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Jing,5, 6 Xin-you Lü,7, 6 Yu-long Liu,4 Lan Yang,3, § and Franco Nori6, 8, ¶

1Department of Automation, Tsinghua University, Beijing 100084, P. R. China
2Center for Quantum Information Science and Technology, TNList, Beijing 100084, P. R. China

3Department of Electrical and Systems Engineering,
Washington University, St. Louis, MO 63130, USA

4Institute of Microelectronics, Tsinghua University, Beijing 100084, P. R. China
5Department of Physics, Henan Normal University, Xinxiang 453007, P. R. China

6CEMS, RIKEN, Saitama 351-0198, Japan
7School of physics, Huazhong University of Science and Technology, Wuhan 430074, China

8Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040, USA

Nonreciprocal devices that permit wave transmission in only one direction are indispensible in
many fields of science including, e.g., electronics, optics, acoustics, and thermodynamics. Manipu-
lating phonons using such nonreciprocal devices may have a range of applications such as phonon
diodes, transistors, switches, etc. One way of achieving nonreciprocal phononic devices is to use
materials with strong nonlinear response to phonons. However, it is not easy to obtain the re-
quired strong mechanical nonlinearity, especially for few-phonon situations. Here, we present a
general mechanism to amplify nonlinearity using PT -symmetric structures, and show that an on-
chip micro-scale phonon diode can be fabricated using a PT -symmetric mechanical system, in which
a lossy mechanical-resonator with very weak mechanical nonlinearity is coupled to a mechanical res-
onator with mechanical gain but no mechanical nonlinearity. When this coupled system transits
from the PT -symmetric regime to the broken-PT -symmetric regime, the mechanical nonlinearity
is transferred from the lossy resonator to the one with gain, and the effective nonlinearity of the
system is significantly enhanced. This enhanced mechanical nonlinearity is almost lossless because
of the gain-loss balance induced by the PT -symmetric structure. Such an enhanced lossless me-
chanical nonlinearity is then used to control the direction of phonon propagation, and can greatly
decrease (by over three orders of magnitude) the threshold of the input-field intensity necessary
to observe the unidirectional phonon transport. We propose an experimentally realizable lossless
low-threshold phonon diode of this type. Our study opens up new perspectives for constructing
on-chip few-phonon devices and hybrid phonon-photon components.

I. INTRODUCTION

Owing to recent progress in nanotechnology and mate-
rials science, nano- and micro-mechanics1–7 have emerged
as subjects of great interest due to their potential use
in demonstrating macroscopic quantum phenomena, and
possible applications in precision measurements, detect-
ing gravitational waves, building filters, signal amplifica-
tion, as well as switches and logic gates. In particular, on-
chip single- or few-phonon devices are ideal candidates for
hybrid quantum information processing, due to the abil-
ity of phonons to interact and rapidly switch between
optical fields and microwave fields8,9. Fabrication of
high-frequency mechanical resonators10, demonstration
of coherent phonon coupling between nanomechanical
resonators11, ground-state cooling12,13, optomechanics
(in microtoroids14,15, microspheres16–18, microdisks19–21,
microring22, photonic crystals11, doubly- or singly-
clamped cantilevers23,24, and membranes25) have opened
new directions5 and provided new tools to control and
manipulate phonons in on-chip devices. One possible ob-
stacle to further develop this field is the ability to con-
trol the flow of phonons, allowing transport in one di-
rection but not the opposite direction26, i.e., nonrecipro-

cal phonon transport. There have been several attempts
to fabricate nonreciprocal devices for phonons27–32, but
these are almost exclusively based on asymmetric lin-
ear structures which indeed cannot break Lorentz reci-
procity: a static linear structure cannot break reci-
procity27. These proposed linear structures do obey the
reflection-transmission reciprocity and thus cannot be
considered as “phonon diodes”. Diode-like behavior was
observed in these linear acoustic structures because the
input-output channels were not properly switched27.
Nonreciprocal phonon transmission inevitably requires

magneto-acoustic materials, strong nonlinearity, or a
time-dependent modulation of the parameters of a struc-
ture. Although already demonstrated in optics33, the
time-dependent modulation of acoustic parameters of a
phononic structure has not been probed yet. Magneto-
acoustic materials require high magnetic fields to operate
and have been studied34; however, a magnetic-free nonre-
ciprocal device is critical for building on-chip and small-
scale phononic processors and circuits. Nonlinearity-
based nonreciprocity seems to be the most viable ap-
proach for creating micro- or nano-scale nonreciprocal
devices for controlling and manipulating phonons.
Recently, there have been several reports on nonlinear

mechanical structures and materials35–38. However, the
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weak nonlinearity of those acoustic/phononic materials
hinders progress in this direction due to the high input
powers required to observe the nonlinear effects39,40. In
order to circumvent this problem, coupling a weakly non-
linear structure to an auxiliary system, such as a quan-
tum bit41, has been proposed to engineer effective giant
mechanical nonlinearities.
In order to achieve the required nonlinearity for non-

reciprocal phonon transport and to study nonlinear
phononics, here we introduce a new method based on
parity-time (PT ) symmetry42, which has attracted much
attention recently due to their interesting and generally
counter-intuitive physics43–68. Parity-time symmetry
and its breaking (broken PT -phase) have been demon-
strated in various physical systems52–64, such as opti-
cal waveguides52–55, microcavities62, and electrical cir-
cuits57. However, mechanical PT -symmetric systems
have only been considered quite recently64–68.
In our proposed mechanical PT symmetric system, a

lossy mechanical resonator (passive resonator) which has
a weak mechanical nonlinearity is coupled to a mechan-
ical resonator with mechanical gain (active resonator)
that balances the loss of the passive resonator. The ac-
tive resonator here works as a dynamical amplifier. In the
vicinity of the PT -phase transition, the weak nonlinear-
ity is first distributed between the mechanically-coupled
resonators and then significantly enhanced due to the
localization of the mechanical supermodes in the active
resonator. In this way, the effective nonlinear Kerr co-
efficient is increased by over three orders of magnitude.
This strong nonlinearity, localized in the active resonator,
blocks the phonon transport from the active resonator to
the lossy resonator but permits the transport in the op-
posite direction.
For the experimental realization of the proposed

nonlinearity-based phonon diode, we provide a system in
which a mechanical beam with weak mechanical nonlin-
earity is coupled to another mechanical beam with gain.
We show that this micro-scale system can be switched
from a bidirectional transport regime to a unidirectional
transport regime, and vice versa, by properly adjust-
ing the detuning between the mechanical frequency of
the resonators and the frequency of the driving phononic
field, or by varying the amplitude of the input phononic
field.

