimensionless parameter  

0tc nMF ω
μ

= ,        (10) 

which determines the strength of the interaction between the SH wave and the oscillators. If F 

vanishes, the dispersion equation separates into two equations describing bulk SH waves and the 

oscillator resonance.  For a nonzero F, the dispersion equation has a single solution for any k, 

yielding a guided mode at frequencies bellow ω0. Fig. 2 shows the dispersion curves calculated 

for F=0.01 and F=1. In the limit of small k, the dispersion curve approaches the line tc kω = and 

γ  vanishes, which means that the guided mode becomes delocalized and turns into a bulk wave 

propagating along x. In the opposite limiting case of large k, the frequency approaches ω0, phase 

and group velocities approach zero and γ  approaches infinity which means that the guided mode 

turns into localized vibrations of the oscillators.   

 
Fig. 2. Dispersion of the guided mode (solid curve) as per Eq.(9) for (a) F=0.01 and (b) F=1.  
Grey-shaded area corresponds to the continuum of bulk modes.  
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If the interaction parameter is small as in the case of Fig. 2(a), the guided mode exists 

only in a formal sense: in experiment, one would either see the bulk SH wave or the non-

propagating local resonance mode. One may ask why, in the weak coupling case, the local 

resonance mode does not exist at low wavevectors 1k′ < . The answer is that in this case the 

local resonance exists as a leaky mode radiating energy into bulk SH waves. Indeed, from Eq. (9) 

it is easy to see that at 1k′ <  and F<<1 the local resonance frequency will acquire an imaginary 

part equal to 2/ 2 1F k′− . With increasing F, the leaky local resonance branch will become 

overdamped and disappear.  

 

III. Electromagnetic case: interaction of a TE wave with a 2D array of Lorentz oscillators  

We consider lossless Lorentz oscillators located at the interface z=0 separating two semi-

infinite media.  A TE electromagnetic wave with electric field E along y is propagating along x. 

The equation of motion of the oscillator reads 

yMY KY qE= − +&& ,      (11) 

where Y is the position of charge q (of mass M) and K is the spring constant. Proceeding 

similarly to the acoustic case, we get the following expression relating the amplitudes of the 

oscillator and of the electric field, 

2 2
0( )

yqE
Y

M ω ω
=

−
.      (12) 

We adopt the effective medium approach, n oscillating charges per unit area yield an average 

current density 
2

2 2
0

j (z)
( )

yi nq E
M

ω
δ

ω ω
=

−
,      (13) 

with δ(z) being Dirac’s delta-function. This current leads to the following boundary condition for 

the x-component of the magnetic field at z=0 obtained from Maxwell’s equations in Gaussian 

units,  
2

2 2
0 0

4
B (z 0 ) B (z 0 )

( )
y

x x

i nq E
i i

Mc
πω

ε ε
ω ω

= − − = + =
−

 ,    (14) 

where c0 is the speed of light in vacuum.  From Maxwell’s equations, the nonzero electric field 

component in the upper half-space z>0 is given by 
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1 1
0 1 ,z z

yE E e E eγ γ−= +        (15) 

1/22
2

1 2
1
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c
ωγ ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

       (16) 

where c1 is the speed of light in the upper half-space. At 1c kω > , 1γ  is imaginary, yielding bulk 

waves propagating at an oblique angle to the interface z=0. At 1c kω < , 1γ  is real, in which case 

the second divergent term in Eq. (15) should be eliminated yielding  
1

0
z

yE E e γ−=  .       (17) 

Analogously, the electric field in the lower half-space z<0, with the speed of light c2, is given by  
2

0
z

yE E eγ= ,        (18) 

1/22
2

2 2
2

k
c
ωγ ⎛ ⎞

= −⎜ ⎟
⎝ ⎠

.       (19) 

The amplitude factor E0 is the same in Eqs. (17) and (18) because of the requirement of the 

continuity of the tangential component of the electric field across the interface.  The x-

component of B is now given by  

1

2

0 1
0

0 2
0

( 0)

( 0)

z
x

z
x

icB z E e

icB z E e

γ

γ

γ
ω

γ
ω

−> =

< = −
      (20) 

Let us first consider the case when the speeds of light on either side of the interface are equal,  

1 2c c c= = . In this case, the boundary condition given by Eq. (14) yields the following dispersion 

relation 
1/22 2 2

2 2 2
02 2

1 0

2( ) nqk
c Mc
ω πωω ω⎛ ⎞

− − =⎜ ⎟
⎝ ⎠

     (21) 

This equation is entirely equivalent to Eq. (7) and can be represented in the dimensionless form 

of Eq. (9) with 2 2
1 0 02 /F nq c M cπ ω= .  
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Fig. 3. Dispersion of the guided mode (solid curve) in the case of different values of the 
refractive index on either side of the interface.  Grey-shaded area corresponds to the continuum 
of bulk modes.  
 

