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We show that Weyl semimetals with broken time-reversal symmetry can host chiral electromag-
netic waves. The magnetization that results in a momentum space separation of a pair of opposite
chirality Weyl nodes is also responsible for the non-zero gyrotropy parameter in the system. It is
then shown that chiral electromagnetic wave can propagate in a region of space where the gyrotropy
parameter changes sign. Such waves are analogs of quantum Hall edge states for photons.
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I. INTRODUCTION

Weyl semimetal is a new topological phase of matter
recently proposed theoretically,1–4. The band structure
of the Weyl semimetal consists of points in momentum
space at which the valence and conduction bands touch,
for a review5. Weyl points always appear in pairs of oppo-
site chiralities, which is required by the fermion-doubling
theorem,6, and are separated in momentum space if the
time reversal or inversion symmetries are broken.

One of the unique properties of Weyl semimetals is the
chiral anomaly7,8. It results in the non conservation of
the number of particles of the given chirality in the pres-
ence of the electromagnetic (EM) field. Another unique
property of the Weyl semimetal is the semi-quantized
anomalous Hall effect3.

On the experimental side, the search for Weyl
semimetal is stimulated by the recent experimental re-
alization of a three dimensional Dirac semimetal9–11. We
wish to note that such a Dirac semimetal is not yet aWeyl
semimetal, for this Dirac semimetal is chirality degener-
ate. Or in other words, the opposite chiralities are found
at the same point in momentum and energy. The inver-
sion or time-reversal symmetries have to be broken in the
compounds for it to have the Weyl points. Recently, the
compound Cd3As2 experimentally12 was shown to have
signs of negative magnetoresistance, which is believed to
be due to chiral anomaly13,14. The crystal structure of
such a material has a broken inversion symmetry result-
ing in Weyl points split in energy.

In the present paper we address an interesting ques-
tion of propagation of EM wave at the interface of Weyl
semimetals. For that we adopt a particular model of a
Weyl semimetal with broken time-reversal (TR) symme-
try, which was introduced in the Ref.3. In this model the
TR symmetry is broken by to the randomly distributed
magnetic impurities, but which are assumed to be ferro-
magnetically ordered and result in the uniform exchange
field for electrons. Due to finite magnetization, Weyl
points are split in momentum space acquiring protection
from perturbations that can open up a band gap. TR
breaking also gives rise to the anomalous Hall effect pro-
portional to the value of the splitting of Weyl points3.
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FIG. 1. (Color online) A. Schematics of the domain wall sep-
arating two opposite magnetization ±~m (shown in red) at
point x = 0. The magnetization is parallel to the z-axis.
The profile ∝ e

−|x|/ℓ of localized electromagnetic wave at the
domain wall and direction of propagation is shown in blue,
where ℓ is the localization length of the wave. B. Schemat-
ics of the magnetization defined chirality of electromagnetic
wave. Black curves are the domain walls separating regions
with different magnetization. Arrows are the directions of the
propagation of the electromagnetic wave.

As a result Weyl semimetal is an optically gyrotropic me-
dia with gyrotropy parameter proportional to the sign of
magnetization. Hence the Faraday rotation of the EM
wave polarization is expected,15,16.
We note that magnetic domain walls might appear nat-

urally in the Weyl semimetal with broken TR symmetry,
or, for example, can be created with a help of a ferro-
magnetic material placed in proximity. Domain wall acts
as an effective interface between right-left gyrotropic re-
gions of Weyl semimetal.
It is well known that the right-left gyrotropic crystal

interface can localize chiral EM waves16,17. Importantly,
such chiral surface EM waves have attracted considerable
theoretical18 and experimental19,20 attentions as analogs
of quantum Hall state for photons.
Here we propose Weyl semimetal as another material

to host such interesting chiral EM edge states. We show
that in the region where the magnetization flips its di-
rections (magnetic domain wall) there exists a chiral EM
wave localized at the domain wall and propagating along
it, with the direction of propagation determined by the
sign of the gyrotropy parameter, Fig. 1A. Even though
the system under consideration is a metal and the decay
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of EM wave is expected, we show that there is a region
of frequencies when the propagation is not damped.

