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Wenjian Hu, Richard T. Scalettar, and Rajiv R.P. Singh
Department of Physics, University of California Davis, 95616 CA USA

We consider a lattice model of itinerant electrons coupled to an array of localized classical
Heisenberg spins. The nature of the ground state ordered magnetic phases that result from the
indirect spin-spin coupling mediated by the electrons is determined as a function of density and
the spin-fermion coupling J . At a fixed chemical potential, spiral phases exist only up to values
of J which are less than roughly half the electronic bandwidth. At a fixed electron density and
near half filling, the system phase separates into a half-filled antiferromagnetic phase and a spiral
phase. The ferromagnetic phases are shown to be fully polarized, while the spiral phases have equal
admixture of up and down spins. Phase separation survives in the presence of weak pairing field ∆
but disappears when ∆ exceeds a critical value ∆c. If pairing fields are large enough, an additional
spiral state arises at strong coupling J . The relevance of this study, especially the phase separation,
to artificially engineered systems of adjacent itinerant electrons and localized spins is discussed.
In particular, we propose a method which might allow for the braiding of Majorana fermions by
changing the density and moving their location as they are pulled along by a phase separation
boundary.

I. INTRODUCTION

Many-body effects in solids are commonly explored
either by Hamiltonians which include explicit electron-
electron interactions, e.g. the Hubbard or Periodic
Anderson models, or else by Hamiltonians containing
interactions of free electrons with other (quantum spin
or phonon) degrees of freedom, e.g. the Kondo or
Holstein models, respectively. The distinction between
these two descriptions is not completely sharp– the
Kondo model is a large U limit of the Periodic
Anderson Model, for example. Even more generally, the
introduction of auxiliary fields allows the mapping of
Hamiltonians with direct electron-electron interactions
to free fermions coupled to a ‘Hubbard-Stratonovich’
field. In all these cases, the quantum spin, phonon, or
Hubbard-Stratonovich variables depend on both space
and imaginary time.

Suppressing the imaginary time dependence represents
an approximation to including the full effect of quantum
fluctuations. Nevertheless, many of the interesting effects
of electronic interactions can still be studied in this
regime. This approximation has been motivated, for
example, in cases where large (“classical”) core spins are
coupled to an itinerant electron band, a situation which
occurs in the double perovskite Sr2FeMoO6 where the
3d5 configuration of Fe3+ forms a spin-5/2 with which
the Mo electron interacts1–3. Similarly, applications of
classical spin-fermion models to a broad class of materials
including nickelates4,5, cuprate superconductors6, and
iron superconductors7–9, have been reported, with
the elucidation of subtle many body effects including
magnetic and charge domain formation, and site-selective
Mott transitions. In these materials, the coupling of an
itinerant electron band to classical degrees of freedom
is argued to capture the quantum mechanics of fast
electronic motion in contact with the slower degrees of

freedom, much in the spirit of the Born-Oppenheimer
approximation or the Car-Parrinello method10.

In a technically similar spirit of treating interactions
by a simplified time independent variable that leaves
the electronic problem quadratic, proximity induced
superconductivity can be described by a pairing
field bilinear in fermion operators11. The combined
effects of frozen spin and pairing configurations lead
to many interesting features including topological
superconductivity and Majorana states12,13.

The realizations of spin-fermion models described
above have largely concerned tight binding Hamiltonians
where the electrons move on a lattice. Very recently,
the approach was also applied to a gas of fermions
moving in the continuum in one dimension, but coupled
to a regular array of classical spins14. The itinerant
electrons mediate a Ruderman-Kittel-Kasuya-Yoshida
(RKKY)15–17 interaction. The goal of the work was
to determine the ground state phase diagram in the
plane of the exchange coupling between the classical and
electron spins and the electron density, and explore the
possibility of spiral spin states driving one dimensional
superconductors into topological phases18–21.

