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We study one-component fermions in chain lattices with proximity-induced superconducting gap
and interparticle short-range interaction, capable of hosting Majorana fermions. By systemati-
cally tracking various physical quantities, we show that topological states and topological phase
transitions in the system can be identified by multiple signatures in thermodynamic quantities and
pair-condensate properties, in good agreement with the known signatures in the ground-state energy
and entanglement spectrum. We find the disappearance of topological phase in a largely attrac-
tive regime, in which the system undergoes a first-order transition between two topologically trivial
states. In addition, stability of the signatures against finite size, disorder, and inhomogeneity is
analyzed. Our results provide additional degrees of freedom for the characterization of topological
states with interaction and for the experimental detection of emergent Majorana fermions.

PACS numbers: 74.20.-z, 03.65.Vf, 74.78.Na, 71.10.Fd

I. INTRODUCTION

Exploring topological states of matter has become a
rapidly developing field in condensed matter physics.1–3

One intriguing topological state that exhibits both fun-
damental interest and practical application is the emer-
gent Majorana zero modes or Majorana fermions,4–8

which are their own antiparticles and possess zero en-
ergy, in superconducting materials. The pursuing of
the Majorana modes started from the study of a one-
dimensional (1D) p-wave superconducting chain by Ki-
taev.9 This milestone has triggered several alternative
schemes for the realization of Majorana fermions, such
as p+ ip superconductors,10–14 spin-orbit coupled super-
conducting nanowires,15–18 chains of magnetic atoms on
superconducting substrates,19–22 superconducting sur-
faces of topological insulators,23–26 superfluid helium
3,27–29 and ultracold atoms.30–35 Recently, a semiconduc-
tor nanowire with intrinsic spin-orbit coupling, external
magnetic field, and proximity-induced superconductivity
has become one of the experimentally promising plat-
forms to host Majorana fermions,36–41 which appear on
the edges of the wire and lead to tunneling conductance
peak at zero voltage. Such a zero bias peak has been
observed as (indirect) evidence for their existence.

In addition to the transport properties,42–54 searching
different signatures for the topological phase is an ongo-
ing task for the investigation of Majorana fermions. From
the experimental point of view, it not only provides more
evidence for direct detection of Majorana fermions but
also helps rule out different physical causes that result
in the same transport behavior.55–58 From the theoreti-
cal point of view, comparison between various quantities,
even those typically used to describe Ginzburg-Landau-
type phase transitions, such as susceptibilities and su-

perfluid order, can provide useful information for charac-
terizing topological phases and topological phase transi-
tions, especially in interacting systems.59–61 Interaction
effects, which are unavoidably present in reality, may al-
ter physical features of the topological phase and even
change the topology.59–71 For example, time-reversal
symmetric Kitaev chains in class BDI change the topolog-
ical invariant from Z to Z8 when the interaction is turned
on.71 In an interacting system, Majorana zero modes at
edges become many-body Majorana wavefunctions72,73

and the degenerate ground states with two different par-
ities are connected by these many-body Majorana zero
operators. Such many-body phenomena show broad in-
terest from the fundamental understanding of its nature
to applications on quantum computation.74–77 The study
on multiple signatures shall provide a convincing series
of tests to characterize the interacting topological phase
diagram. Recent works have analyzed individual quan-
tities for separate models, such as entanglement spec-
trum in a spin-orbit coupled chain with interactions,62,66

compressibility78 and spectral function63 in the Kitaev
chain, as well as susceptibility65 and pair correlation59

in long-range coupled superconducting fermions. How-
ever, systematic comparison of multiple quantities be-
tween topological/trivial phases or upon topological tran-
sitions within a single frame (model) has not been made.

In this paper, we study various physical quantities
of 1D one-component fermions having proximity-induced
pairing gap and interparticle short-range interaction, as
a generalization of the Kitaev model. These quan-
tities are obtained from density-matrix-reorganization-
group (DMRG)79,80 calculations and categorized in three
groups: (i) topological properties, including ground state
degeneracy and entanglement spectrum; (ii) thermo-
dynamic properties, including compressibility and sus-
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ceptibility; (iii) condensate properties, including pair-
condensate fraction and Cooper-pair size. We take the
topological region indicated by the first group as a refer-
ence and investigate the behavior of the second and third
ones in the parameter space. As a result, we shall find
alternative signatures to identify the topological states
and topological transitions. In addition, by tracking the
multiple signatures we show the topological phase dia-
gram as a function of interaction. Finally, we study the
behavior of several signatures against finite size, disor-
der, as well as inhomogeneity, and discuss their stability
under these conditions.