II. THE MODEL OF WEYL SEMIMETAL

We consider a simplest theoretical realization of a Weyl
semimetal, based on a topological insulator - ferromag-
netic insulator multilayer heterostructure grown along
the z-axis3. The model is well studied and we refer to
Ref.3 for details. In this section we are going to briefly
review the model with an emphasis on the effect TR sym-
metry breaking.
Following3, we introduce exchange field, m(x), that

acts on electrons which physically could be due to mag-
netic impurities ordered ferromagnetically along growth
direction. To model the domain wall, we assume the
magnetization to change the sign at the plane x = 0,
such as m(x) = −|m|sign(x). We will first understand
the properties of the Weyl semimetal with a homoge-
neous magnetization, namely m(x) = m, and will come
back to the domain wall afterwards.
The momentum space Hamiltonian of the Weyl

semimetal is given by:

H±(p) = vF ẑ × σ · p+mσz + ∆̂(pz)− µ, (1)

where vF is the Fermi velocity, ẑ is the growth direc-
tion of the heterostructure, σ and τ are the real spin
and the pseudospin describing the top and bottom sur-
faces of the layers, m is the exchange field, ∆̂(pz) =
∆Sτ

x + ∆D(τ+eipzz + h.c.) describes the motion in the
growth direction, τ+ = (τx ± iτy)/2, and µ is the chem-
ical potential. Performing unitary transformation,

U =
1 + τz

2
+

1− τz

2
σz (2)

one obtains the Hamiltonian of the multilayer in the form:

H±(p) = vF ẑ × σ · p+ (m±∆(pz))σ
z − µ, (3)

where ∆(pz) = [∆2
S +∆2

D + 2∆S∆D cos(pzd)]
1/2, and d

is the period of the heterostructure.
Weyl points can exist in the subband described by

H±(p) for the sign(m) = ∓1, respectively. At m = 0
there is a single four-fold degenerate Weyl point provided
∆S = ∆D. We will not refer to this special limit here.
As long as the exchange energy satisfies the inequality

|∆S − ∆D| < |m| < ∆S + ∆D, the separation between
two Weyl points in momentum space is given by:

2Q =
2

d
arccos

[

∆2
S +∆2

D −m2

2∆S∆D

]

. (4)

In what follows, we assume that the chemical potential
is not far from the Weyl points, ||m| − |∆S −∆D|| > |µ|,
allowing us to neglect the contribution from the H±(p)
band for sign(m) = ±1, respectively. Finally one arrives

at the Hamiltonian describing low energy excitations near
the Weyl points:

H(p) = vF ẑ × σ · p+ (|m| −∆(pz))sign(m)σz − µ. (5)

From here we observe that the sign change of magneti-
zation flips the chirality of electrons. It is convenient
to write the Green function of electrons in the Weyl
semimetal G(ǫn,p) = [iǫn −H(p)]−1 in the form:

G(ǫn,p) =
1

2

∑

s=±1

1 + sσ · n(p)

iǫn + µ− sE(p)
, (6)

where summation is performed over two subbands
with opposite chirality, ǫn = πT (2n + 1) is the
fermionic Matsubara frequency, T is the tempera-
ture, E(p) =

√

v2F p
2
⊥ + (|m| −∆(pz))2 is the band

dispersion of the Weyl semimetal, and n(p) =
{vF py,−vF px, (|m| −∆(pz))sign(m)} /E(p) is the unit
vector locked to the direction of the momentum. With
the help of Green function we are now going to study the
macroscopic properties of the system.

III. DIELECTRIC FUNCTION OF THE WEYL

SEMIMETAL

Here we derive the tensor of dielectric function, which
will allow us to understand the properties of the prop-
agation of the EM wave in the media. The dielectric
function is expressed through the optical conductivity:

σab(ω) =
i

ω
lim
q→0

[Πab(ω,q)−Πab(0,q)], (7)

where a, b = (x, y, z), in the form:

ǫab(ω) = δab +
iσab(ω)

ε0ω
, (8)

and ε0 is the permittivity of free space. The current-
current correlation function reads:

Πab(ω,q) = e2T
∑

n

Tr

∫

d3p

(2π)3
G(ǫn + ωk,p+ q)