In this paper we study the lattice version of this
problem (See also25). We show that, similar to the
continuum case, ferromagnetism (F) occurs at low filling
and is replaced by a spiral configuration of classical spins,
which minimizes the energy only when the exchange
constant J is smaller than roughly half the bandwidth
W. The spiral phase gives way to commensurate
antiferromagnetic (AF) order as J increases. One central
observation of our work is that near half-filling and at a
fixed electron density, the system phase separates into a
half-filled AF phase and a spiral phase of reduced (less
than half-filling) or enhanced (greater than half-filling)
density at weak coupling J . W/2 = 2t. We show
that this spiral-AF phase separation initially survives in
the presence of a weak pairing field ∆, but for larger
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∆ the transition becomes continuous. We observe that
the effect of ∆ is richer at strong coupling J . For ∆
small the transition from AF to F is direct, without an
intervening spiral phase, and exhibits phase separation.
With increasing ∆, a spiral phase emerges. The spiral
to AF transition is initially discontinuous, but becomes
continuous for larger values of ∆. We discuss the
implication of these results for an artificially engineered
system of adjacent itinerant electrons and localized spins.

II. MODEL AND METHODS

We first consider a lattice of one dimensional itinerant
electrons coupled to classical Heisenberg spins ~Sl in the
Grand Canonical Ensemble (GCE),

H = −t
∑
lσ

(c†l+1σclσ + c†lσcl+1σ)

− µ
∑
lσ

nlσ + J
∑
l

~sl · ~Sl (1)

Here the fermionic spin components are slx = c†l↑cl↓ +

c†l↓cl↑; sly = −i c†l↑cl↓ + i c†l↓cl↑; and slz = c†l↑cl↑ − c
†
l↓cl↓.

A single spin in a conduction electron sea induces a
magnetic polarization which can then couple to other
spins, so that the itinerant electrons mediate an RKKY
interaction. At T = 0 this interaction falls off as 1/rd

in d dimensions, and oscillates in phase with the Fermi
wave vector kF . A classical Ising model in d = 1 with
(unfrustrated) power law interactions J(r) ∼ 1/rp has
no long range order at finite T if p > 2, but orders,
with mean field exponents, for 1 < p < 3/2. Order
at finite T with continuously varying exponent occurs
in between these cases 3/2 < p < 2. For p < 1
ordering occurs at all T . 1D classical Heisenberg spins
with power law interactions also have long range order
at finite temperature for 1 < p < 2 but no transition for
p > 222, which suggests that, in principle, the 1/r RKKY
long range interaction could result in spin ordering at
T > 0 in one dimension. However, for finite temperatures
the power law is multiplied by a decaying exponential
e−r/ξ(T ), with correlation length ξ(T ) diverging at T = 0.
Thus one expects only (possibly rapid) cross-overs to
quasi-ordered phases at T 6= 0.

Since H is quadratic in the fermion creation and
destruction operators, it may be solved for an arbitrary

Heisenberg spin configuration {~Sl} by diagonalizing a
matrix of dimension 2L, where L is the number of sites
in the chain. The factor of two arises from the mixing
of the fermionic spin components through their coupling

to {~Sl}. The competition between the Fermi vector kF ,
which depends on doping, and the AF exchange, leads
to a spiral phase23,24, where the classical Heisenberg
spins form a spiral magnetic structure. We do not

consider arbitrary Heisenberg spin configurations {~Sl}
and instead make an ansatz of a spiral configuration25.

The most general such form is ~Sl = x̂ cos(q1l) cos(q2l +
φ) + ŷ cos(q1l) sin(q2l + φ) + ẑ sin(q1l), which, in zero
external field, should further simplify to a planar form
~Sl = x̂ cos(ql) + ŷ sin(ql). Here allowed q values with
periodic boundary conditions are q = n ∗ 2π

L , n =
0, 1, 2, 3......, (L−1). Because of the rotational symmetry
of the fermionic part of the Hamiltonian, the properties
are equivalent with other choices for the spin plane.
Likewise, symmetry dictates that q and (2π − q) yield
the same physics.