The paper is organized as follows. In Sec. II we in-
troduce the model Hamiltonian and define the physical
quantities of interest. Section III shows the setup of
DMRG calculations. We present the results and discus-
sions in Sec. IV. Section V is the conclusion.

II. MODEL AND PHYSICAL QUANTITIES

In this section we present the model in consideration
and physical quantities of interest. We consider one-
component fermions in chain lattices where particles can
scatter through the Cooper channel (or form Cooper
pairs) due to a combined effect of external proximity-
induced pairing and internal short-range interaction. If
there is only the external effect, the Hamiltonian is of the
Kitaev form,9

HK = H0 +

L−1∑
j=1

(
∆′ĉ†j+1ĉ

†
j + H.c.

)
, (1)

where ĉ†j creates a fermion on site j, ∆′ (taken real with-

out the loss of generality) describes the proximity induced
pairing, L is the total number of lattice sites, and

H0 =

L−1∑
j=1

−t
(
ĉ†j ĉj+1 + H.c.

)
− µ

L∑
j=1

n̂j , (2)

is the non-interacting Hamiltonian with number operator

n̂j = ĉ†j ĉj , nearest-neighbor tunneling t and chemical po-
tential µ. If there is only the internal interaction effect,
the Hamiltonian reads as

HI = H0 +

L−1∑
j=1

V ′n̂j n̂j+1, (3)

where negative (positive) V ′ represents attractive (repul-
sive) interaction. In realistic cases of a nanowire36–41 or
an atomic chain19–21 on a superconducting substrate, or
a tube of quantum gases in higher-dimensional optical
lattices,35 both effects can take place. We hence model
the system with a phenomenological parameter γ to de-
scribe the relative strength of the two effects and write
down our model Hamiltonian,

H = (1− γ)HK + γHI

= H0 +

L−1∑
j=1

∆
(
ĉ†j+1ĉ

†
j + H.c.

)
+ V n̂j n̂j+1, (4)

with independent variables ∆ = (1− γ)∆′ and V = γV ′,
which can be self-consistently determined by microscopic
degrees of freedom and/or realistic parameters of the sys-
tem. (Below we aim to study physical characteristics of
H in a range of its parameter space rather than determine
the parameters for a specific situation.) The Hamiltonian
always conserves the even/odd parity of total number of

particles N = 〈N̂〉 = 〈
∑
n̂j〉 due to [H, (−1)

N̂
] = 0 and

conserves N (meaning [H, N̂ ] = 0) in the limit ∆→ 0.
We will study the behavior of three groups of phys-

ical quantities of interest in the topological and non-
topological regions as well as upon the topological tran-
sition. The first group, called topological quantities, in-
cludes ground state degeneracy and entanglement spec-
trum degeneracy. The former one can be characterized
by the energy difference

δE = |Eeven − Eodd| (5)

between the lowest eigen energies Eeven/odd of the
even and odd blocks of the Hamiltonian (where

〈(−1)
N̂ 〉even/odd = ±1), respectively. The ground state

degeneracy δE = 0 occurs as the manifestation of Ma-
jorana fermions in the topological region and does not
otherwise.

The entanglement spectrum is a series of eigenvalues of
reduced density matrix ρR obtained by tracing out half
spatial degrees of freedom of the ground-state wavefunc-
tion |ψg〉,

ρR = Trj≤L/2 |ψg〉 〈ψg| , (6)

where we consider L a even number and choose the
ground state of the even-particle-number block when the
even-odd degeneracy occurs (δE = 0). We obtain a set
of 2Nλ largest eigenvalues of ρR, denoted by {λj} and
sorted as λj ≥ λk if j < k, and compute the difference
between paired elements defined by

δλ ≡
Nλ∑
j=1

|λ2j−1 − λ2j |. (7)

Given sufficiently large Nλ, the condition δλ → 0 guar-
antees twofold degeneracy in the entanglement spectrum,
which is contributed by a pair of Majorana fermions sep-
arated in each entanglement subsystems and is hence re-
garded as a signature for their existence (see details in
Refs.81–83).