Let us now consider the case when the media separated by the interface z=0 have 

different dielectric constants. The dispersion equation now reads 
1/2 1/22 2 2 2

2 2 2 2
02 2 2

1 2 0

4( ) nqk k
c c Mc
ω ω πωω ω

⎡ ⎤⎛ ⎞ ⎛ ⎞
− + − − =⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 .   (22) 

 

Figure 3 shows an example of the dispersion curve described by Eq. (22) for c2/c1=1.5 and 
2 2

1 0 02 /nq c M cπ ω =1. In this case, the guided mode exists in a band between ωmin and ω0, with the 

lower cut-off frequency ωmin given by 

( )

2 2
min 0

2

1/22 2
0 1 2

,

2 ,nq

Mc n n

ω ω

π

= + Δ − Δ

Δ =
−

     (23) 

assuming n1>n2, where n1,2=c0/c1,2 is the refractive index in the upper/lower half-space, 

respectively.  The smaller the difference between n1 and n2 and the larger the density and 

strength of the oscillators, the larger is the frequency band of the surface mode.  
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IV. Discussion  

We have seen that an array of Lorentz oscillators at an interface between two media with 

the same refractive index interacting with a TE wave and an array of mechanical oscillators on a 

solid surface interacting with an SH wave yield a guided mode described by the same dispersion 

relation. Incidentally, the same dispersion relation has been obtained for acoustic waves in air 

propagating above an array of Helmholtz resonators (soda cans) [23]. The common feature of 

these three cases is that in the absence of oscillators, the bulk wave with the wave vector along 

the surface/interface satisfies the boundary conditions. It is well known such bulk wave can 

easily be turned into a surface wave by a small perturbation. For example, a SH wave in a solid 

can be localized by a thin “slow” layer (Love waves [24]), by the piezoelectric effect (Gulyaev-

Bleustein waves [25]) or by elastic nonlinearity [26,27].   The specificity of the “locally resonant 

waveguiding” is that the guided mode only exists below the local resonance frequency. In the 

case of SH acoustic waves, it can be understood by drawing an analogy with a mass loading of 

the surface. In the case of a mass loading, the boundary condition at the surface z=0 reads  
2

zy s yuσ ω ρ= − ,      (24)  

where sρ  is the mass loading per unit area of the surface. This equation becomes formally 

equivalent to Eq. (3) if we introduce frequency-dependent effective mass-loading  

   
2
0

2 2
0( )

eff
s Mnωρ

ω ω
=

−
 .     (25) 

At low frequencies, the effective mass loading is equal to the mass of the oscillators per unit 

area; it increases and approaches infinity on the approach to the local resonance frequency (of 

course the infinity results from disregarding the losses). It is well known that a layer of a soft 

dense material that can be modeled as mass loading gives rise to a surface Love wave [24]; 

because of the mass loading, the velocity of the surface wave is lower than that of the bulk SH 

wave; consequently, the surface wave can propagate without radiating energy into the bulk. On 

approaching the resonance frequency from below, the phase velocity approaches zero as the 

mass loading approaches infinity. Above the resonance frequency, however, the effective mass 

loading per Eq. (25) becomes negative, hence no surface mode exists.  

A more general explanation can be made based on the comparison with the classic 

avoided crossing case illustrated in Fig. 1(a). The phase velocity of the lower hybridized branch 

is below the velocity of the bulk wave in the absence of the oscillators, but the velocity of the 
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upper branch is higher than that, which implies that resonant inclusions “soften” the system 

below ω0 but “stiffen” it above ω0. A mode guided by a 2D array of resonant inclusions ought to 

be slower that the bulk wave (with the exception of rare occurrences of isolated supersonic 

surface waves [28]), otherwise it will get attenuated by radiating energy into the bulk. 

Consequently, we have waveguiding below ω0 where the system “softens” and no waveguiding 

above ω0 where it “stiffens”.  

Let us now turn our attention to the case when the bulk wave propagating along the 

surface/interface does not satisfy boundary conditions.  Two principally different situations are 

possible here, depending on whether the surface/interface supports a surface wave in the absence 

of oscillators. The first case is exemplified by surface Rayleigh waves on a solid half-space. The 

interaction of vertical surface oscillators with a Rayleigh wave has been studied theoretically 

[17,18] and recently observed experimentally [5]. In this case a classic avoided crossing takes 

place. However, in difference to the dispersion shown in Fig 1(a), the upper dispersion branch of 

the hybridized mode terminates upon crossing the “transverse threshold” tc kω =  [5].  

The problem considered in Sec. III, i.e. electromagnetic waves at an interface between 

two media having different dielectric constants exemplifies the situation when in the absence of 

oscillators a bulk wave cannot propagate along the interface, and no surface wave exists.  In this 

case, an oscillator array supports a guided wave within a band between a cut-off frequency ωmin 

given by Eq. (23) and ω0.  A similar situation arises for SH waves at an interface between two 

solids having different values of ct. If the oscillators are introduced at the interface without 

weakening the mechanical contact (e.g. heavy masses on springs can be placed inside small 

cavities located at the interface), one gets a dispersion relation entirely analogous to Eq. (22). 

Qualitatively, the origin of the lower cut-off frequency can be explained as follows: if the bulk 

wave propagating along the interface without oscillators does not satisfy the boundary 

conditions, it takes a finite perturbation of the boundary conditions to “localize” the bulk wave. 