While the full 2L dimensional matrix must be
considered to solve Eq. 1 in the case of arbitrary
{Sl} through a full matrix diagonalization, with this
planar, spiral ansatz, the Hamiltonian can be solved

in momentum space: c†lσ = (1/
√
N)

∑
k e
−iklc†kσ. For

a specific q, spin ↑ fermions of momentum k − q are
mixed only with spin ↓ fermions of momentum k and
the Hamiltonian H becomes a sum of independent 2x2
blocks:

Hq =
∑
k

[−2t ( cos(k − q) c†k−q ↑ck−q↑ + cos(k) c†k ↓ck↓ )

+J ( c†k−q ↑ck↓ + c†k↓ck−q ↑ )− µ( c†k−q ↑ck−q↑ + c†k ↓ck↓ )]

(2)

This Hamiltonian produces two energy bands,

E± = −t(cos k + cos(k − q))− µ

±
√

[t(cos k − cos(k − q))]2 + J2, (3)

We select t = 1 to set our energy scale.
As reviewed in the introduction, it is of interest

to extend the model in Eq. 1 to include ∆ in the
Hamiltonian:

H∆ = −t
∑
lσ

(c†l+1σclσ + c†lσcl+1σ)− µ
∑
lσ

nlσ

+J
∑
l

~sl · ~Sl +
∑
l

(∆c†l↑c
†
l↓ + h.c.) (4)

Part of the results in this paper will be to determine
the effect of ∆ on the phase diagram, specifically,
phase separation. To find the ground state energy, the
Hamiltonian can again be transformed to momentum
space. The combination of the spin up/down mixing due
to J and the pairing yields a 4x4 structure,

H∆ =
1

2

∑
k

~vk
†Mk ~vk +

1

2

∑
k

[2J + ε−(k−q) + ε−k] (5)

where εk−q = ε−(k−q) = −2t cos(k − q) − µ, εk = ε−k =

−2t cos(k) − µ, ~vk
† =

[
c†k−q,↑ c†k,↓ c−(k−q),↓ c−k,↑

]
,

and

Mk =


εk−q J ∆ 0

J εk 0 ∆

∆ 0 −ε−(k−q) −J
0 ∆ −J −ε−k

 . (6)
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Mk has four eigenvalues, λ1, λ2, λ3, λ4 (λ1 > λ2 > 0 >
λ3 > λ4) and the corresponding normalized eigenvectors
~v1,~v2,~v3,~v4. We define a new set of operators:

γk,1
γk,2
γ†k,3
γ†k,4

 = STk


ck−q,↑
ck,↓

c†−(k−q),↓
c†−k,↑

 (7)

where the matrix Sk = [~v1, ~v2, ~v3, ~v4]. In terms of these
new canonical operators,

H∆ =
1

2

∑
k

[λ1γ
†
k,1γk,1 + λ2γ

†
k,2γk,2 − λ3γ

†
k,3γk,3

−λ4γ
†
k,4γk,4 + λ3 + λ4 + εk + εk−q] (8)

Since the ground state has no excited quasi-particles, the
ground state energy is:

E0 =
1

2

∑
k

[λ3(k) + λ4(k) + εk + εk−q]

=
1

2

∑
k

[λ3(k) + λ4(k)]− Lµ (9)

III. MAGNETIC PHASE DIAGRAM

We first consider ∆ = 0. For each J we determine
the optimal ordering wave vector q∗ by minimizing
the ground state energy, obtained by summing all
eigenenergies of Eq. 2 up to the desired chemical potential
µ. Typical results are shown in Fig. 1. We see that F
order is preferred at low density, and gives way first to
spiral and then AF order as µ increases at fixed J = 1.
At J = 2.5, there is a direct phase transition from F to
AF. The Hamiltonian Eq. 1 is particle-hole symmetric,
so the optimal q is the same for −µ and +µ.