II. PARITY-TIME (PT -) SYMMETRIC
MECHANICAL SYSTEM

The system we consider here consists of two mechani-
cal resonators, one of which has mechanical loss (passive
resonator) and weak nonlinearity, and the other has me-
chanical gain (active resonator) but no nonlinearity (see
Fig. 1). The mechanical coupling between the resonators
is linear and it gives rise to the mechanical supermodes
b± with complex eigenfrequencies

ω± = Ω± − iΓ±, (1)

given by

ω± = Ω0 − iχ± β. (2)

Here Ω0 is the mechanical frequency of the solitary me-
chanical resonators (i.e., both resonators are degenerate),

χ = (Γl − Γg) /2, (3)

β =
√

g2mm − Γ2, (4)

Γ = (Γl + Γg) /2, (5)

where Γl and Γg denote, respectively, the damping rate
of the lossy mechanical resonator and the gain rate of
the active mechanical resonator, and gmm is the cou-
pling strength between the mechanical modes. When
Γ ≤ gmm, the system is in the PT -symmetric regime,
and the supermodes are non-degenerate with

Ω± = Ω0 ± β (6)

and have the same damping rate χ (see Figs. 3a and 3b).
However, when Γ > gmm, the system is in the broken-
PT -symmetric regime, the supermodes are frequency-
degenerate with Ω± = Ω0 (see Figs. 3a and 3b) and
have different damping rates

Γ± = χ∓ iβ. (7)

At Γ = gmm, the two supermodes are degenerate with
the same damping rate, indicating a transition between
the PT-symmetric regime and the broken-PT-symmetry
regime. This point is generally referred to as the PT -
transition point. It is seen that the two supermodes will
be lossless in the PT -symmetric regime if the gain and
loss are well-balanced, such that Γl = Γg.

III. ENHANCING MECHANICAL
NONLINEARITY BY BREAKING

PT -SYMMETRY

Let us assume that the passive resonator is made
from a nonlinear acoustic material35 with a small non-
linear Kerr coefficient µ. This nonlinearity mediates a
cross-Kerr interaction between the two mechanical super-
modes, which leads to the effective nonlinear coefficients
µ′
b and µ′

s, in the broken- and unbroken-PT regimes69:

µ′
b = µ

Γ2g2mm

(Γ2 − g2mm)
2
, µ′

s = µ
g4mm

(Γ2 − g2mm)
2
. (8)

Clearly, the effective nonlinear coefficients are signifi-
cantly enhanced in the vicinity of the phase transition
point Γ = gmm. Moreover, if the gain and loss are well-
balanced, i.e., Γl = Γg, the supermodes become almost
lossless. This observation is one of the key contributions
of this paper. Namely, operating the system of two cou-
pled mechanical resonators in the vicinity of the phase
transition point will significantly enhance the existing
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FIG. 1: (Color online) Schematic diagram of the proposed
PT -symmetric mechanical system. The PT -symmetric me-
chanical system has a linear mechanical coupling between
a passive mechanical resonator (having mechanical loss and
very weak mechanical nonlinearity) and an active mechanical
resonator (having mechanical gain but no nonlinearity). Here
blin and bgin are the input fields to the passive and active res-
onators, respectively, and blout and bgout are the output fields,
respectively, leaving the passive and active resonators. b1 and
b2 denote the movable resonators.

very weak nonlinearity with an extremely small loss rate.

Using the parameter values of µ/Ω0 = 10−5, Γl/Ω0 =
0.55× 10−3, and Γg/Ω0 = 0.45× 10−3, we show in Fig. 3
the evolution of the eigenfrequencies of the system and
of the nonlinear coefficient as a function of gmm/Γ. The
transition from the broken- to the unbroken-PT sym-
metric regime and vice versa, as the mechanical coupling
strength is varied, is seen in Fig. 3a and 3b and it is
reflected in the bifurcations of the supermode frequen-
cies and damping rates. Moreover, the enhancement of
the nonlinearity in the vicinity of the PT -phase transi-
tion point is seen in Fig. 3c. We find that the nonlinear
coefficient is enhanced by more than three orders of mag-
nitude in the vicinity of the transition point.

More interestingly, in the broken-PT regime, the me-
chanical energy of the coupled system is localized in the
active resonator, which leads to a nonlinear mechanical
mode with strong self-Kerr nonlinearity localized in the
active mechanical resonator. This can be interpreted in-
tuitively as follows. The initial weak mechanical non-
linearity is transferred from the passive resonator to the
active resonator and it is enhanced by field localization
in the broken-PT regime. Owing to the presence of the
mechanical gain, the active resonator then enjoys an al-
most lossless mechanical mode with a giant nonlinearity
(see Fig. 2).

Finally, we would like to consider how the mechani-
cal nonlinearity will affect the PT -symmetric structure
of the system. Generally speaking, a strong nonlinearity
will shift the transition point of a PT -symmetric system
or even destroy the PT symmetry of such a system70.
However, in our case, we start from a system in which a

FIG. 2: (Color online) Enhancement of mechanical nonlin-
earity in a PT-symmetric mechanical system. The coupling
between two mechanical resonators creates two mechanical su-
permodes symmetrically distributed between the resonators,
and hence both supermodes experience the weak nonlinear-
ity of the passive resonator. In the vicinity of the PT-phase
transition, which takes place when the coupling strength be-
tween the resonators equals to the total loss in the system,
the mechanical nonlinearity is significantly enhanced due to
localization of the mechanical supermodes in the active me-
chanical resonator.

gain resonator is coupled to a lossy resonator with very
weak Kerr nonlinearity, and thus we can omit the shift
of the PT -transition point induced by such a weak non-
linearity. Although we generate a strong nonlinearity in
the vicinity of the PT -transition point, this is an effective
nonlinearity induced in the supermode picture and thus
will not affect the supermodes and the PT -transition
point of the system.
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FIG. 3: (Color online) Amplification of mechanical nonlinearity via PT -symmetry breaking. (a) Effective damping rates and
(b) frequencies of the mechanical supermodes as functions of the normalized mechanical coupling strength gmm/Γ. (c) The
effective nonlinear coefficients µ′

b in the PT -breaking regime and µ′
s in the PT -symmetric regime. The PT -phase transition

takes place at gmm = Γ. In the vicinity of this transition point, the nonlinear coefficients µ′
b and µ′

s are enhanced by more than
three orders of magnitude (more than 35 dB increase compared to the baseline).