× [∂pa
H(p)|p+q]G(ǫn,p)[∂pb

H(p)]|iωk→ω+iδ , (9)

where Tr is taken over the pseudo spin degrees of freedom,
ωk = 2πkT is bosonic external frequency, and e is the
elementary charge. For the long wave-length EM field
we neglect the momentum dependence of the dielectric
function.
Without loosing the generality we consider chemical

potential in the electron band µ > 0 and take ω > 0.
Since the chemical potential is set close to the Weyl
nodes, we linearize the band dispersion E(p) in the z-
direction in momentum space. At zero temperature,
T = 0, the tensor of dielectric function of the Weyl
semimetal has the following form:

ǫ(ω) =





ǫx(ω) iγ(ω) 0
−iγ(ω) ǫx(ω) 0

0 0 ǫz(ω)



 . (10)
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The diagonal components of the dielectric function ǫ(ω)
are given by:

ǫa(ω) = 1 +
αca
3π

[

ln

∣

∣

∣

∣

4Λ2

4µ2 − ω2

∣

∣

∣

∣

−
4µ2

ω2
+ iπΘ(ω − 2µ)

]

,

(11)

where α = e2

4πε0ṽF
is the material dependent fine-

structure constant, Λ is the energy cut-off satisfying
Λ ≫ ω and Λ ≫ µ. Coefficients cx = 1 and cz = ṽ2F /v

2
F

take into account the anisotropy of the Fermi velocity in
the multilayer.
Imaginary term in expression (11) describes the in-

terband contribution to the optical conductivity. This
contribution exists if the frequency of the EM wave is
larger than twice the Fermi energy: ω > 2µ. Impor-
tantly, we find the interval of frequencies in which the
dielectric function is real and positive, Imǫx(ω) = 0 and
Reǫx(ω) > 0:

2µ > ω >

√

α

3π

2µ

[1 + 2α
3π ln |Λ/µ|]1/2

(12)

This means that EM wave can propagate in the Weyl
semimetal without decay in the interval of frequencies
(12). In what follows, we will consider that the frequency
of the EM wave is within this interval.
The gyrotropy parameter γ(ω) is related to the off-

diagonal component of the dielectric tensor as ǫxy(ω) =
−ǫyx(ω) = iγ(ω) and is proportional to the anomalous
Hall conductivity of the Weyl semimetal with broken
time reversal symmetry:

γ(ω) = γ0(ω)sign(m), (13)

where γ0(ω) =
2α
π

ṽFQ
ω . We note that γ(ω) is a real value

provided ω + 2ṽFQ < 2Λ, inversely proportional to the
frequency of the EM wave, and proportional to the split-
ting between Weyl points in momentum space (4) and to
the sign of the magnetization. We would like to empha-
size here that the anomalous Hall conductivity in Weyl
semimetal and as a result the gyrotropy parameter are
determined by the distance between the Weyl nodes.

IV. CHIRAL ELECTROMAGNETIC SURFACE

STATES

Let us now study the propagation of EM wave in the
Weyl semimetal with broken TR symmetry. We will
adopt the theoretical model for the EM waves at the in-
terface of optical isomers studied by Zhukov and Raikh17.
The wave equation with the dielectric tensor (10) derived
in the previous section is given by:

∇×∇×E(ω, r) =
ω2

c2
ǫ(ω)E(ω, r) . (14)

We consider the polarization and the direction of the
propagation of the electric field to be perpendicular to

the z-axis and take into account condition (12). The dis-
persion of the electric field:

E(x, y) = E

(

1,
c2q2y − ω2ǫx(ω)

c2qxqy + iω2γ(ω)
, 0

)

eixqx+iyqy , (15)

where E is amplitude, in the bulk of Weyl semimetal is
given by:

q2x + q2y =
ω2

c2
ǫx(ω)

[

1−
γ2(ω)

ǫ2x(ω)

]

. (16)