Performing the calculation in Fig. 1 for different J
generates the ground state phase diagram of Fig. 2.
The topology is qualitatively similar to the continuum
reported in Ref.14. The J = 0 corners of the spiral phase
are at µ = ±2t where one enters/leaves the band. The
precise value Jc above which the spiral phase vanishes
must be determined numerically. However, we expect Jc
to the same order as t, as is the case in the continuum
model14 where Jc ∼

√
µ/m where µ is the chemical

potential and m is the effective mass, since in the lattice
model µ ∼ t and m ∼ 1/t. In particular, for all
chemical potentials, spiral order gives way to AF order
as J increases. A difference is the almost linear AF
phase boundaries we find here. This near linearity is a
consequence of the dispersion relation in the AF phase on
a lattice, EAF± = ±

√
J2 + 4t2cos2k, which gives a gap

∆AF = 2J . When the chemical potential µ is in the gap
−J < µ < J , the density is pinned at half-filling, where
the AF phase dominates. Thus, in the absence of phase
separation, we expect linear AF phase boundaries. As

- 3 - 2 - 1 0 1 2 30 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0 - 3 - 2 - 1 0 1 2 3

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

- 3 0 30

1

 

 

 J = 1 . 0
 J = 2 . 5

t = 1 . 0 ,  ∆=0,  L = 1 0 0 0

q */π

µ

 L = 5 0 0
 L = 1 0 0 0
 L = 5 0 0 0

 

 

q */π

µ

t = 1 . 0 ,  J = 1 . 0 ,  ∆=0 

FIG. 1: Classical spin wave vector q∗ which minimizes the
ground state energy, as a function of chemical potential µ for
fixed J = 1.0 and J = 2.5. Inset: Red circles denote results
with lattice size L = 1000 sites. Data for L = 500 (black
squares) and L = 5000 (blue triangles) indicate finite size
effects are small.

described further below, however, this argument must be
refined because of the occurrence of phase separation.
Another distinction from the continuum model is the
particle-hole symmetry of Eq. 1. In the continuum
system, ρ can extend to arbitrarily large values, as
opposed to the maximal density ρ = 2 fermions per site
in the lattice case.
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FIG. 2: Phase diagram in the chemical potential (µ),
exchange constant (J) plane. At low and high densities (the
Hamiltonian is particle-hole symmetric) ferromagnetic order
q∗ = 0 minimizes the energy. For J . W/2 = 2t, F order
gives way first to spiral (incommensurate q∗) and then AF
(q∗ = π) order. The red lines mark the boundary between
full and partial polarization in a F state. See text.

One can ask whether the F order is fully or partially
polarized, By ”fully polarized” we mean that either the
majority spin density equals the total density ρ and the
minority spin density vanishes (below half filling), or
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the majority spin density is saturated at unity and the
minority spin density is ρ − 1 (above half filling). That
is, the system is as polarized as possible, consistent with
its overall particle density. Because our spiral state is in

the xy plane, we consider Nxσ =
∑
l〈c
†
l,xσcl,xσ〉, where

cl,xσ = (cl↑ + σcl↓)/
√

2 in terms of the operators cl↑
and cl↓ which create fermions with spin up/down in the
z direction at site l. At q∗ = 0 the eigenspectrum is
EF± = −2t cosk − µ ± J . For small J , the upper band
E+ will begin to be occupied for relatively low chemical
potential (density). As J increases, full polarization
persists to larger chemical potential (density). The red
lines in Fig. 2 give the values of J above which partial
polarization occurs. These lie entirely in the spiral
portion of the phase diagram, so that we conclude only
fully polarized F phases occur.
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FIG. 3: Top: Populations of the individual species with spin
in the ±x̂ directions, as functions of chemical potential. The
F phase at low (and high) density is fully polarized, while the
spiral and AF phases have balanced populations. Bottom:
The corresponding ground state(F, S or AF). Discontinuities
in Nxσ occur precisely at the magnetic phase boundaries.

Further details into the magnetic phases can be
obtained by separately computing the densities of the
two spin species as functions of chemical potential.
This is shown in Fig. 3. The vertical lines are the
magnetic boundaries, which are perfect aligned with
abrupt changes in Nxσ. The fully polarized nature of
the F phase is emphasized by the fact that the density of
one species is zero below entrance into the spiral phase,
at which point the two species become equally populated.