IV. UNIDIRECTIONAL PHONON TRANSPORT

Here we investigate the effect of the enhanced mechan-
ical nonlinearity on the phonon transport in the cou-
pled system. We find that the localized strong mechani-
cal nonlinearity leads to unidirectional phonon transport
from the passive resonator to the active resonator and
blocks phonon transport in the opposite direction (i.e.,
phonon transport from the active to the passive resonator
is prevented). The transport is almost lossless due to the
gain-loss balance of the system. When this system is op-
erated in the vicinity of the PT -phase transition point,
the unidirectional phonon transport is possible within a
region given by69

δ ∈
[

g2mmΩ0

Ω2
0 + χ2

,
g2mm

Ω0 −
√
3χ

]

, (9)

where

δ = Ω0 − Ωd (10)

is the detuning between the input (driving) field fre-
quency Ωd and the resonance frequency Ω0 of the me-
chanical resonators. Additionally, in order to observe the
unidirectional phonon transport, the amplitude of the in-
put field should satisfy

|εd|2 ∈
[

2
(

δ2 + g2mm

)3

9µ′
bδ

3
,
2
(

δ2 + g2mm

)3

9µ′
bg

2
mmδ

]

, (11)

implying that the intensity of the input field required for
unidirectional transport is inversely proportional to the
strength of the mechanical nonlinearity µ′

b. Since the
strength of the mechanical nonlinearity can be enhanced
by more than three orders of magnitude by breaking the
PT symmetry, the threshold of the input-field intensity
for observing unidirectional phonon transport can be de-
creased by at least three orders of magnitude, allowing a
low-threshold phonon diode operation.
To show unidirectional phonon transport in the

broken-PT regime, let us first fix the amplitude of the
input field and vary the detuning δ. We compare the
amplitude transmittance

tl→g = bgout/b
l
in (12)

and

tg→l = blout/b
g
in. (13)

The former, tl→g, denotes the transmission from the pas-
sive to the active resonator, that is, the system is driven
by a phononic input field blin of frequency Ωd at the pas-
sive resonator side and the output bgout is measured at the
active resonator side. However, the latter, tg→l, denotes
the amplitude transmittance from the active resonator
to the passive resonator when the system is driven by
the field bgin of frequency Ωd at the active resonator side
and the output blout is measured at the passive side. The
nonlinearity in the system manifests as a bistability and
hysteresis in the power transmittance,

Tg→l = |tg→l|2 (14)
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and

Tl→g = |tl→g|2 , (15)

obtained as the detuning δ is up-scanned from smaller to
larger detuning and down-scanned from larger to smaller
detuning (see Fig. 4a).
We find that during the down-scan, both of the trans-

mittances Tl→g and Tg→l stay at the lower branch with
values close to zero until δ/Ω0 = 0.5× 10−3, after which
they bifurcate from each other only slightly and then
jump to the stable points at the upper branch of their re-
spective trajectories (see Fig. 4a). Further decreasing the
detuning leads to an increase in Tl→g, but a decrease in
Tg→l. This implies that there is no unidirectional phonon
transport with the parameter values used in the numer-
ical simulations. Instead, when the detuning is below
a critical value, the phonon transport is bidirectional;
whereas when it is above that critical value there is no
phonon transport.
During the up-scan, however, after a short stay on the

stable state, i.e., a regime in which there is no bistability
and hysteresis in the transmittance, (during which Tl→g

decreases and Tg→l increases with growing detuning),
both of the transmittances follow the upper branches
of their trajectories, during which a linear increase in
Tg→l and a slow-rate decrease in Tl→g are observed (see
Fig. 4a). This behavior continues until δ/Ω0 ∼ 2.5×10−3

for Tg→l, where it jumps to the lower branch of its tra-
jectory, and becomes zero as the detuning is increased
(see Fig. 4a). This implies that phonon transport from
the active mechanical resonator to the passive one is
prevented if the detuning is set to δ/Ω0 > 2.5 × 10−3.
The transmittance Tl→g stays at its upper branch with
a value close to one until δ/Ω0 ∼ 3 × 10−3, where it
jumps to its lower branch and becomes zero. Thus, for
δ/Ω0 > 3 × 10−3, phonon transport from the passive to
the active resonator is prevented. Clearly, in the detun-
ing region 2.5 × 10−3 < δ/Ω0 < 3 × 10−3, the trans-
mittance Tl→g is close to one whereas Tg→l is close to
zero in this detuning region phonon transport from the
active mechanical resonator to the passive one is for-
bidden, whereas phonon transport from the passive me-
chanical resonator to active one is allowed with almost
no loss. Thus, we conclude that phonon transmission is
non-reciprocal in this detuning region, and the rectifica-
tion is ∼ 30 dB within the nonreciprocal transport region
(see Fig. 4a). For detuning values smaller than the lower
bound of this region, phonon transport is bidirectional.
For detuning values larger than the upper bound of the
region, phonon transport is not possible.
Note that our phonon diode should work only when

the disturbance and perturbation of the system parame-
ters are not too strong. In fact, within the unidirectional
phonon transport window shown in Fig. 4a, the trans-
mittance Tl→g has two different branches of metastable
values. When we increase the detuning δ within this uni-
directional phonon transport window, Tl→g will stay in
the upper stable branch if we do not severely disturb the

system and the phonon diode should operate properly.
However, if the disturbance is too strong, Tl→g will jump
from the upper branch to the lower branch and stay in
this stable lower branch, without rectification.
Alternatively, we can fix the detuning and vary the am-

plitude of the input field to show the nonlinearity-induced
bistability and hysteresis. A nonreciprocal phonon trans-
port region is seen when the amplitude of the input field
is up-scanned (see Fig. 4b). The nonreciprocal trans-
port region disappears when the amplitude of the input
field is down-scanned. Within the nonreciprocal trans-
port region, when the input is varied at fixed detuning
(see Fig. 4b), the rectification is ∼ 30 dB. Similarly, in
this case, due to the metastability of the transmittance
Tl→g, the disturbance-induced perturbation of the sys-
tem parameters may not be too strong otherwise our de-
sign of phonon diode will be invalid.

