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The liquid regime equation of state of silicon dioxide SiO2 is calculated via quantum molecular
dynamics in the density range 5 to 15 g/cc and with temperatures from 0.5 to 100 eV, including the
α-quartz and stishovite phase Hugoniot curves. Below 8 eV calculations are based on Kohn-Sham
density functional theory (DFT), above 8 eV a new orbital-free DFT formulation, presented here,
based on matching Kohn-Sham DFT calculations is employed. Recent experimental shock data
is found to be in very good agreement with the current results. Finally both experimental and
simulation data are used in constructing a new liquid regime equation of state table for SiO2.

I. INTRODUCTION

Access to the accurate equation of state (EOS) of ma-
terials over wide ranges in density and temperature, and
in particular for matter in extreme conditions of signifi-
cantly elevated temperature and density with respect to
ambient conditions, is important in various arenas. Some
systems of interest include dense astrophysical plasmas
as exist in the interiors of giant planets, as well as warm
dense matter, which is increasingly studied in high energy
density laboratory experiments, and also in development
of inertial confinement fusion1. A particular case, pre-
sented here is that of quartz (SiO2), a ubiquitous mineral
in Earth’s composition, it is also constituent in exoplanet
modeling at higher temperatures and pressures than at
inner Earth conditions2. This material is also important
as a window material in high compression shock exper-
iments, typically in the quartz liquid regime above 100
GPa and 5000 K3,4. Hence, an accurate EOS for quartz
is critical for determining properties of other materials
through shock experiments.

In general these extreme conditions represent a signifi-
cant and current challenge of high energy density physics.
Experimental results remain sparse, and from a theoret-
ical standpoint the ions exhibit moderate to strong cou-
pling while the electrons require quantum treatment5.
This then necessitates numeric simulations for which
quantum molecular dynamics (QMD) based on Kohn-
Sham density functional theory (DFT) has emerged as
the state of the art. Kohn-Sham DFT, however, becomes
computationally prohibitive with increasing temperature
as the number of required orbitals increases with tem-
perature and in general the method scales as the cube
of the number of orbitals. Though material and den-
sity dependent, Kohn-Sham calculations are, thus, gen-
erally viable below 10 eV or so. In this work we develop
an orbital-free DFT formulation to combine with Kohn-
Sham results and extend QMD simulations to very high
temperatures.

In QMD, the ions are treated classically and moved
according to Newton’s equations, where the force on each
ion is found from the Coulomb repulsion between all ions,
and from the neutralizing electron charge density. The
electron density, n, is found at each ionic configuration by

DFT. This is done by minimizing the free energy, which
is given by the density functional6

F [n] = Fs[n] + FH [n] + Fxc[n] + Fei[n] (1)

where Fs is the non-interacting free energy comprised of
both kinetic and entropic parts, FH is the Hartree energy
or direct Coulomb interaction between the electrons, Fei

is the electron-ion Coulomb interaction, and Fxc is de-
fined as the remainder of the total free energy, which in-
cludes the quantum mechanical exchange and correlation
as well as the excess kinetic and entropic terms. Of the
contributions neither Fs nor Fxc have exact formulations
in terms of the density alone. Given the same orbital-
free Fxc approximation, the only difference in approach
of orbital-free DFT from Kohn-Sham DFT is that the
non-interacting free energy, Fs, is found from an approxi-
mate density functional instead of being exactly obtained
through the calculation of single particle orbitals.

In recent years the orbital-free approach at finite tem-
perature has gained attention, with most results being
for hot dense systems where the Thomas-Fermi approxi-
mation is employed for Fs

7. Various works have offered
density gradient corrections to Thomas-Fermi that im-
proves results moderately8–11. None of these functionals,
though, have reached the accuracy of Kohn-Sham across
temperature regimes. A recent nonlocal functional has
been shown to be highly accurate across temperature and
density regimes12, but is requisite on Kohn-Sham derived
pseudopotentials, which may not be as transferable. Sub-
sequently an accurate and general orbital-free functional
remains elusive.

Previous works13,14 have attempted to connect high
temperature Thomas-Fermi calculations with low tem-
perature Kohn-Sham results, for low atomic number sys-
tems. In this work we develop and implement a method
to obtain a simple and accurate Fs beyond Thomas-
Fermi, applicable to a wide range of materials and den-
sities, for warm to hot systems, which smoothly extends
Kohn-Sham results beyond the lower temperature region
that is currently computationally accessible. Then in an
application to SiO2 a new liquid phase EOS is devel-
oped utilizing the current QMD calculations and com-
pared with experimental results.
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II. QUANTUM MOLECULAR DYNAMICS

We first introduce an orbital-free Fs of the following
form

Fs[n] = FTF [n] + λFvW [n] (2)

with

FTF [n] =

∫
FHEG(n(r), T )/V dr , (3)

FvW [n] =

∫
|∇n(r)|2

8n(r)
dr . (4)

