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We propose a hybrid system composed of a Majorana qubit and a nanomechanical resonator,
implemented by a spin-orbit-coupled superconducting nanowire, using a set of static and oscillating
ferromagnetic gates. The ferromagnetic gates induce Majorana bound states in the nanowire, which
hybridize and constitute a Majorana qubit. Due to the oscillation of one of these gates, the Majorana
qubit can be coherently rotated. By tuning the gate voltage to modulate the local spin-orbit
coupling, it is possible to reach the resonance of the qubit-oscillator system for relatively strong
couplings.
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I. INTRODUCTION

Majorana bound states (MBS)1,2 are recently attract-
ing increasing interest both theoretically and experimen-
tally. These have been predicted to exist in artificial
structures, such as nanowires with spin-orbit coupling
(SOC) in proximity to a superconductor,3,4 ferromag-
netic atom chains on top of a superconductor,5 topo-
logical insulator/superconductor hybrid structures,6–11

and superconducting circuits.12 Recently, possible sig-
natures of MBS have been reported in nanowires,13–15

atom chains,16 and topological insulator/superconductor
structures.17 The MBS attract considerable atten-
tion partly due to their hypothetical non-abelian
anyonic statistics, which might allow the realiza-
tion of topologically-protected quantum information
manipulation.2,18–20 In parallel to the ongoing search of
some unambiguous confirmation of MBS,21,22 there are
also numerous theoretical studies on how to efficiently
exploit these MBS.

One promising application of MBS is to construct Ma-
jorana qubits.18 It has been suggested that Majorana
qubits might be robust against local perturbations and
are hence promising to store quantum information.18,23,24

(Note that Majorana qubits are not totally protected
from decoherence, as studied in, e.g., Refs. 25–28.)
Furthermore, Majorana qubits could be rotated by
topologically-protected braiding operations.19,29 There-
fore, among various realizations of qubits,30–36 Majo-
rana qubits are considered to be promising candidates for
building blocks of quantum information processors. The
braiding operations alone are insufficient to realize a uni-
versal quantum gate based on a Majorana qubit.18 For
the implementation of arbitrary qubit rotations, other
non-topological operations are required. Several schemes
of such non-topological operations assisted by, e.g., phase
gates,37,38 quantum dots,39,40 flux qubits,41,42 or mi-
crowave cavities,43 have been proposed in the literature.

Nanomechanical resonators44 could also be used to
study non-topological operations of a Majorana qubit.
For example, quite recently, Kovalev et al.45 have pro-

posed to rotate a Majorana qubit by a magnetic can-
tilever. Indeed, nanomechanical resonators have been
utilized to couple to a wide range of quantum systems,
including electric circuits,46 optomechanical devices,47

atoms,48 Cooper-pair boxes,49 spin qubits,50 or mi-
crowave cavities.51 With the assistance of nanomechani-
cal resonators, it is possible to perform important appli-
cations such as quantum manipulations, quantum mea-
surements, as well as efficient sensing. These applications
exploit the advantages of nanomechanical resonators,
e.g., their large quality factors (103-106), high natural
frequencies (MHz-GHz), as well as the feasibility of reach-
ing the quantum ground states by cooling methods.52–54

Recently, nanomechanical resonators have also been ex-
ploited to measure or manipulate the MBS.55–57 Never-
theless, the study of hybrid systems58 coupling nanome-
chanical resonators to Majorana qubits is quite limited.
This work aims to contribute to this field. In this paper,
we propose another Majorana qubit-nanomechanical res-
onator hybrid system in the framework of the spin-boson
model,59 based on a semiconductor nanowire in proxim-
ity to an s-wave superconductor. We show that a strong
coupling between a nanomechanical resonator and a Ma-
jorana qubit can be achieved, allowing an efficient trans-
fer of quantum information between these two quantum
systems. Further, with braiding operations, it should be
possible to realize a universal quantum gate based on a
Majorana qubit.

This paper is organized as follows. First, we describe
the Majorana qubit and its coupling to a nanomechani-
cal resonator. Afterwards, we numerically study the cou-
pling strength and the resonance condition of the hybrid
system. Then, we solve the qubit-phonon dynamics and
achieve a coherent control of the Majorana qubit. Fi-
nally, we summarize our results.