The second group involves thermodynamic quantities
that can be expressed as the derivative of energy density
E = 〈H〉 /L with respect to the system parameters. We
focus on the first derivative −∂E∂µ , which is equal to the

particle density ρ = N/L from the Hellmann-Feynman

theorem, and second derivatives − ∂2E
∂X∂Y , which describe

compressibility (X = Y = µ) or various susceptibility
(X = Y = ∆ or X = µ, Y = ∆) of the system. A
discontinuity or a peak of energy derivatives represents
a drastic change in the behavior of ground state energy,
which implies a cross between two lowest-energy states
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of the system. Such a cross is a necessary condition for
a topological transition.

The third group includes quantities describing conden-
sate properties. Superconducting fermions can be consid-
ered as a pair condensate in which a two-body or Cooper-
pair state is macroscopically occupied,84,85 analogous to
the Bose-Einstein condensation in bosonic systems.86,87

The condensate properties are well characterized by the
pair density matrix ρpair, whose element is defined in spa-
tial coordinates as

ρpair
jk;j′k′ =

〈
c†jc
†
kck′cj′

〉
. (8)

When the condensation occurs, ρpair has an eigenvalue
λpair

0 [∼ O(N)] largely compared to the others [∼ O(1)],
representing the macroscopic occupation or the number
of condensed pairs. This number defines the condensate
fraction as

P =
λpair

0 − 2

N
, (9)

with an offset 2 of the non-interacting limit60 [such that
P = 0 for a free system described by H0 in Eq. (2)].

The eigenstate ψpair
jk corresponding to λpair

0 represents
the Cooper-pair wavefunction. The Cooper-pair size is
defined as a root-mean-square distance between the two
particles in a pair,

rpair =

√∑
j,k

(j − k)
2
∣∣∣ψpair
jk

∣∣∣2, (10)

and indicates a length scale over which two fermions bind
in real space. The topological state is a weak-pairing
state88 with rpair → ∞ (or ∼ L in a finite-size sys-
tem), which originates the long-range entangled Majo-
rana fermions on both ends. Instead, the trivial state
has finite rpair (or � L). Therefore, a drastic change in
rpair is expectable upon the topological transition. Note
that the commonly used U(1)-symmetry-breaking order6

can distinguish the weak pairing state (being constant,
corresponding to an infinite Cooper-pair size) from the
strong pairing one (exponentially decaying in real space,
with the decay rate determining a finite Cooper-pair size)
for a number-non-conserving state but fails to do with a
number-conserving one (e.g., ∆→ 0 in our model). The
definition of rpair in Eq. (10) works for both. (In fact,
such rpair has been applied to study topological proper-
ties in a two-dimensional system.59)

We have shown the model Hamiltonian and all the
physical quantities of interest. Among these quantities,
twofold degeneracies of ground-state energy and entan-
glement spectrum can be regarded as direct signatures for
the topological states and Majorana fermions. They have
also been proved for interacting systems.62,82 A large
Cooper-pair size is directly related to the long-range en-
tanglement for the presence of Majorana fermions, while
the interaction effects on it is to be investigated. The
energy derivatives such as compressibility and suscepti-
bility can imply a cross of two lowest energy states, but

its relation to the topological phase transition need be
confirmed by the comparison with the direct signatures.
Below we will take the ground-state energy and entangle-
ment spectrum as a reference to pinpoint other signatures
displayed in the thermodynamic quantities and/or con-
densate properties. In the next two sections we present
the numerical setup, results, and discussions.