Here FTF is the Thomas-Fermi approximation which
takes for the noninteracting free energy that of the ho-
mogeneous electron gas, FHEG, with density equal to
that of the local density and at the system temperature
T ; FvW is the von-Weizsacker gradient correction which
has no explicit temperature dependence. The von Weiz-
sacker coefficient λ, is material and density dependent,
and is to be determined through matching conditions
between orbital-free and Kohn-Sham calculations at a
specific density. In a more general way one could write
λ(n0), with n0 being the average electron density, here
though, λ is treated as a constant and in that way Eq.
(2) represents a best approximation at a given density
to the more general FS , which is a single functional over
varying densities.
The procedure to determine λ is straight forward. First

we evaluate the pressure along an isochore using Kohn-
Sham MD, until the temperature is high enough that
the calculations becomes intractable (which of course de-
pends on computational resources) but should be at least
5 to 10 eV. Below which the orbital-free approach will be-
come inaccurate due to issues such as molecular bonding.
Then at a given match temperature a few orbital-free cal-
culations are performed with initial guesses for λ, and the
λ is determined which reproduces the Kohn-Sham data
in pressure, λ is then fixed for that density. Over the
calculated range of densities the resulting λ is given by
the simple linear fit λ = 0.288− 0.0114ρ, with ρ in g/cc,
and the matching results are shown in Fig. 1. A strong
argument is made for the approach in that even though
the match for pressure is made at the single point T = 6
eV, the change with temperature, or slope in Fig. 1, is
in near exact agreement between the two DFT methods.
Also at very high temperature ∼100 eV, our results come
into agreement with the Thomas-Fermi based MD, which
is correct in the high-T limit.
The details of the calculations are as follows. The

Kohn-Sham SiO2 calculations were performed in the liq-
uid regime above 5.5 g/cc and 0.5 eV using the Quantum-
Espresso program15. We included 72 total atoms in
the calculations and all were performed with the Γ-point
only. Some calculations were performed with a 2x2x2 k-
point grid, without noticeable differences to the Gamma-
point calculations. PAW pseudopotentials16 were em-
ployed, along with a temperature dependent implemen-
tation of the AM05 exchange-correlation functional17,18,
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FIG. 1: Pressure results of Kohn-Sham (KS) MD and orbital-
free (OF) MD near the match temperature of 6 eV, for
isochores of ρ = 11, 10, 9, 8, 6.9, and 5.57 g/cc, with
λ = 0.288 − 0.0114ρ.

and a plane wave energy cutoff of 50 Ry was used. The
molecular dynamics were performed at constant temper-
ature using the Andersen thermostat. In order to calcu-
late the Hugoniot, described below, the initial crystalline
states of α-quartz and stishovite were calculated at the
experimentally prescribed densities of 2.65 and 4.29 g/cc
at room temperature, using the primitive cell of each
phase with fully converged k-point grids.

In the orbital-free case, the same number of atoms were
included as for the Kohn-Sham case, and the electron
density was optimized on a regular 643 numeric grid. Lo-
cal pseudopotentials were generated for each density and
temperature, according to the prescription given in Ref.
7, with a cutoff radius of 0.6 time the Wigner-Seitz ra-
dius. Since the orbital-free calculations were performed
only above 5 eV, only the temperature dependent lo-
cal density approximation (LDA) exchange-correlation19

was used for simplicity. The orbital-free molecular dy-
namics were completed in the isokinetic ensemble20.

III. EQUATION OF STATE

The key application of the above QMD calculations
is in construction and validation of a far reaching EOS
valid at arbitrary densities and temperatures. While ex-
perimental data serves as the traditional constraining in-
put for EOS construction, it is particularly lacking in the
warm dense matter regime. Further this regime falls in
the region of interpolation between the low and high tem-
perature models upon which the EOS is built, precisely
where constraining input is most needed. The current
QMD calculations then provide that input.

The overall EOS model itself is a summation of three
independent terms for the total Helmholtz free energy,
given in terms of the material density ρ and the temper-
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ature T ,

Ftot = F0(ρ) + Fi(ρ, T ) + Fe(ρ, T ) . (5)

The contributions here are the cold curve, F0, the ion
thermal contribution Fi, and the electron thermal con-
tribution Fe. First of all the cold curve, representing
zero temperature electrons and ions, is constructed from
a modified Lennard-Jones model in the expanded region
and Thomas-Fermi-Dirac theory at very high pressures,
with a Birch-Murnaghan model in the interim. Next the
ion thermal portion, due to the thermal motion of the
ions, is built from a Debye model for temperatures less
than the melt temperature, and interpolating to an ideal
gas at high temperatures, which leaves a weakly con-
strained liquid-like warm dense matter state. Finally the
electron thermal portion, which comprises the thermal
excitation of electrons above the ground state, is evalu-
ated via the Thomas-Fermi average atom model.
In order to effect an accurate EOS, the various param-

eters of the constituent models need to be constrained by
input data from experiment or further theoretical calcu-
lations. In the case of SiO2 there is shock data providing
the pressure-density curve of the Hugoniot for α-quartz3

and more recently for stishovite2, as well as some recent
shock release data for α-quartz4 which provides some
off-Hugoniot data. This data alone is inadequate for a
full ranging EOS, but when combined with wide ranging
QMD data a more complete view is established, and an
accurate EOS may be determined.
For the EOS the SiO2 mixture is modeled by use of a