II. MODEL AND HAMILTONIAN

As illustrated in Fig. 1, we consider a semiconductor
nanowire with a Rashba SOC of strength αR

0 on the sur-
face of an s-wave superconductor with a superconducting
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gap ∆. Three ferromagnetic gates, FM1, FM2 and FM3,
are placed on top of and along the nanowire. Among
these gates, FM1 and FM3 are static while FM2 is free
to harmonically oscillate along the nanowire (with a mass
M and an oscillation frequency ω0). The gates FM1
and FM3 are sufficiently long (of the order of 1-10 µm)
while FM2 in between is relatively short (of the order of
100 nm). These ferromagnetic gates induce a local Zee-
man splitting in the nanowire. For simplicity, we take
the Zeeman splitting under the three gates to be identi-
cal, with a magnitude of B0. An electric voltage V can
be applied on the gates to modulate the Rashba SOC lo-
cally, e.g., from αR

0 to αR
V . In our study, we consider the

case with B2
0 > (∆2 +µ2), where µ is the chemical poten-

tial in the nanowire. Therefore in the nanowire, the parts
subject to the Zeeman splitting (under the three ferro-
magnetic gates) are in the topological (T ) region. The
remaining parts, without the Zeeman splitting, are in the
non-topological (N) region.4,19 As a result, the nanowire
has an N -T -N -T -N -T -N domain structure where the
three T domains are under the gates. At the six bound-
aries between the N and T domains in the nanowire,
MBS arise. As the two outer MBS are far apart, only the
four inner ones, schematically labeled as γ1-γ4 in Fig. 1,
are coupled due to hybridization arising from their small
separation60–63 and are hence relevant to our considera-
tion.

To lowest order, the hybrid system constructed above
can be described by the Hamiltonian

H = HM +Hosc, (1)

where the mutual coupling Hamiltonian of the MBS60–63

HM = ign[l12(t)]γ1γ2 + igt(l23)γ2γ3 + ign[l34(t)]γ3γ4,
(2)

and the nanomechanical oscillator Hamiltonian

Hosc =
p2

2M
+

1

2
Mω2

0x
2
0(t). (3)

The coupling strengths gn,t depend on the domain
lengths lij . Due to the oscillation of the gate FM2,
l12(t) = l012 + x0(t) and l34(t) = l034 − x0(t) are time
dependent. Here, x0(t) stands for the displacement of
the gate FM2 from its balance position, which is much
smaller than the static domain lengths l012,34. Therefore,
to first order in x0, one has

HM =i[gn(l012) + x0(t)g′n(l012)]γ1γ2 + igt(l23)γ2γ3

+ i[gn(l034)− x0(t)g′n(l034)]γ3γ4. (4)

The four MBS, satisfying {γi, γj} = δij , can be used
to construct a Majorana qubit as follows.2,18 At first we
define two Dirac fermion operators64 c↑ = (γ1 + iγ4)/

√
2

and c↓ = (γ2 + iγ3)/
√

2. The Hilbert space of HM can
then be spanned by states |n↑, n↓〉, with the fermion oc-

cupation numbers n↑ = c†↑c↑ and n↓ = c†↓c↓. Due to the
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FIG. 1: (Color online) (a) Schematic diagram of the proposed
Majorana qubit-nanomechanical resonator hybrid system. A
semiconductor nanowire is placed on the surface of an s-wave
superconductor. Three ferromagnetic gates are on top of the
nanowire, of which FM1 and FM3 are sufficiently long (of the
order of 1-10 µm) and static, while FM2 is relatively short (of
the order of 100 nm) and free to oscillate as a harmonic oscil-
lator. The ferromagnetic gates induce a local Zeeman split-
ting B0 in the underlying nanowire, and can also be used to
modulate the local Rashba SOC strength by applying an elec-
tric voltage V . (b) Wave amplitude |Ψ|2 of the four coupled
MBS at a static state in an InSb nanowire with the set-up
shown in (a). The red dashed and red solid curves respec-
tively correspond to the wave amplitudes of the lowest two
eigenstates (close to the zero energy). These two states con-
stitute the Majorana qubit. The dotted curve with the scale
on the right-hand side of the frame indicates the profile of the
inhomogeneous Zeeman splitting along the nanowire. In the
calculation l12 = l34 = 150 nm, l23 = 400 nm, B0 = 1 meV,
and ∆ = 0.5 meV. The gate voltage V is zero and the Rashba
SOC is homogeneous along the nanowire, with a strength
αR
0 = 20 meV nm.