III. NUMERICAL SETUP

While exact solutions can be found in specific parame-
ter regions,89 the many-body ground state of the interact-
ing Hamiltonian in Eq. (4) can be in general computed
numerically. Our numerical results are obtained using
the DMRG79,80 method, which has been demonstrated
for the accuracy in computing ground-state properties of
short-range-coupled 1D system. This method has been
widely adopted to study topological properties in spinless
fermions,63,90 spin-orbit coupled electrons,62,66,67 and ul-
tracold atoms.91,92 In our work, we employ the DMRG
method on systems up to L = 256. The Z2 symmetry of
parity conservation is considered to reduce the compu-
tational cost. We keep up to m = 120 states and apply
seven sweeps in the ground state calculation. The num-
ber of states m kept in the DMRG method determines
the size of the approximated Hamiltonian and hence the
accuracy of calculations. The discarded weight in the
eigenvalue of the reduced density matrix with m = 120
is on the order of 10−8, which guarantees the convergence
of the ground-state properties.

The DMRG calculations are numerically efficient for
obtaining the ground state energy, entanglement spec-
trum, and real-space two-point correlations. However,
the bottleneck of our numerical study lies on the com-
putation of the condensate properties. The construction
of the pair density matrix requires the evaluation of all
possible four-point correlations. Due to the L4-growing
computational cost as the system size increases, we are
bounded to L = 64. Another limit is the diagonalization
of the pair density matrix, whose computational effort
scales as L8 and will eventually dominate in a large-size
case.

IV. RESULTS

In this section we present and discuss results that track
multiple quantities for several cases of interest. We take
the tunneling strength t to be the energy units for con-
venience and set ∆ = 0.2. First, we study the the
well-known Kitaev chain (where the internal interaction
V ′ = 0) and find the compressibility and susceptibility
as good signatures for the topological transition. Sec-
ond, we track the compressibility for general cases with
the internal interaction. We will show that it remains
a valid indicator because it indicates the same topolog-
ical region as the entanglement spectrum does. Third,
we investigate the condensate properties together with
the compressibility as topological signatures for a rela-
tively small system. We also study the characterization
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of topological phases with the use of number density and
condensed-pair density. Finally, we present the effects of
finite size, disorder, and inhomogeneity.

A. The Kitaev model

The Kitaev chain model is described by the Hamilto-
nian of Eq. (1). It also represents the weakly interacting
limit V → 0 of our model Hamiltonian of Eq. (4). The
upper and lower topological transition points of an infi-
nite Kitaev chain are known as µ = ±2 ≡ µ±c ,9 between
(outside) which the system is in a topological (trivial)
state. For a finite chain, we numerically calculate the
transition points. They show little change if the system
size is large compared with the characteristic size of Ma-
jorana fermions.

Figure 1 shows four thermodynamic quantities as en-
ergy derivatives, density ρ = −∂E∂µ [Fig. 1(a)], compress-

ibility ∂ρ
∂µ = −∂

2E
∂µ2 [(b)], and susceptibilities − ∂2E

∂∆2 [(c)]

as well as − ∂2E
∂∆∂µ [(d)], vs the chemical potential µ. We

plot data for an infinite chain (solid curve) and a finite
chain of L = 256 with open (red crosses), periodic (blue
circles), as well as antiperiodic (green triangles) bound-
ary conditions. We see that the density smoothly varies
from vacuum (ρ = 0) to commensurate filling (ρ = 1)
as µ increases. The trivial states have either a very low
filling (ρ ∼ 0 in µ < µ−c ) or an almost commensurate
filling (ρ ∼ 1 in µ > µ+

c ). All the second derivatives of
the energy develop peaks at each transition point. The
compressibility peaks reflect the bulk gap closing at the
transition point.78 Across the peak, a sign change of the
curve slope indicates a discontinuity in the third deriva-
tive of energy, which implies that the topological tran-
sition is third-order. Such a topological transition type
has also been found in a long-range coupled system.65

The peak structure is independent of the chain size (see
more analyses in Sec. IV D) as well as the boundary con-
ditions and can thus be taken as a reliable signature for
the topological transition. While the two susceptibilities
ought to work the same well, below we study the com-
pressibility, a typical observable in experiments, as an
indicator for cases with internal interaction.