V. ON-CHIP PHONON DIODE

The unidirectional phonon transport enabled by the
PT -breaking-induced strong mechanical nonlinearity can
be used to fabricate lossless phonon diodes in on-chip
systems. This may have many applications, such as
single-phonon transistors and routers, on-chip quantum
switches, and information-processing components. One
possible way to realize the proposed phonon diode is
to use coupled beams and cantilevers (see Fig. 5a).
Phonon lasing, and hence an active mechanical resonator,
has been experimentally realized in an electromechani-
cal beam71. Elastically-coupled nano beams and can-
tilevers, by which the mechanical supermodes can be gen-
erated, have also been shown in various experiments72–75,
in which the two mechanical resonators can be inde-
pendently driven73. Thus our proposal is within the
reach of current experimental techniques of nano-micro-
electromechanical systems.
Let us now consider the design of the phonon diode

system shown in Fig. 5 in which a lossy vibrating beam
with damping rate Γl and a weak Kerr nonlinearity35

of strength µ is elastically coupled to another vibrating
beam with gain Γg

71. The frequencies of the two beams
are both Ω0 and the mechanical coupling strength is gmm.

In Fig. 6, we present the numerical results performed
with the system parameters: Ω0 = 600 kHz, Γl = 33
kHz, Γg = 30 kHz, δ = 1.65 kHz, µ = 5.7 kHz, and
gmm = 1 kHz. Here, we fix the detuning δ and change
the amplitude of the input field. There is a 50 dB back-
ground noise which includes the combined effect of the
thermal noise on the mechanical resonators, the electri-
cal noises induced by the measurement apparatus and
other possible sources of noise. The results shown in
Fig. 6 for the phonon diode agree well with the general
model discussed in the previous section. When the ampli-
tude of the input field is increased, it is clearly seen that
there is a nonreciprocal region in which phonon transport
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FIG. 4: (Color online) Unidirectional phonon transport by
PT -symmetry breaking. (a) Unidirectional phonon transport
when the detuning δ is varied. The transmittance from the
active to passive mechanical resonator Tg→l (red dash-dotted
curve), and from the passive to the active mechanical res-
onator Tl→g (blue solid curve) versus the detuning δ = Ω0−Ωd

shows a strong bistability and hysteresis effect. The transmit-
tance functions evolve along different trajectories for increas-
ing and decreasing detuning due to the nonlinearity-induced
bistability. A unidirectional phonon-transport region (melon-
colored shaded region) appears only when the detuning δ is
up-scanned from smaller to larger detunings. Within this
regime, the rectification is∼ 30 dB. (b) Unidirectional photon
transport when the amplitude of the input field is varied at
fixed detuning δ/Ω0 = 2.75×10−3 . Within the unidirectional
transport region (melon-colored shaded region), rectification
is ∼ 30 dB.

from the active beam to the passive beam is almost com-
pletely suppressed (see Fig. 6b(ii)), but phonon trans-
port from the passive beam to the active beam is allowed
(see Fig. 6a(ii)). A rectification ratio of about 30 dB
is obtained. When the amplitude of the phonon excita-
tion is larger than the upper bound of the unidirectional
phonon transport region, the transport is bidirectional.
In this case, the phonons can freely move from the active
beam to the passive beam and vice versa (see Figs. 6a(i)
and 6b(i)). Finally, for amplitudes of the phonon exci-
tation smaller than the lower bound of the region, no
phonon transport can take place between the resonators
(see Figs. 6a(iii) and 6b(iii)). These are the result of
hysteresis (see Fig. 4b) caused by the strong mechanical
nonlinearity.

FIG. 5: (Color online) Schematic diagram of the phonon diode
system with two mechanical beams in which a beam with
weak mechanical nonlinearity is electrically or elastically cou-
pled to another beam with mechanical gain. The insets show
the finite-element-method (FEM) simulation by Comsol for
the mechanical modes.

VI. DISCUSSIONS

We have proposed a method to generate ultra-strong
mechanical nonlinearity with a very low-loss rate using a
PT -symmetric mechanical structure in which a mechan-
ical resonator with gain but no nonlinearity is coupled
to a lossy (i.e., passive mechanical loss and no gain)
mechanical resonator with very weak nonlinearity. We
have showed that the weak mechanical nonlinearity is
redistributed in the supermodes of the coupled mechan-
ical system and is enhanced (by more than three orders
of magnitude) when the mechanical PT system enters
the broken-PT regime. Moreover, owing to the presence
of the mechanical gain in one of the resonators to
compensate the mechanical loss of the other resonator,
the effective mechanical damping rate is decreased in the
PT -symmetric system. Using experimentally accessible
parameter values, we identified the regimes where unidi-
rectional phonon transport is possible from the passive
to active resonator but not in the opposite direction.
We then proposed an experimentally-realizable system
where a mechanical beam with passive loss and weak
nonlinearity is coupled to another beam which acts like
an active mechanical resonator. A possible bottleneck
for this design to achieve a phonon diode operated
in ambient condition is whether the mechanical gain
observed with the mechanical beams in a controlled
environment and at low temperatures36 could also be
obtained in ambient-temperature conditions. A possible
way to overcome this problem, and to realize phonon
diodes in ambient conditions, is to use a hybrid system
composed of a gain optomechanical resonator and an
nonlinear electrically-driven mechanical beam35, where
the coupling between them is achieved via the evanescent
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FIG. 6: (Color online) Numerical results demonstrating unidirectional phonon transport in a PT -symmetric mechanical system
in the broken-PT phase. (a) Power spectrum obtained at the output of the active beam without mechanical nonlinearity when
the phonon excitation (input) is at the passive beam with weak nonlinearity. (b) Power spectrum obtained at the output of
the passive beam when the phonon excitation (input) is at the active beam. When the intensity of the phonon excitation is
within the region bounded by Eq. (11), phonon transport is unidirectional. Transport from the passive to the active resonator
is allowed [see a(ii)], but the transport from the active to the passive resonator is prevented [b(ii)]. The rectification is about
30 dB. If the intensity of the phonon excitation is larger than the upper bound of the unidirectional transport region, phonon
transport is bidirectional [a(i) and b(i)]. Phonon transport is not allowed in either of the directions [a(iii) and b(iii)] if the
intensity of the phonon excitation is smaller than the lower bound of the region given in Eq. (11).