conservation of fermion parity, the states {|0, 1〉, |1, 0〉}
and {|0, 0〉, |1, 1〉} form two decoupled (odd and even)
sectors.2,41,43 We assume that there is no high-energy
excitation (e.g., no Cooper-pair breaking in the super-
conducting substrate) and restrict our study to the odd
sector with n↑ + n↓ = 1. For convenience, we define
pseudo-spins | ↑〉 = |1, 0〉 and | ↓〉 = |0, 1〉, and use them
as the two logical states of the Majorana qubit.39,41,43,45

In this pseudo-spin space, iγ1γ2 = −iγ3γ4 = −σy and
iγ2γ3 = −σz. The nanomechanical oscillator is quan-
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tized in the Fock space {|n〉} with |n〉 = (a†)n√
n!
|0〉, where

a =
√

Mω0

2~ (x0 + i
Mω0

p) is the annihilation operator of

phonons. Consequently, in the space {| ↑↓〉 ⊗ |n〉}, the
hybrid system can be simply described by the spin-boson
Hamiltonian,59

Heff = −ε
2
σz − δσy + g(a† + a)σy + n~ω0, (5)

with the constant omitted. Here ε = 2gt(l23), δ =
gn(l012) − gn(l034), and g = −x̃0[g′n(l012) + g′n(l034)], where
x̃0 = [~/(2Mω0)]1/2 is the zero-point motion of the oscil-
lator.

III. HYBRIDIZATION OF MAJORANA BOUND
STATES

In this section, we study the MBS and their mu-
tual coupling. In the static state, the inhomoge-
neous nanowire can be described by a tight-binding
model. Using the Bogoliubov-de Gennes basis Ψj =

(fj↑, fj↓, f
†
j↓,−f

†
j↑), where fjη stands for the fermion op-

erator of a spin-η (η =↑, ↓) electron on the j-th lattice
site, the particle-hole Hamiltonian reads5

HBDG =
1

2

∑
j

[Ψ†j ĥjΨj + (Ψ†j t̂jΨj+1 + H.c.)], (6)

where

ĥj = (2t0 − µ)s0τz + ∆s0τx +Bjsyτ0, (7)

t̂j = t0s0τz + iαjszτz. (8)

In the above Hamiltonian, the Pauli matrices τx,y,z act
on the particle-hole space and sx,y,z act on the real
spin space. The spin-diagonal hopping energy is t0 =
~2/(2m∗a2), and the spin-off-diagonal hopping energy is
αj = αR

j /(2a). Here Bj and αR
j are the on-site Zeeman

splitting and Rashba SOC, respectively, m∗ is the effec-
tive electron mass, and a is the lattice spacing in the
discretized tight-binding model. In the T (N) domains
Bj = B0 (Bj = 0) and αR

j = αR
V (αR

j = αR
0 ). When the

gate voltage V is zero, αR
V = αR

0 .
Here, to lowest order, we follow Refs. 45 and 11 to

investigate the coupling strength gn (gt) approximately
in an isolated T -N -T (N -T -N) three-domain structure.
In such a simplified model, the inner N (T ) domain has
a finite length, while the outer two T (N) domains are
assumed to be infinitely long. By numerically diagonal-
izing this three-domain system, one can obtain the en-
ergy splitting of the two MBS localized at the two T/N
boundaries. This energy splitting is precisely caused by
the coupling of the MBS. With gn and gt known numeri-
cally, the Majorana qubit can be well described by ε and
δ, and the qubit-phonon coupling g can be obtained also
from g′n [refer to Eq. (5)]. Moreover, by exactly diagonal-
izing the Hamiltonian of the genuine N -T -N -T -N -T -N

domain structure as shown in Fig. 1(a), one can obtain
the hybrid four MBS under consideration.

In this work, we consider an InSb quantum wire13 with
an effective electron mass m∗ = 0.015 me, a Rashba SOC
αR