representative average atom of atomic weight 20.028 and
atomic number 10. For Fi, two critical parameters of the
model are the Grüneisen parameter, γ = V (dP/dE)V ,
and its logarithmic density derivative. The QMD data
allowed us to easily calculate and fix in the EOS model
both γ and its derivative at 1.2 and -0.05 respectively.
Another key parameter of Fi , is the Debye temperature
which was fixed to 350 K. This ensured that the EOS was
approaching the high temperature limit correctly, for the
region in which the EOS model is interpolating between
the Debye model and the ideal gas limit. This is exem-
plified by Fig. 2, showing a subset of QMD calculations
with temperatures 0.86-100 eV and densities from 5-15
g/cc. In the intermediate density region of the cold curve
we used an 8th order expansion, in terms of compression,
Birch-Murnaghan model for which the coefficients were
found by fitting to the QMD calculated Hugoniot curves.
The cold curve then transitions to a Thomas-Fermi-Dirac
model above 11.12 g/cc.
The Hugoniot itself is calculated via the Rankine-

Hugoniot jump conditions21, which relates the equilib-
rium pre-shock and post-shock states by consideration of
conservation laws,

E − E0 = (P + P0)(V0 − V )/2 . (6)

Here E, P and V are the internal energy, pressure and
volume respectively, and the 0 subscript denotes the ini-
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FIG. 2: Comparison of pressures between the QMD results
and the current EOS for liquid SiO2 isotherms. From top to
bottom temperatures are 100, 50, 20, 10 ,5 eV in the upper
panel and 6.89, 5.17, 3.45, 1.72, 0.86 eV in the lower panel.
The α-quartz (dashed) and stishovite (dotted) Hugoniots cal-
culated from the EOS are shown for reference.

tial state. For α-quartz and stishovite the initial condi-
tions are densities of 2.65 g/cc and 4.29 g/cc respectively,
and at ambient pressure and temperature. The initial
internal energy is calculated via Kohn-Sham DFT and
then using Kohn-Sham MD, an isochore or isotherm is
followed until conditions are such that Eq. (6) is satis-
fied. However when extending to orbital-free MD there is
a shift in the internal energy due to change in the pseu-
dopotential and the functional. As part of the matching
scheme this shift is found at the match point temperature
and density, so that the initial state energy calculated by
Kohn-Sham DFT can be used. Additionally since there
is a different pseudopotential used at each temperature
and density with the orbital-free DFT, a second shift in
energy must be accounted for, which is found by perform-
ing two orbital-free calculations at the same temperature
and density but with different pseudopotentials.

The resulting Hugoniots for α-quartz and stishovite
are shown in Fig. 3. The very good agreement between
experiment and QMD, provides validity to the QMD re-
sults for extension to regions where there is no experi-
mental data, such as the high pressure Hugoniot exten-
sions shown in the lower panel of Fig. 3. A benefit of
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FIG. 3: Comparison of experimental results, Refs. 2–4, with
current QMD and EOS shock Hugoniot results. Upper panel
shows α-quartz, middle panel shows stishovite, and the lower
panel shows α-quartz on the left curve and stishovite to the
right.

the QMD calculation is that the temperature is also cal-
culated along the Hugoniot. This is not always available
from the shock data, as it is not here with the α-quartz
data. Along the α-quartz Hugoniot we find the temper-
ature increases from 0.86 eV at 5.57 g/cc to 6.73 eV at
7.62 g/cc to 23.34 eV at 10.00 g/cc.
Finally we show the agreement of the resulting EOS

with the shock release data in Fig. 4. Here the adiabats
are calculated within the EOS which pass through the
experimental release points along the Hugoniot. Good
agreement is shown with experiment for the release in
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FIG. 4: Good agreement is seen between the experimental Z-
machine shock release data, Ref. 4, and the EOS calculated
adiabats.

each of the three materials, which also with the isotherm
data of Fig. 2 demonstrate high accuracy for the EOS
away from the Hugoniot.

IV. SUMMARY

We have developed a robust and prescriptive method
for accurately extending Kohn-Sham DFT based molec-
ular dynamics simulations by orbital-free DFT simula-
tions, for equation of state calculations including calcu-
lation of the Hugoniot to very high temperatures. This is
important as the Kohn-Sham MD calculations have been
shown to accurately characterize both solid and liquid
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systems and have become a gold standard. Yet due to
temperature scaling issues, going beyond 10 eV or so is
formidable and despite advances in computing resources
seems poised to remain so. The current orbital-free ex-
tension alleviates this bottle neck, allowing for accurate
results in conjunction with the Kohn-Sham method, from
zero temperature through the high temperature Thomas-
Fermi limit.
As a relevant application we constructed a wide rang-

ing EOS for SiO2. The EOS constrained by the QMD
calculations shows very good agreement with the recent
shock experiment data. An immediate and critical appli-
cation of the new EOS lies in design and analysis of high-

pressure shock experiments of different materials where
α-quartz has been used extensively as a window mate-
rial, and hence determination of these materials relies on
a highly accurate SiO2 EOS.
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