However, at the low frequency limit the boundary condition perturbation tends to zero, as can be 

seen e.g. from Eq. (3). Hence there is a finite frequency threshold for the emergence of the 

guided mode.  

Let us now consider an example of a realistic structure in which a guided mode described 

by Eq. (7) can be observed. Basically, the interaction parameter F should be large enough, i.e., 

on the order unity or larger, and the oscillator frequency should be low enough for the effective 
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medium approximation to be valid. Let us consider high-aspect-ratio pillars on an elastic half-

space and let the fundamental bending mode of the pillars represent the oscillator. A pillar is not 

exactly a mass on a spring oscillator; however, since the motion in the bending mode is 

horizontal, the average force exerted by vibrating pillars on the substrate is also horizontal; hence 

in the effective medium model the pillars can be reasonably well represented by horizontal 

oscillators. The frequency of a fundamental bending mode of a high-aspect-ratio cylindrical 

pillar with one end fixed and another end free is given by [29] 
1/22

1
0 2 ,

2
c R E

L
ω

ρ
⎛ ⎞= ⎜ ⎟
⎝ ⎠

       (26) 

where L and R are the height and radius of the pillar, E is Young’s modulus, ρ is the density, and 

c1 is a constant equal to approximately 1.875 [29]. If the pillar is on an elastic substrate, its 

bottom end is not exactly fixed; however, a correction to Eq. (26) due to elasticity of the 

substrate is typically disregarded. Plugging Eq. (26) into Eq. (10) results in the following 

expression for the interaction parameter,  
32

1 2(1 2 )
2

p

s

ZnRcF
L Z

νπ += ,      (27) 

where ν is Poisson’s ratio of the pillars and Z=ctρ is the transverse acoustic impedance, with 

indexes p and s referring to the pillar and substrate materials, respectively.  For tungsten pillars 

on an aluminum substrate arranged in a square lattice with a lattice constant of 3R, we get 

LRF /7≈ , hence for L/R=10 we obtain a reasonably high value 7.0≈F . For the same 

parameters, 1k′ =  corresponds to a wavelength of ~300R, which means that the assumption of a 

large wavelength compared to the distance between the oscillators works quite well until at least

10k′ = . 

It should be noted that the propagation of surface acoustic waves in structures comprising 

periodic or aperiodic arrays of pillars has been investigated in a number of experimental and 

theoretical studies [30-32]. While the main emphasis of these studies was on sagittally polarized 

surface waves, the existence of guided SH waves associated with the resonances of the pillars 

has been predicted and their dispersion calculated numerically using the finite elements analysis 

[30]. The aspect ratio of pillars in Ref. [30] was smaller than unity which makes a direct 

comparison with our model of high aspect ratio pillars difficult; moreover, resonance frequencies 
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of short aspect ratio pillars are too high for the effective medium model to be valid. However, the 

lowest SH mode (mode 2) of Ref. [30] associated with the fundamental bending resonance of the 

pillars is essentially equivalent to the guided SH mode considered in this work. In Ref. [30] this 

mode appears to have a low frequency cut-off; we believe that this fact may be related to the 

finite depth of the numerical simulation domain [30]: as we have seen, at low frequencies this 

mode becomes increasingly delocalized and resembling the bulk SH wave.  

Experimental observations of SH waves guided by a one-dimensional array of high-

aspect-ratio ridges were reported in Refs. [33,34]. The lowest SH mode observed in these 

studies, is, again, analogous to the SH guided wave considered in this work and its dispersion 

calculated by the finite elements analysis [34] indeed looks similar to Fig. 2(b). Since ridges (just 

as real pillars) possess multiple resonances, multiple guided SH modes associated with higher-

order resonances are observed above the fundamental mode.  

A mention should be made of studies of acoustic modes of stubbed plates [35-37]. The 

situation here is more akin to that shown in Fig. 1(a), i.e., plate modes propagating in two 

dimensions interact with a 2D array of oscillators yielding hybridization and avoided crossing 

behavior.  

In electromagnetism, waveguiding by a slab comprising an array of conducting wires was 

considered in Refs. [38,39]. The guided modes in that case were TM rather than TE, and since a 

wire yields multiple resonances, multiple guided modes are seen [38]. However, the fundamental 

guided mode associated with the lowest resonance was very much analogous to the mode guided 

by an array of Lorentz oscillators.   

  

V. Conclusion 

We have found that a locally resonant metasurface comprising horizontal oscillators on 

the surface on an elastic half-space gives rise to a Love-type surface acoustic wave that exists at 

frequencies below the oscillator frequency. Furthermore, we found that the dispersion relation 

describing these waves appears in other situations, for example, for TE electromagnetic waves 

guided by Lorentz oscillators. We identified different kinds of behavior of the dispersion of the 

resonantly guided mode depending on whether the bulk wave can propagate along the surface or 

interface in the absence of the oscillators. We believe that a simple model of oscillators with a 
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single degree of freedom yielding a simple dispersion relation is instructive for understanding the 

general behavior of waveguiding by resonant inclusions. 
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