optical field of the optomechanical resonator76. The
mechanical gain of the optomechanical resonators can
be provided at ambient conditions by, e.g., the op-
tomechanical dynamical instability in the blue detuning
regime77, which has been demonstrated in optomechani-
cal resonators in various experiments78. Since creating
strongly-nonlinear mechanical or acoustic materials
remains challenging, we believe that the proposed
system and the developed approach provide a suitable
platform for investigating nonlinear phononics and can
be used as a building block to design more complex
hybrid optomechanical or electromechanical information
processors. We envision that PT mechanical systems
will open a new route for designing functional phononic
systems with nonreciprocal phonon responses.
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Appendix A: Nonlinearity enhancement by broken
PT symmetry

In order to prove the enhancement of mechanical non-
linearity in the broken-PT -symmetric regime, let us con-
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sider a system of two coupled mechanical resonators, in
which one of the resonators has mechanical gain (ac-
tive resonator) and thus a positive damping rate Γg and
the second mechanical resonator has a passive mechan-
ical loss (passive resonator) with loss rate Γl. The res-
onators have the same mechanical frequency Ω0, and the
annihilation operators for their mechanical modes are de-
noted as bg and bl, respectively, for the active and pas-
sive resonators. Moreover, the passive mechanical res-
onator has a weak mechanical Kerr-nonlinearity denoted
by µ. The Hamiltonian describing these coupled mechan-
ical resonators can be written as

H = (Ω0 − iΓl) b
†
l bl + (Ω0 + iΓg) b

†
gbg

+gmm

(

b†l bg + blb
†
g

)

+ µ
(

b†l bl

)2

, (A1)

where gmm is the coupling strength between the mechan-
ical modes of the resonators. Generally, the nonlinear
Kerr term in Eq. (A1) will shift the boundary between
the PT symmetric regime and the broken-PT regime.
However, in our model, the Kerr nonlinearity denoted by
µ is very weak, and we can omit the nonlinearity-induced
shift of this boundary. To find the boundary of PT tran-
sition, we consider the first three terms in Eq. (A1)

H1 = (Ω0 − iΓl) b
†
l bl + (Ω0 + iΓg) b

†
gbg

+gmm

(

b†l bg + blb
†
g

)

, (A2)

which can be written as

H1 =
(

b†g b†l

)

(

Ω0 + iΓg gmm

gmm Ω0 − iΓl

)(

bg
bl

)

. (A3)

This Hamiltonian can be diagonalized as

H1 =
(

b†g b†l

)

P−1

(

Ω+ − iΓ+ 0
0 Ω− − iΓ−

)

P

(

bg
bl

)

,

(A4)
where the transformation matrix P is defined by

P =

(

gmm [(Ω+ − Ω0)− i (Γ+ − Γl)]
gmm [(Ω− − Ω0)− i (Γ− − Γl)]

)

√

(Ω± − Ω0)
2
+ (Γ± − Γl)

2
+ g2mm

. (A5)

Consequently, we have

(

b+
b−

)

= P

(

bg
bl

)

(A6)

as the mechanical supermodes formed by the coupling of
the resonators. These supermodes b± are characterized
by the eigenfrequencies Ω± and damping rates Γ±.
For this mechanical PT symmetric system, there are

two different regimes (see Fig. 7):
(i) PT symmetric regime where

Γ =
(Γl + Γg)

2
≤ gmm, (A7)

FIG. 7: (Color online). Evolution of the eigenfrequencies of
the coupled mechanical resonators. (a) Difference of the real
parts of the eigenfrequencies of the supermodes: mode split-
ting, and (b) difference of the imaginary parts of the eigenfre-
quencies (i.e., linewidth) of the supermodes. The resonance
frequencies of the supermodes are non-degenerate in the PT -
symmetric regime. In the broken-PT symmetry regime, how-
ever, they are frequency degenerate.

and the two supermodes b+ and b− are nondegenerate in
their resonance frequencies (i.e., real part of their com-
plex eigenfrequencies) given by

Ω± = Ω0 ± β = Ω0 ±
√

g2mm − Γ2. (A8)

The damping rates of the supermodes (i.e., linewidths of
the resonances; imaginary part of their complex eigenfre-
quencies) are the same and equal to

Γ± = χ =
Γl − Γg

2
. (A9)

(ii) Broken PT -symmetry regime where

Γ =
Γl + Γg

2
> gmm. (A10)

The two supermodes b+ and b− are degenerate in their
resonance frequencies

Ω± = Ω0, (A11)
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and their damping rates are different:

Γ± = χ∓ iβ. (A12)

Now let us consider the nonlinear Kerr term in Eq. (A1).
Using Eq. (A6), we find

bl =

√

(Ω+ − Ω0)
2
+ (Γ+ − Γl)

2
+ g2mm

(Ω+ − Ω−)− i (Γ+ − Γ−)
b+

−

√

(Ω− − Ω0)
2
+ (Γ− − Γl)

2
+ g2mm

(Ω+ − Ω−)− i (Γ+ − Γ−)
b−

= βl+b+ + βl−b−.

By substituting the above equation into the last term on
the right hand side of Eq. (A1) and dropping the non-
resonant terms, we can rewrite the nonlinear Kerr term
of Eq. (A1) as

Hnl =
(

|βl+|2b†+b+ + |βl−|2b†−b−
)2

. (A13)

The self-Kerr terms |βl+|4
(

b†+b+

)2

and |βl−|4
(

b†−b−

)2

only lead to a frequency-shift of the two supermodes and
thus are less important. The cross-Kerr term

H ′
nl = |βl+|2|βl−|2

(

b†+b+

)(

b†−b−

)

= µ′
(

b†+b+

)(

b†−b−

)

(A14)
is more important and leads to the redistribution of
the nonlinear effect among the two supermodes. From
Eqs. (A7)-(A9), the nonlinear coefficient 2|βl+|2|βl−|2
can be represented in the broken-PT regime as µ′

b, and
in the PT symmetric regime as µ′

s

µ′
b = µ

Γ2g2mm

(Γ2 − g2mm)
2
, µ′

s = µ
g4mm

(Γ2 − g2mm)
2
. (A15)

As was observed in photonic experiments62,79, in the
broken-PT regime the two supermodes b± are degenerate
and the field is localized in the gain resonator, and thus
the field bl is much smaller than bg. Therefore, we can
omit the terms related to bl in the expressions of the
supermodes b± and we have

b+ ≈ gmm
√

(Ω+ − Ω0)
2
+ (Γ+ − Γl)

2
+ g2mm

bg,

b− ≈ gmm
√

(Ω− − Ω0)
2
+ (Γ− − Γl)

2
+ g2mm

bg.