Fig. 4 shows the density as a function of chemical
potential for a cut across the phase boundary at J =
1. There is a kink in ρ(µ) at µ ≈ −1.63 where the
compressibility κ = dρ/dµ jumps upon entering the spiral
phase from the ferromagnet. ρ is discontinuous at the
entry to the AF phase from spiral order. The plateau at
ρ = 1 extends over a range of µ roughly given by the AF
gap ∆AF = 2J at q∗ = π. (See above.) For the case
J = 2.5, density ρ is also discontinuous. The plateau
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FIG. 4: Density as a function of chemical potential at J =
1. The F-spiral phase boundary is signalled by a jump in
the compressibility κ = dρ/dµ. The density jumps abruptly
at the spiral-AF boundary. Inset A: Compressibility κ vs µ.
Inset B: Density as a function of µ at J = 2.5.

range at ρ = 1 is somewhat less than 2J , which is shown
in the inset B of Fig. 4. Entrance into the AF phase is
from the F phase rather than the spiral phase.
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FIG. 5: Density is shown as a function of chemical potential
in the graph. Black squares denote ρ vs µ in the GCE. Red
circles denote ρ vs µ = dE0/dρ in the CE. Inset A: Enlarged
µ vs ρ graph. The two areas A1 ≈ A2 satisfy the Maxwell
construction. Here the critical µ is 0.851. Inset B: ρ vs µ in
GCE and ρ vs dE/dρ in CE at J = 2.5, which shows a direct
phase transition from F to AF.

The discontinuity in q∗ at the spiral-AF boundary
and the F-AF boundary seen in Fig. 1 indicates the
presence of spiral-AF phase separation and F-AF phase
separation, which is consistent with the discontinuity in ρ
in Fig. 4. This presence of this first order phase transition
agrees with the continuum case14. The case of spiral-AF
phase separation is further discussed below. At J = 1
there is a thermodynamically unstable range of densities
0.823 . ρ < 1 where separate AF and spiral domains
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coexist. This can be further probed by working in the
Canonical Ensemble (CE) and computing the chemical
potential via a finite difference µ = E0(N + 1)−E0(N).
Here E0 denotes the ground state energy per site. As N
increases past a critical value, µ begins to decrease so that
κ = dρ/dµ < 0. Phrased alternatively, the ground state
energy is concave down, d2E0/dρ

2 < 0. This indicates
the boundary of the region of phase separation around
half-filling. For a lattice with those values of ρ, the
energy can be lowered by phase separating into distinct
spiral and AF regions. We have verified that the Maxwell
equal-area construction is satisfied, which as is expected
at the spiral-AF first order phase transition.

The main panel of Fig. 5 gives ρ as a function of µ for
both the CE and GCE at J = 1. The negative curvature
of E0(ρ) in the CE is reflected in the bending back of the
CE curve for ρ(µ). This signature of phase separation at
the spiral to AF boundary also occurs at the F to AF
boundary, as shown for J = 2.5 in inset B of Fig. 5.

To probe the details of coexistence further, we verified
that the fractions f (1−f) of the chain in the spiral (AF)
phases obey

ρ = ρS ∗ f + ρAF ∗ (1− f) (10)

Where ρ is the overall mixture density, ρAF equals 1.0
and ρS(J) is the spiral state density in the mixture. For
example, at J = 1, ρS = 0.823. This relation is also
obeyed for phase separation at the F-AF boundary, with
ρS replaced by ρF . For J = 2.5 we find ρF = 0.598.
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FIG. 6: Top: The mixing of k with k − q, for q = 0.506π,
gives rise to a pair of overlapping energy bands. Bottom:
Occupation numbers in the k-space. The jumps of n↑(k) or
n↓(k) curves show Fermi Wave Vectors kF .