B. Effects of internal interaction

With the internal interaction turned on (V 6= 0), we
calculate the ground state properties as a function of V
for a case of L = 256. In Fig. 2(a) we plot compressibility
∂ρ
∂µ vs chemical potential µ at various V = −0.4 (purple

diamonds), −0.2 (blue circles), 0 (green triangles), 0.2
(yellow squares), and 0.4 (red crosses). The curves main-
tain the two-peak structure, while the right transition
point µ+

c has a positive (negative) shift at repulsive (at-
tractive) internal interaction, and the left one µ−c show
little change with the interaction. We also confirm that
the region sandwiched by the compressibility peaks coin-
cides with the topological region identified by the ground
state degeneracy and entanglement spectrum. Therefore,

FIG. 1. (Color online) Non-interacting system energy’s first
derivative − ∂E

∂µ
= ρ (a) and various second derivatives

− ∂
2E
∂µ2 = ∂ρ

∂µ
(b), − ∂2E

∂∆2 (c), and − ∂2E
∂µ∂∆

= ∂ρ
∂∆

(d) vs chem-

ical potential µ. Four cases of L = ∞ (solid curve) and
L = 256 with open (red crosses), periodic (blue circles), and
anti-periodic (green triangles) boundary conditions are pre-
sented. The superconducting gap is set as ∆ = 0.2.

compressibility can be regarded as a reliable signature for
topological states of interacting systems. Fig. 2(b) shows
compressibility vs density ρ in the same convention as
Fig. 2(a). Similarly, the curves display peaks at the two
transition points. We notice that the position of the left
(right) peak is at a low (high) filling ρ < 0.1 (> 0.9) and
is insensitive to interaction. In other words, the topo-
logical state survives in most intermediate filling region,
which promises the Majorana fermions in a wide range
of density-controllable systems such as ultracold atoms.

Since the topological region shrinks as the interaction
becomes more attractive, we turn to study the fate of
topological state in the strongly attractive region. (Note
that the strongly repulsive region has been well studied
in Ref..63) The top panel of Fig. 2(c) shows compressibil-
ity vs µ at V = −1.5 (red crosses), −2 (green triangles),
and −2.5 (blue circles), with the topological region in
shade. We see that the two peaks at µ±c merge into one
at V = −2.5 and the topological region disappears. The
disappearance can be also seen in the entanglement spec-
trum in the bottom panel as the doubly degenerate region
vanishes at V = −2.5. The density curves in the middle
panel show that the topological transitions at V = −1.5
and −2 still happen at either a low or high filling. When
the topological region disappears at V = −2.5, the den-
sity (= −∂E∂µ ) curve exhibits a discontinuity and the sys-

tem undergoes a first-order transition between a trivial
low-filling state to a trivial high-filling one.

The phase boundary shift can be explained by an ef-
fective chemical potential shift due to the interaction.
Considering a Hartree approximation nj+1nj → ρnj +
ρnj+1− ρ2, one can turn the Hamiltonian of Eq. (4) into
the original Kitaev form with an effective chemical po-
tential µeff = µ − 2V ρ, where ρ = ρ(µ, V ). The upper
and lower transition points are thus given by µeff = ±2,
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FIG. 2. (Color online) (a, b) Compressibility ∂ρ
∂µ

vs µ and ρ, respectively, at various interaction V = −0.4 (purple diamonds),

−0.2 (blue circles), 0 (green triangles), 0.2 (yellow squares), and 0.4 (red crosses) for an open chain of L = 256 and ∆ = 0.2. (c)
∂ρ
∂µ

(top panel), ρ (middle), and entanglement spectrum (ES, bottom) vs µ at relatively large attraction V = −1.5 (red crosses),

−2 (green triangles), and −2.5 (blue circles). The topological region for each V is shaded in the top and bottom panels for
comparison. The dashed curve in the top panel shows how the two compressibility peaks would emerge at V = −2.5, although
the actual value is undefined due to the discontinuity in ρ. (d) Interacting phase diagram showing the topological region in
the V -µ plane. The upper and lower boundaries is marked by red crosses and blue circles, respectively, while the dashed curve
shows the Hartree mean-field results.

respectively, which leads to

µ±c = ±2 + 2V ρ(µ±c , V ). (11)

Because the density at the lower (upper) transition point
is low (high) and insensitive to interaction, we approx-
imately insert ρ(µ−c , V ) = 0 and ρ(µ+

c , V ) = 1 into
Eq. (11) and obtain µ+

c = 2 + 2V and µ−c = −2. Such
relations tell that the lower boundary barely depends on
V and the upper boundary linearly shifts with V . Figure
2(c) shows the topological region in the V -µ plane. The
upper and lower phase boundaries from this approxima-
tion (dashed curves) well match those from the numerical
calculations (red crosses and blue circles, respectively).