0 = 20 meV nm, and a large Landau factor gL ≈ 50.
We choose the superconducting gap ∆ = 0.5 meV, the
local Zeeman splitting B0 = 1 meV, the chemical poten-
tial µ = 0, and the lattice constant a = 10 nm. The total
lattice site number is chosen as 1000 for the numerical
convergence. In Fig. 2, we show the dependence of the
Majorana coupling strength gn (gt) on the length of the
N (T ) domain ln (lt), as well as the derivative g′n ver-
sus ln. Further, as an example, in Fig. 1(b) we present
the wave amplitude |Ψ|2 of the four hybrid MBS, when
l12 = l34 = 150 nm and l23 = 400 nm. In Fig. 1(b), the
red dashed and red solid curves stand for the wave am-
plitudes of the lowest two eigenstates (close to the zero
energy) in the static inhomogeneous nanowire. The state
corresponding to the red solid (dashed) curve is mainly
contributed by the γ2 and γ3 (γ1 and γ4) MBS. Here,
these two states form the Majorana qubit.
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FIG. 2: (Color online) Majorana coupling strength gn (gt)
versus ln (lt), the length of the inner N (T ) domain between
the two outer T (N) domains. The derivative g′n versus ln is
also shown, with the scale on the right hand side of the frame.
The necessary parameters for the calculation are specified in
the main text.

IV. QUBIT-PHONON COUPLING AND
RESONANCE

We now look into the qubit-phonon coupling and the
resonance condition. We assume that the nanomechan-
ical oscillator FM2 has a mass M = 10−15 Kg and an
oscillation frequency ω0 = 5 MHz. With these parame-
ters, the zero-point motion of the oscillator is calculated
to be x̃0 = 0.1 pm. We consider the symmetric case
with l012 = l034 = 150 nm, and hence we have δ = 0 and
g = 0.2 MHz in Eq. (5). The longitudinal length l23 of
the FM2 gate is chosen as 400 nm, such that the Rabi
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resonance condition ε ≈ −ω0 can be easily satisfied, e.g.,
by further subtly adjusting the gate voltage V which con-
trols the local Rashba SOC strength αR

V . In Fig. 3, we
present the variation of ε as well as g versus αR

V . It is
shown that when slightly adjusting V , and hence αR

0 ,
the resonance point ε ≈ −ω0 can be reached while the
qubit-phonon coupling g remains almost invariant. This
qubit-phonon coupling is relatively strong, in view of the
long lifetime of the Majorana qubit and the high qual-
ity factor of the nanomechanical oscillator. In principle,
the qubit-phonon coupling can be stronger when the do-
main length l12 (as well as l34) becomes smaller (refer
to Fig. 2). However, if the two edge modes γ1 and γ2

(as well as γ3 and γ4) are too close and hence their hy-
bridization becomes quite strong, the model Hamiltonian
(2) describing four distinguishable MBS might fail.
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FIG. 3: (Color online) Qubit splitting ε and the qubit-phonon
coupling g (the scale is on the right-hand side of the frame)
versus αR

V , the Rashba SOC strength in the topological (T )
domains modulated by the gate voltage V .

V. QUBIT-PHONON DYNAMICS

Here we study the dynamics of the qubit-phonon hy-
brid system. To achieve this, we make use of the Python-
based Qutip software package65,66 to solve the Lindblad
master equation,

ρ̇(t) =− i

~
[Heff , ρ(t)] +

1

2

∑
k

{
[Lk, ρ(t)L†k]

+ [Lkρ(t), L†k]
}
. (9)

In this equation, ρ is the density matrix of the qubit-
phonon system, and Lk are the Lindblad operators ac-
counting for the dissipation of the hybrid system due to
its coupling to the environment. The relaxation of the
Majorana qubit is taken into account by L1 =

√
1/T1σ−,

while the dissipation of the nanomechanical resonator is

included by L2 =
√

(n̄+ 1)ω0/Qa and L3 =
√
n̄ω0/Qa

†.

Here n̄ = [exp(~ω0/kBT̃ ) − 1]−1 is the thermal phonon
number in equilibrium with the environmental tempera-
ture T̃ , Q is the quality factor of the nanomechanical os-
cillator, and T1 is the usual relaxation time of the qubit.
By solving the master equation, one can obtain the time
evolution of the qubit and phonon occupations.

In our model, the temperature T̃ is set as 10 mK and
hence the thermal phonon number n̄ is as large as 258.
Therefore, an additional cooling of the oscillator52–54 is
required, e.g., as also applied in a proposed nanomechan-
ical resonator–nitrogen-vacancy center hybrid system.51

We assume that after side-band cooling52–54 the phonons
thermally occupy the lowest several quantum states with
a small phonon number, e.g., n = 0.3. The initial state of
the Majorana qubit is set as | ↑〉, implying that a single
electron is splitted into the γ1 and γ4 Majorana fermions.
Experimentally, this initial state might be realized when
only the FM1 and FM3 gates are in proximity to the
nanowire before inserting the middle FM2 gate. The re-
laxation time of the Majorana qubit depends on the con-
crete set-up and environment. Following Refs. 26 and 27,
we typically set T1 around 100 µs.