The energy bands E(k), and the momentum
distribution function of the original fermion operators,
n(k), in the spiral phase, are shown in Fig. 6. An
important feature to note is that only one band crosses
the Fermi energy. We have further checked that the
entanglement entropy of the system corresponds to that
of spinless fermions. Because the new electronic eigen-
operators are superpositions of two different k states in

the original basis, n(k) shows discontinuity at four wave-
vectors.
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FIG. 7: Optimal wave vector q∗ which minimizes the ground
state energy E0, as a function of chemical potential µ for
fixed J = 1.0 but different ∆ values. Finite size effects are
verified to be small. Inset: Enlarged q∗/π vs µ graph. It has
an abrupt jump at ∆ = 0.4 but grows up continuously at
∆ = 0.6. ∆ = 0.5 is around the critical value ∆c.
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FIG. 8: Optimal wave vector q∗ as a function of chemical
potential µ for fixed J = 2.5 but different ∆ values. There
are two critical values ∆c for J = 2.5. Left: Wave vector
q∗ vs µ for µ ≈ ∆−c . This lower ∆−c distinguishes F-AF
phase separation and spiral-AF phase separation. Right:

Wave vector q∗ vs µ for µ ≈ ∆+
c . The upper ∆+

c distinguishes
spiral-AF phase separation and no phase separation.

Turning on ∆ and minimizing the ground state energy
E0 (See Eq. 9) results in the optimal ordering wave vector
q∗ in Fig. 7 and Fig. 8. J mixes fermion modes of
momenta k and k − q for a classical spin configuration
of wavevector q, and at the same time ∆ mixes k, σ
and −k,−σ. Together, the result is the four hybridized
bands of Eqs. 6-7. The ground state is determined
by minimizing the sum of the energies of levels λ3(k)
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FIG. 9: Critical value ∆c vs exchange constant J . There
are two critical values, upper ∆+

c and lower ∆−c , for fixed J .
Below the critical value Jc = 2.10±0.02, only ∆+

c is non-zero.
There are three regions distinguished by 2nd order spiral-AF
phase transition (PT), 1st order spiral-AF PT and 1st order
F-AF PT.

and λ4(k) which develop from −ε−(k−q) and −ε−k,
respectively. In Fig. 7, at J = 1.0, the former favors
a spiral phase q∗ 6= π, while the latter is minimized
by an AF q∗ = π We find that increasing ∆ enhances
the effect of λ4(k), that is, makes its AF minima more
pronounced than that of the spiral minima in λ3(k). This
is reflected in the growth of the size of the AF region with
∆. Changing ∆ from 0.2 to 0.8, the spiral wave vector
q∗ increases, and results in the disappearance of spiral-
AF phase separation at the critical value ∆c. We saw in
Fig. 2 that for J & 2t the spiral region terminates and
only a direct F to AF transition occurs. An interesting
effect of the pairing term ∆ is that, if it takes a sufficiently
large value, it stabilizes the spiral phase at J & 2t.
Fig. 8(left) shows results for q∗ at J = 2.5. When
∆ = 0.80, there is still a direct F (q∗ = 0) to AF
(q∗ = π) jump. However at ∆ = 0.85 a spiral phase
with intermediate q∗ is evident. We define a lower ∆−c to
be the critical ∆ above which the spiral is stabilized by
pairing. The jump in q∗ at the S to AF transition which
emerges steadily shrinks as ∆ grows further. In fact,
ultimately the jump goes to zero at an upper ∆+

c . At this
point the spiral to AF transition no longer exhibits phase
separation. This behaviour is shown in Fig. 8(right).

The shrinking of the jump in q∗ at the spiral to AF
transition also occurs for J . 2t where the spiral phase
is stable even at ∆ = 0 (that is, when ∆−c = 0). Fig. 9
shows the critical values ∆−c and ∆+

c as functions of
J , and three regions with their different types of phase
transitions.