Subsequently, we find that the cross-Kerr term given in
Eq. (A14) can induce a self-Kerr effect in the gain res-
onator

H ′
nl = µ

g4mm

4 (Γ2 − g2mm)2
(

b†gbg
)2

. (A16)

Clearly, when Γ ≈ gmm (in the vicinity of the spon-
taneous PT -symmetry breaking point: the PT -phase

transition point), this self-Kerr nonlinearity is greatly en-
hanced.
Appendix B: Unidirectional phonon transport by

mechanical nonlinearity

Let us now present a detailed analysis for finding the
unidirectional phonon transport region near the PT -
transition point. In this case, the gain-loss balance be-
tween the active resonator, with annihilation operator bg,
and the passive resonator, with annihilation operator bl,
decreases the effective damping rates of the two modes.
In the vicinity of the PT -phase transition point (i.e.,
Γ ≈ gmm), the effective damping rates of the two modes
is given by χ = (Γl − Γg) /2. The coupling between the
two mechanical resonators also leads to the transfer of
mechanical Kerr nonlinearity from the passive resonator
to the active resonator, and this mechanical nonlinearity
is strongly enhanced near the PT -transition point (i.e.,
Γ ≈ gmm). Hereafter, we will denote this enhanced me-
chanical Kerr nonlinearity coefficient as µ′

b.

Let us first consider the phonon transport from the
passive resonator to the active resonator. Here the
phononic field in the passive resonator is generated via
an phononic input field with strength εd and frequency
Ωd. Using the standard input-output formalism80,81, the
output field of the active mechanical resonator is found
as bout = χ1/2bg, which shows that the output field is
proportional to the intracavity field bg, if we omit the
vacuum fluctuations in the input field. Thus the trans-
mission from passive to active resonator is given by

Tl→g (δ) = χng/ |εd|2 , (B1)

where ng represents the steady-state value of the intra-
cavity phonon number in the active resonator. From the
steady-state solution of the equations of motion for the
coupled mechanical resonator system, we find that ng

satisfies

µ̃2n3
g − 2µ̃Ω̃n2

g +
(

Γ̃2 + Ω̃2
)

ng − ñin = 0, (B2)

where

Γ̃ =
(

χ2 + δ2 + g2mm

)

χ, Ω̃ =
(

χ2 + δ2
)

Ω0 − g2mmδ,

µ̃ =
(

χ2 + δ2
)

µ′
b, ñin = |εd|2g2mm

(

χ2 + δ2
)

.

The algebraic equation (B2) has three or one root de-
pending on the system parameters, and one of the roots
is unstable if the algebraic equation (B2) has three roots.
When we increase the detuning δ = Ω0 − Ωd, such that

Ω0 −
(

g2mmδ
)

/
(

χ2 + δ2
)

χ (χ2 + δ2 + g2mm) / (χ2 + δ2)
=

√
3, (B3)

or equivalently,
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δ = δmax =
g2mm +

√

g4mm + 4
(√

3χ3 − χ2Ω0 +
√
3g2mmχ

) (

Ω0 −
√
3χ

)

2
(

Ω0 −
√
3χ

) , (B4)

the system enters the bistable regime. In fact, when
δ ≤ δmax, the algebraic equation has three branches of
solutions. However, two branches of solutions disappear
when δ > δmin (see Ref.82 and the supplementary ma-
terials of Ref.83). In this case, the transmittance of the
photon transport Tl→g (δ) changes suddenly from a high
value to a low value. Noting that gmm ≫ χ near the PT
breaking point, the critical detuning δmax can be approx-
imately estimated to be

δmax =
g2mm

Ω0 −
√
3χ

. (B5)

Let us now consider the phonon transport from the ac-
tive mechanical resonator to the passive one. The driv-
ing field with strength εd and frequency Ωd is fed into
the gain resonator in this case. Following the same dis-
cussion and approach as for the previous case, it can be
shown that a bistability-induced phase transition occurs
when the detuning δ = Ω0 − Ωd satisfies

δ −
(

g2mmΩ0

)

/
(

χ2 +Ω2
0

)

χ (χ2 +Ω2
0 + g2mm) / (χ2 +Ω2

0)
=

√
3, (B6)

or equivalently,

δ = δmin =

√
3
(

χ2 +Ω2
0 + g2mm

)

χ+ g2mmΩ0

χ2 +Ω2
0

. (B7)

Near the PT -breaking point, χ ≪ gmm, Ω0, and thus
δmin can be approximately estimated to be

δmin =
g2mmΩ0

χ2 +Ω2
0

. (B8)

Combing Eqs. (B5) and (B8), we find that when the de-
tuning δ is within the following region

[δmin, δmax] =

[

g2mmΩ0

Ω2
0 + χ2

,
g2mm

Ω0 −
√
3χ

]

, (B9)

it is possible to observe the unidirectional phonon trans-
port, i.e., the phonon transport from the passive res-
onator to the active resonator is allowed, whereas the
phonon transport from the active resonator to the pas-
sive resonator is blocked.
Figure. 8a shows the transmittance functions Tl→g (δ)

and Tg→l (δ) as a function of the detuning δ. It is (as
explained in the main text) clear that there is a unidirec-
tional phonon transport region when the detuning is up-
scanned from smaller to larger detuning. We also show in
Fig. 8b the rectification ratios for up-scanning and down-
scanning the detuning δ. Similar to our previous discus-
sions, a non-reciprocal region can be observed for the
up-scanning process, while it disappears for the down-
scanning process, and a high rectification-ratio, larger
than 30 dB, can be obtained within the nonreciprocal
region.
Up to this point, we do not consider the amplitude of

the input field. Let us assume that the detuning δ is fixed
and is within the detuning region given by Eq. (B9). We
then vary the amplitude of the input field to show the
bistability and the hysteresis in the transmittance func-
tions. Let us first assume that δ > gmm. If we con-
sider the phonon transport from the passive resonator to
the active resonator, we can obtain an algebraic equation
similar to that given in Eq. (B2). The bistable transition
point corresponds to the stationary points of the function

f(ng) = µ̃2n3
g − 2µ̃Ω̃n2

g +
(

Γ̃2 + Ω̃2
)

ng. (B10)

By setting f ′(ng) = 0, the stationary point of f(ng) can
be found as

n∗
g =

[

2µ̃Ω̃−
√

4µ̃2Ω̃2 − 3µ̃2

(

Γ̃2 + Ω̃2

)

]

(

3µ̃2
)−1

.