The gyrotropy parameter is typically smaller than ǫx(ω),
thus EM wave can propagate in the bulk of the
semimetal.
Let us now assume that there is a domain wall sepa-

rating regions with opposite magnetization. For example
the domain wall is at the plane x = 0, and the magnetiza-
tion as a function of coordinates is m(x) = −|m|sign(x).
We have shown in expression (13) that the gyrotropy
parameter is directly proportional to the sign of magne-
tization. Hence the gyrotropy parameter also flips the
sign with the magnetization:

γ(ω) → γ(ω, x) = −γ0(ω)sign(x). (17)

One solves the resulting wave equation with γ(ω) →
γ(ω, x) for the electric field propagating in the x−y plane,
normal to the plane of the domain wall, taking into ac-
count condition (12). Assuming homogeneous solution
along y-axis,

E(x, y) = (Ex(x), Ey(x), 0)e
iqy , (18)

and expressing Ex(x) through Ey(x) one results with the
following equation:

−∂2
xEy(x) −

2qγ0(ω)

ǫx(ω)
δ(x)Ey(x) = E(ω)Ey(x) , (19)

where the term on right hand side of Eq. (19) reads:
E(ω) = −q2 + ω2[ǫ2x(ω) − γ2

0(ω)]/c
2ǫx(ω). We note that

the delta-function potential is whether attractive or re-
pulsive depending on the sign of the wave-vector q. Solv-
ing Eq. (19) one obtains a bound state solution only
for q > 0 with an energy E(ω) = −(qγ0(ω)/ǫx(ω))

2 ,
while the spectrum of the bound state satisfies equation
q = ω

√

ǫx(ω)/c. The components of the electric field are
given by:

Ey(x, y) = Ey(0)e
iqy−|x|/ℓ , (20a)

Ex(x, y) = iEy(x, y)
ǫ2x(ω) + γ2

0(ω)

2ǫx(ω)γ0(ω)
sign(x) . (20b)

The electric field is localized at the domain wall with
the decay length given by:

ℓ =
πc

2αṽF

√

ǫx(ω)

Q
. (21)
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The localization length is inversely proportional to the
splitting of Weyl nodes in momentum space. Impor-
tantly, EM wave can propagate at the domain wall with-
out decay provided condition Eq. 12 is satisfied, i.e. the
diagonal component of the dielectric tensor, ǫx(ω), is real
and positive.
Obtained bound state solution exists only for wave-

vectors q > 0. If we have chosen m(x) = |m|sign(x)
for the domain wall configuration, then the bound state
would have existed only for q < 0. Hence the EM wave
given by Eqs. (20a,b) is chiral (propagating in one direc-
tion). Another feature is that due to the nature of the
gyrotropy parameter, Eq. 10, we expect the propagation
of such chiral EM wave only in the plane perpendicular
to the magnetization, i.e. in (x − y) plane (see Fig. 1B
for schematics).
We note that the wave-vector of the EM field at the

domain wall is smaller than the maximal allowed wave-
vector in the bulk of the semimetal defined in (16).
Thus, the amplitude of the EM wave at the domain
wall exponentially decays into the bulk17. Assumption
ω ≫ vF q that allowed us to neglect the momentum de-
pendence of the dielectric tensor (10), is fulfilled provided
√

ǫx(ω)vF /c ≪ 1. Finally, we emphasize that apart from
the localized EM wave (20), equation (19) provides a so-
lution for EM wave propagating in the bulk. Contrary,
EM waves discussed in Refs.18 do not coexist with the
bulk waves as there is a gap in the spectrum for bulk

waves.

V. CONCLUSIONS

Let us briefly discuss experimental observability of the
proposed effect. We take energy cut-off Λ ∼ 1 eV, chem-
ical potential µ ∼ 0.1 eV, and the wave-vector Q ∼ 1
nm−1 for the multilayer model3. Using ṽF ∼ 108 cm/c
gives α ∼ 2 and ǫx ∼ 1 at frequencies ω ∼ 2π · 16 THz.
We obtain the localization length to be of the order of
ℓ ∼ 1 µm.
To conclude, we studied the properties of the EM wave

at the vicinity of the magnetic domain wall in the Weyl
semimetal. We showed that chiral EM wave are localized
at the domain wall and propagate along it without decay,
which is the analog of the quantum Hall edge states for
photons.
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