In Fig. 4, we plot the time evolution of the occupations
of the qubit and phonons respectively, with different val-
ues of T1 and Q. As indicated by the figure, quantum
information can be effectively transferred back and forth
between the Majorana qubit and the nanomechanical res-
onator. During this process, the single electron in the
nanowire alternatively occupies (back and forth) the pair
of MBS: γ1 and γ4, or γ2 and γ3. Inversely, this quan-
tum information transfer can also modulate the motion of
the oscillator, e.g., the oscillation amplitude. In fact, as
the nanomechanical resonator is near its quantum ground
state, the oscillation amplitude 〈x2

0〉, which might be ob-
servable, is almost linearly related to the phonon number.
This is because 〈x2

0〉 ∝ 〈(a†+ a)2〉 ≈ 2〈a†a〉+ 1 = 2n+ 1.
Therefore, the dashed curves in Fig. 4, representing the
time evolution of the phonon number, also supply in-
formation on the change of the oscillation amplitude of
the resonator due to its coupling with the qubit. This
phenomenon signifies the presence of a Majorana qubit.
Certainly, for better performance of this hybrid system
(e.g., with a higher fidelity), a higher quality factor of
the resonator and a longer relaxation time of the qubit
are preferred.

VI. DISCUSSION

Here we briefly compare our model to the one pro-
posed by Kovalev et al.,45 where a vibrating cantilever is
utilized to rotate a Majorana qubit. The effective Hamil-
tonian in their model [Eq. (7) in Ref. 45] is in fact equiv-
alent to the one in our manuscript [Eq. (5)]. This is
understandable as both are in the framework of the spin-
boson model. Note that for both cases there exists a
static off-diagonal term [for our case, that is the δ term



5

(b) T1 = 150 µs

gt (π)

O
c
c
u
p
a
ti
o
n

543210

1

0.5

0

(a) T1 = 50 µs

phonons

Q = 3× 105: qubit

phonons

Q = 106: qubit
1.5

1

0.5

0

FIG. 4: (Color online) Time evolution of the occupations
of the Majorana qubit (solid curves) and phonons (dashed
curves) which are in Rabi resonance. The qubit relaxation
time is set as 50 µs in (a) and 150 µs in (b). The calcula-
tions for both (a) and (b) are performed with two different
resonator quality factors: Q = 106 and Q = 3× 105.

in Eq. (5)] coupling the two levels of the qubit in the
Hamiltonian. To neglect this term, in order to simplify
the theoretical analysis, some conditions have to be satis-
fied. Specifically, in Ref. 5, a certain equilibrium angle (θ0

there) of the vibrating cantilever has to be established. In
our opinion, exactly solving this angle and then adjust-
ing the experimental setup correspondingly45 are chal-
lenging. However, in order to neglect the constant off-
diagonal term in our case, the experimental setup must
be mirror-symmetric about the middle point of the FM2

gate, i.e., l012 = l034. Therefore, we think that our model
is more easily accessible by experiments and hence more
advantageous.

VII. CONCLUSIONS

In conclusion, we have proposed a hybrid system com-
posed of a Majorana qubit and a mechanical resonator,
implemented by a semiconductor nanowire in proxim-
ity to an s-wave superconductor. In this proposal, three
ferromagnetic gates are placed on top of and along the
nanowire; the two outer gates are static and the inner
one is free to oscillate harmonically as a mechanical res-
onator. These ferromagnetic gates induce a local Zeeman
splitting and give rise to four Majorana bound states,
constituting a Majorana qubit in the nanowire. The
dynamical hybridization of the Majorana bound states,
arising from the motion of the oscillating gate, results in
a coherent coupling between the Majorana qubit and the
mechanical resonator.

This hybrid system can be adjusted to be in resonance,
e.g., with the assistance of a gate voltage on the ferro-
magnetic gates, which controls the Rashba SOC locally in
the nanowire. Our study reveals that under resonance, a
strong coupling between the qubit and the resonator can
be achieved. Consequently, quantum information can be
effectively transferred from the Majorana qubit to the
oscillator and then back to the qubit. This quantum in-
formation transfer can manifest itself in modulating the
motion of the oscillator, which may conversely signify the
presence of the Majorana qubit.
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