(B11)
The upper bound of the unidirectional phonon transport
region is given by

|εmax|2 =
f(n∗

g)

g2mm (χ2 + δ2)
=

2Ω̃
(

Γ̃2 + Ω̃2
)

9µ̃g2mm (χ2 + δ2)
+

(

6Γ̃2 − 2Ω̃2
)

9g2mm (χ2 + δ2)









2µ̃Ω̃−
√

4µ̃2Ω̃2 − 3µ̃2

(

Γ̃2 + Ω̃2

)

3µ̃2









.

Near the PT -transition point, we have δ, gmm ≫ χ, and thus it can be approximately estimated that

|εmax|2 ≈ 2
(

δ2 + g2mm

)2

9µ′
bg

2
mmδ

. (B12)
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FIG. 8: (Color online). Bistability curves and unidirectional phonon-transport regions. (a) Transmittances as a function of
the detuning frequency δ, when the input field amplitude is fixed at εd. (b) Rectification ratio for the bidirectional phonon
transport versus the detuning δ: a rectification ratio larger than 30 dB can be obtained when the detuning is up-scanned
to enter the unidirectional phonon transport region. (c) Transmittances as function of the intensity of the input field when
the detuning frequency δ is fixed and its value is taken within the unidirectional phonon transport region in (a). The blue
and red curves represent the power transmittances from the passive to the active resonator Tl→g and from the active to the
passive resonator Tg→l. The solid and dashed parts on each curve denote the stable and unstable solutions of the bistable
system. The unstable solutions cannot be observed in the output and thus lead to sudden transitions (black solid arrows) in
the transmittance functions. (d) Rectification ratios versus normalized amplitude of the input field for fixed detuning δ. The
melon-colored shaded areas denote the unidirectional transport regions.

Let us now consider the case of phonon transport from
the active resonator to the passive resonator when the
amplitude of the input field is varied and the detuning is
kept fixed. In this case, we obtain

˜̃µ2n3
g − 2˜̃µ ˜̃Ωn2

g +
(

˜̃Γ2 + ˜̃Ω2
)

ng − ˜̃nin = 0, (B13)

where

˜̃Γ =
(

χ2 +Ω2
0 + g2mm

)

χ, ˜̃Ω =
(

χ2 +Ω2
)

δ − g2mmΩ0,

˜̃µ =
(

χ2 +Ω2
0

)

µ′
b,

˜̃nin =
(

χ2 + δ2
)2 |εd|2 .

Similar to Eq. (B10), the bistable transition point can be
found by calculating the stationary points of the function

f(ng) = ˜̃µ2n3
g − 2˜̃µ ˜̃Ωn2

g +
(

˜̃Γ2 + ˜̃Ω2
)

ng. (B14)

which leads to

ñ∗
g =

[

2˜̃µ ˜̃Ω−
√

4˜̃µ2 ˜̃Ω2 − 3˜̃µ2

(

˜̃Γ2 + ˜̃Ω2

)

]

(

3˜̃µ2
)−1

.

(B15)
The lower bound of the unidirectional phonon transport
region is then given by

|εmin|2 =
f̃(ñ∗

g)

(χ2 + δ2)
2
=

2˜̃Ω
(

˜̃Γ2 + ˜̃Ω2
)

9˜̃µ (χ2 + δ2)
2
+

(

6˜̃Γ2 − 2 ˜̃Ω2
)

9g2mm (χ2 + δ2)








2˜̃µ ˜̃Ω−
√

4˜̃µ2 ˜̃Ω2 − 3˜̃µ2

(

˜̃Γ2 + ˜̃Ω2

)

3˜̃µ2









.

Near the PT -transition point, we have δ, gmm ≫ χ, and
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it can be approximately estimated that

|εmin|2 ≈ 2
(

δ2 + g2mm

)2

9µ′
bδ

3
. (B16)

We thus conclude that nonreciprocal phonon transport
takes place if the amplitude of the input is within the
region

|εd|2 ∈
[

2
(

δ2 + g2mm

)3

9µ′
bδ

3
,
2
(

δ2 + g2mm

)3

9µ′
bg

2
mmδ

]

. (B17)

Similarly, when δ ≤ gmm, the nonreciprocal region for
the amplitude of the input field can be written as

|εd|2 ∈
[

2
(

δ2 + g2mm

)3

9µ′
bg

2
mmδ

,
2
(

δ2 + g2mm

)3

9µ′
bδ

3

]

. (B18)

In Fig. 8c, we present the transmittances as a function
of the amplitude of the input field when the detuning
is kept fixed within the unidirectional transport region
given in Eq. (B9). We see that the lower stable branches
of the bistable curves shown in Fig. 8c (the parts of the
bistable curves before the bistable transitions occur) in-
crease when we increase the intensity of the input field.
This decreases the rectification, as shown in Fig. 8d.

Appendix C: Can this system be used as a phonon
isolator?

In order to check the performance of the proposed sys-
tem as an isolator for phonons, we study the system
considering that phonons are injected in the system in
both directions, that is simultaneously at the passive and
active resonator sides. If the system exhibits unidirec-
tional phonon transport under this condition, then the
proposed system can be used as an isolator.
The equations of motion of the system for this case can

be written as

ḃl = − (χ+ iδl) bl − igmmbg + iεl,

ḃg = − (χ+ iδg) bg − iµ′
b

(

b†gbg
)

bg − igmmbl + iεg,

(C1)

where the last terms on the right-hand-sides of Eq. (C1)
denote the input fields. The steady-state solution of
Eq. (C1) leads to

µ̄2n3
g − 2µ̄Ω̄n2

g +
(

Γ̄2 + Ω̄2
)

ng − n̄in = 0, (C2)

where

Γ̄ =
(

χ2 + δ2l + g2mm

)

χ, µ̄ =
(

χ2 + δ2l
)

µ′
b

Ω̄ =
(

χ2 + δ2l
)

δg − g2mmδl,

n̄in = |εl|2g2mm

(

χ2 + δ2l
)

+
(

χ2 + δ2l
)2 |εg|2.