C. Condensate properties

In this subsection we study pair-condensate properties
of the system. As mentioned in Sec. III, the calculation
of the pair density matrix can be time-consuming. Such
a constraint directs our focus on a relatively small sys-
tem (L = 32) rather than a large one. The top panel
of Fig. 3 shows the compressibility curves as a reference
for the topological region at various interactions [conven-
tions are the same as Fig. 2(a)]. The middle and bottom
panels show the condensate fraction P defined in Eq. (9)
and Cooper-pair size rpair defined in Eq. (10), respec-
tively. Different from the compressibility and entangle-
ment spectrum, we first see that the curves of condensate
properties lack symmetry with respect to the half-filling
point. At the upper phase boundary (right peak of the
compressibility curve) both P and rpair develop a kink,
indicating a sudden change in the condensate properties
upon the topological transition. The sharp decrease of
rpair is consistent with the transition from weak-pairing

(topological) to strong-pairing (trivial) states.6,88 At the
lower boundary (left peak of the compressibility curve)
rpair shows a peak, while P changes the trend but does
not show a clear signature due to the finite-size effect (the
filling is so low such that the total number of particles
is smaller than two). We increase the system size and
find that the turning point of P approaches the phase
boundary. Therefore, the behavior of P and rpair can be
indicators for the topological transition.

The topological transition accompanied by a signifi-
cant change in the Cooper-pair size raises an interesting
question whether the change in the pair condensate can
be purely qualitative or must be both qualitative and
quantitative. We try to answer this question by examin-
ing two essential quantities of a pair condensate, the total
number of particles N and the total number of condensed
pairs λpair

0 , around the topological phase boundary. The
answer is former if the system can go across the phase
boundary and keep both N and λpair

0 unchanged (only
rpair changes). Our model is suited to explore this ques-
tion because it is defined in a three-dimensional parame-
ter space (∆, V, µ) such that a path along which two func-

tions N(∆, V, µ) and λpair
0 (∆, V, µ) remain constant be-

comes mathematically possible. We explore large enough
regions around an upper and a lower transition points,
(∆, V, µ) = (0.2, 0,±2), respectively, by varying all three
parameters for a L = 64 case. The results show that one
of N and λpair

0 can remain constant upon the topological
transition but not both. In other words, the topological
transition or the sudden change of the Cooper-pair size
in our model can be regarded as a result of a quanti-
tative change in N or λpair

0 . Moreover, we do not find
that a topological state and a trivial state have the same
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FIG. 3. (Color online) Compressibility ∂ρ
∂µ

(top panel), con-

densate fraction P (middle), and Cooper-pair size rpair vs µ at
various interactions for an open chain of L = 32 and ∆ = 0.2.
Conventions are the same as Fig. 2(a).

N and λpair
0 . Our results may have implications for the

characterization of topological states by (N/L, λpair
0 /L).

We further study this possibility by computing the con-
densate properties for hundreds of points in the range of
0.15 ≤ ∆ ≤ 0.45, −0.45 ≤ V ≤ 0.4, and 1.4 ≤ µ ≤ 3.4,
for L = 32. Figure 4 shows the data points representing
three different ranges of the Cooper-pair size around the
upper topological transition region in the plane of N/L

and λpair
0 /L. The system can be considered as a topolog-

ical state if rpair ≥ 4. We see that along a vertical (hor-
izontal) path in Fig. 4, the system can undergo a topo-

logical transition at fixed N (λpair
0 ). On the other hand,

the concurrence of a decrease in rpair and an increase in

either N or λpair
0 confirms our conjecture, an inevitable

quantitative change upon the topological transition. In
other words, rpair is a function of N and λpair

0 , and these
two parameters can hence be used to characterize the
topological phase diagram. We finally comment that a
more solid confirmation lies in the convergence of Fig. 4
in the thermodynamic limit, we leave the test of which
for future study once more powerful computational tools
are available.