The phase diagram of Eq. 4, which models
a spin-fermion system in contact with an s-wave
superconductor, depends on the parameters µ, J and ∆.
Fig. 2 is the cut of the resulting 3D phase diagram at
∆ = 0. We now explore several cuts in the µ,∆ plane

- 3 0 30

3
- 3 0 30

3
n o  p h a s e  s e p a r a t i o n

S - A F  p h a s e  s e p a r a t i o n
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t = 1 . 0 ,  J = 2 . 5 ,  L = 2 0 0 0

µ

∆
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c =0.84

F - A F  p h a s e  s e p a r a t i o n

n o  p h a s e  s e p a r a t i o n

S - A F  s e p a r a t i o n
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c = 0 . 5 0

∆

µ
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0 . 3 9 3 7
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2 . 7 5 6
3 . 1 3 0

t = 1 . 0 ,  J = 1 . 0 ,  L = 2 0 0 0

q *  v a l u e s

FIG. 10: Top: Phase diagram in the chemical potential (µ),
pairing field (∆) plane, with fixed exchange constants (J =
2.5). The upper red line is corresponding to upper ∆+

c . The
lower red line is corresponding to lower ∆−c . Bottom: Phase
diagram in µ, ∆ plane, with fixed J = 1.0. The red line is
corresponding ∆+

c . ∆−c is zero at J = 1.0.

at fixed J . The resulting phase boundaries are shown
for J = 1.0 and J = 2.5 in Fig. 10. (The Hamiltonian
H∆ is still particle-hole symmetric, so the diagrams are
symmetric about µ = 0.) In the bottom graph (J = 1.0),
for which the spiral phase is stable even in the absence
of pairing, the effect of increasing ∆ is to expand the
stability of the AF, and shrink the range of chemical
potential for which the spiral exists. The horizontal
line shows the location of ∆+

c where the spiral to AF
transition becomes continuous and no longer exhibits
phase separation. The stabilization of the AF appears
to onset at ∆+

c . In the top graph (J = 2.5), for which
the spiral is not stable in the absence of pairing, there
is a more rich behavior. Although the F and AF phases
dominate, a range of spiral phase arises above ∆−c (lower
horizontal line) and leads to spiral-AF phase separation
near half-filling. When ∆ > ∆+

c (upper horizontal
line) phase separation disappears and the transition from
spiral phase to AF phase becomes continuous.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have computed the ground state
magnetic phase diagram of one dimensional fermions
on a lattice coupled to classical Heisenberg spins.
Ferromagnetism occurs at low and high densities,
and occurs only in full polarization. Spiral phases
give way to commensurate order as the spin-fermion
coupling increases. At weak coupling J the system
is thermodynamically unstable at the spiral-AF phase
boundary, with separate AF and spiral domains present
in a range of densities near half-filling, while at strong
coupling J , the system is thermodynamically unstable at
the F-AF phase boundary. The Maxwell construction is
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verified in the phase separation. With the introduction
of ∆, at weak coupling J , spiral-AF phase separation
survives at weak ∆ but totally disappears when ∆
exceeds the critical value. At strong coupling J , the
system evolves from F-AF phase separation through
spiral-AF phase separation to no phase separation with
the increase of ∆. We should note that spiral phases
may be less favorable if the overall system is higher
dimensional.

A potentially exciting application of itinerant electrons
interacting with localized spins is in the context of
artificially engineered systems with magnetic atoms on
the surface of a metal or a superconductor. Indeed, the
search for Majorana fermions in such hybrid magnetic-
superconducting systems is a hot topic12,27,28 of current
research. Vazifeh etal20,21,25 have shown that, within
a BCS treatment, when fermions are coupled to a
spiral spin configuration topological phases are robust

and hence Majorana end states should be expected13.
The existence of phase separation between spiral and
antiferromagnetic (AF) states implies that, with pairing,
such Majorana fermions might move away from chain
ends to the interface between spiral and AF phases. This
means that by changing the electronic density, one may
be able to move the location of the Majorana particles.
This could be helpful in the braiding of these excitations
in a network of chains. This issue deserves further
consideration.
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