FIG. 9: (Color online). Bistability curves for the mechanical
PT system when phonons are input simultaneously in both
directions. (a) Transmittances as functions of the detuning
frequency δ when the input field amplitude is fixed at εd.
(b) Transmittances as functions of the amplitude of the input
field when the detuning frequency δ is fixed. The blue and
red curves represent the power transmittance functions Tl→g

and Tg→l. The solid and dashed parts on each curve denote
the stable and unstable solutions of the bistable systems. The
unstable solutions cannot be observed in the output and thus
lead to sudden transitions in the transmittance functions.

Let us first fix εl, εg, δg, and vary the detuning δl = δ.
In this case, the bistable transitions for both directions
occur when the detuning δ satisfies

δg −
(

g2mmδ
)

/
(

χ2 + δ2
)

χ (χ2 + δ2 + g2mm) / (χ2 + δ2)
=

√
3. (C3)

When the detuning is up-scanned from smaller to larger
detuning values, the bistable transition occurs for

δ =

√

√

√

√

g4mm

4
(

δg −
√
3χ

)2
+

(√
3χ3 − χ2δg +

√
3g2mmχ

)

(

δg −
√
3χ

)

+
g2mm

2
(

δg −
√
3χ

) . (C4)

When the detuning δ is down-scanned from larger to
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smaller detuning values, the bistable transition occur at

δ = −

√

√

√

√

g4mm

4
(

δg −
√
3χ

)2
+

(√
3χ3 − χ2δg +

√
3g2mmχ

)

(

δg −
√
3χ

)

+
g2mm

2
(

δg −
√
3χ

) . (C5)

The transmittances presented in Fig. 9a clearly show the
bistable operation. A close look at Fig. 9a reveals that
the transition from the bistable region to the stable tra-
jectories takes place at the same points for both direc-
tions. We cannot find a detuning region within which
transport in one direction is allowed and the transport in
the other direction is prevented. Thus, we conclude that
when phonons are injected simultaneously at both input
ports, we cannot see a unidirectional operation. Conse-
quently, it is impossible to use this system as an isolator
for phonons.
Let us now fix δl, δg, εg, and vary εl = εd, to check the

possibility of providing a phonon isolator. The bistable
transition point is just the stationary points of the func-
tion

f̄ (ng) = µ̄2n3
g − 2µ̄Ω̄n2

g +
(

Γ̄2 + Ω̄2
)

ng − |εg|2. (C6)

By setting f̄ ′ (ng) = 0, we find

n̄∗
g1 =

[

2µ̄Ω̄ +
√

4µ̄2Ω̄2 − 3µ̄2
(

Γ̄2 + Ω̄2
)

]

(

3µ̄2
)−1

,

n̄∗
g2 =

[

2µ̄Ω̄−
√

4µ̄2Ω̄2 − 3µ̄2
(

Γ̄2 + Ω̄2
)

]

(

3µ̄2
)−1

,

The bistable transition occurs at

|εd|2 =
f(n∗

g1)

g2mm (χ2 + δ2l )
(C7)

when the amplitude of the input field εd is up-scanned
and for

|εd|2 =
f(n∗

g2)

g2mm (χ2 + δ2l )
(C8)

when the amplitude of the input field is down-scanned
(see Fig. 9). For this case too, we do not see a unidi-
rectional phonon transport region if we feed the inputs
at the active and passive resonators sides simultaneously.
Thus we conclude that although the proposed system can
be used as phonon diode allowing nonreciprocal phonon
transport, it cannot function as an isolator for phonons.
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Nori, PT -symmetric phonon laser, Phys. Rev. Lett. 113,
053604 (2014).

68 X.-W. Xu, Y.-X. Liu, C.-P. Sun, Y. Li, Mechanical
PT symmetry in coupled optomechanical systems, arXiv:
1402.7221v1[quant-ph].

69 See the supplementary information.
70 I. V. Barashenkov, Phys. Rev. A 90, 045802 (2014).
71 I. Mahboob, K. Nishiguchi, A. Fujiwara, and H. Yam-

aguchi, Phonon lasing in an electromechanical resonator,
Phys. Rev. Lett. 110, 127202 (2013).

72 E. Gil-Santos, D. Ramos, A. Jana, M. Calleja, A. Raman,
and J. Tamayo, Mass sensing based on deterministic and

stochastic responses of elastically coupled nanocantilevers,
Nano Lett. 9, 4122-4127 (2009).

73 R. B. Karabalin, M. C. Cross, and M. L. Roukes, Non-
linear dynamics and chaos in two coupled nanomechanical
resonators, Phys. Rev. B 79, 165309 (2009).

74 H. Okamoto, T. Kamada, K. Onomitsu, I. Mahboob, and
H. Yamaguchi, Optical tuning of coupled micromechanical
resonators, Applied Physics Express 2, 062202 (2009).

75 T. S. Biswas, J. Xu, X. Rojas, C. Doolin, A. Suhel, K.S.D.
Beach, and J. P. Davis, Remote sensing in hybridized ar-
rays of nanostrings, Nano Lett. 14, 2541-2545 (2014).

76 G. Anetsberger, O. Arcizet, Q. P. Unterreithmeier, R. Riv-
iere, A. Schliesser, E. M. Weig, J. P. Kotthaus, and T. J.
Kippenberg, Near-field cavity optomechanics with nanome-
chanical oscillators, Nature Phys. 5, 909-914 (2009).

77 F. Marquardt, J.G.E. Harris, and S. M. Girvin, Dynam-
ical multistability induced by radiation pressure in high-
finesse micromechanical optical cavities, Phys. Rev. Lett.
96, 103901 (2006).

78 H. Rokhsari, T. J. Kippenberg, T. Carmon, and K. Va-
hala, Radiation-pressure-driven micro-mechanical oscilla-
tor, Opt. Exp. 13, 5293-5301 (2005).
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