D. Effects of finite size, disorder, and
inhomogeneity

In the last subsection, we explore the stability of the
signatures against three realistic effects in experiments—
finite size, disorder, and inhomogeneity. Figure 5 shows
the compressibility (top panel), energy difference δE
(middle) defined in Eq. (5), and entanglement spectrum

FIG. 4. (Color online) Data points showing three different
ranges of the Cooper-pair size, rpair ≤ 3 (blue circles), 3 <
rpair < 4 (red crosses), and rpair ≥ 4 (green triangles), in the

plane of N/L and λpair
0 /L for L = 32.

FIG. 5. (Color online) Compressibility ∂ρ
∂µ

(top panel), en-
ergy gap between the ground state and first excited state δE
(middle), and difference between even and odd sectors of en-
tanglement spectrum δλ vs µ around the lower (left column)
and upper (right) transition points at various open-chain sizes
L = 32 (red crosses), 48 (blue circles), and 64 (green trian-
gles), respectively. Data are for ∆ = V = 0.2.

difference δλ (bottom) defined in Eq. (7) vs µ for L = 32
(red crosses), 48 (blue circles), and 64 (green triangles).
We see that although all the three quantities indicate the
transition points, the compressibility curve is insensitive
to the system size, while δE and δλ can increase by sev-
eral orders as the system size is halved. Therefore, the
compressibility is a stable indicator against the finite-size
effect. The insensitivity also provides a more numerically
efficient way to predict the topological transition of a
large-size system by calculating the compressibility peak
of a relatively small one.
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FIG. 6. (Color online) Comparison between a disorder system
[Hd of Eq. (12), red crosses], a trap system [Ht of Eq. (13),
blue circles], and a reference without these effects [H of
Eq. (4), green triangles]. Conventions are the same as Fig. 5
except the system size here is L = 128.

For the disorder effect, we consider a Hamiltonian

Hd = H +

L∑
j=1

δj n̂j , (12)

with a set of random local potential shifts {δj} that obey
the normal distribution and have zero average. For the
inhomogeneous effect, we consider an external harmonic
trap with curvature K turned on,

Ht = H +

L∑
j=1

K

2

(
j − L

2
− 1

2

)2

n̂j . (13)

In Fig. 6 we compare a disorder case (red crosses) with
the variance of {δj} equal to 0.1 and a trap case (blue cir-
cles) with K = 0.8/(L−1)2 with the original Hamiltonian
H for L = 128 in the same convention of Fig. 5. We see
that neither of the two effects can alter the signatures for
the topological transition. Such results are anticipated
because the topological states and Majorana fermions are
symmetry protected. Perturbations can not destroy the
topological order as long as they are not strong enough
to cause the bulk-gap crossing. (Regimes of strong dis-

order or deep traps are beyond the scope of this study.
One could refer to previous works in Refs..34,93–96)

V. CONCLUSION

In conclusion, multiple physical quantities have been
analyzed for one-component fermions with proximity-
induced superconducting gap and interparticle interac-
tion in 1D lattices, which can be a topological supercon-
ductor hosting Majorana fermions. In addition to the
double degeneracy of ground-state energy and entangle-
ment spectrum, we have found that the topological tran-
sition can also be revealed by peaks of compressibility and
susceptibility curves, as well as a sudden change of trend
in the condensate fraction and Cooper-pair size. Among
them, the compressibility peak is particularly useful for
its stability against the finite-size effect and being ob-
servable in experiments. The Cooper-pair size directly
shows the topological transition between strong-pairing
and weak-pairing state. By tracking these signatures, we
have found that the topological transition is third-order.
As the interaction goes more attractive, the topological
state finally disappears and the system undergoes a first-
order transition between a low-filling and a high-filling
trivial states. We have also explored the possibility to
characterize the topological phase using density of par-
ticles and that of condensed pairs. One future direc-
tion is the extension of this study to other interacting
platforms in which various tunneling or pairing chan-
nels60,97,98 need be considered and alternative treatment
suited for the continuous space99,100 may apply. In ad-
dition, our results may find applications on spin systems
that are associated with our Hamiltonian of Eq. (4), such
as an Ising chain with a transverse field (V → 0, e.g., see
Ref.101), the XXZ model (∆ → 0),102 the Baxter XYZ
model (µ→ 0),103 and the two-dimensional classical Ising
model (V → 0, t = ∆).104
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