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Below ∼ 630 mK, the 4He atom mass flux, F , that passes through a cell filled with solid hcp 4He
in the pressure range 25.6 - 26.4 bar, rises with falling temperature and at a temperature Td the
flux drops sharply. The flux above Td has characteristics that are consistent with the presence of
a bosonic Luttinger liquid. We study F as a function of 3He concentration, χ = 0.17 − 220 ppm,
to explore the effect of 3He impurities on the mass flux. We find that the strong reduction of
the flux is a sharp transition, typically complete within a few mK and a few hundred seconds.
Modest concentration-dependent hysteresis is present. We find that Td is an increasing function of
χ and the Td(χ) dependence differs somewhat from the predictions for bulk phase separation for
Tps vs. χ. We conclude that 3He plays an important role in the flux extinction. The dependence
of F on the solid helium density is also studied. We find that F is sample-dependent, but that
the temperature dependence of F above Td is universal; data for all samples scale and collapse
to a universal temperature dependence, independent of 3He concentration or sample history. The
universal behavior extrapolates to zero flux in the general vicinity of Th ≈ 630 mK. With increases
in temperature, it is possible that a thermally activated process contributes to the degradation of
the flux. The possibility of the role of disorder and the resulting phase slips as quantum defects on
one-dimensional conducting pathways is discussed.

PACS numbers: 67.80.-s, 67.80.B-, 67.80.Bd, 71.10.Pm

I. INTRODUCTION

Solid helium is a unique substance that displays a com-
bination of classical and quantum properties. It has been
extensively studied both experimentally and theoretically
for many decades. One of the most interesting properties
of liquid helium is superfluidity, a state of matter in three
dimensions than occurs below a pressure-dependent tem-
perature Tλ. This quantum property is strongly affected
by spatial limitation. In the two-dimensional (2D) case,
the phase transition from the superfluid phase to the nor-
mal phase is related to the unbinding of vortices, as de-
scribed by Berezinskii, Kosterlitz, and Thouless [1, 2].
In one dimension (1D), another sort of quantum point
defect, the so-called phase slip, is responsible for this
transition. Quantum Monte-Carlo (QMC) simulation [3]
predicted that the cores of screw dislocations in solid
helium should be an example of 1D superfluidity. The
flow of superfluid helium in 1D can be described by the
quantum hydrodynamic theory known as Luttinger liq-
uid theory [4]. This idea has been confirmed by large-
scale QMC simulations [5–7] for the case of nanopores.
The basic requirements for 1D channels to demonstrate
Luttinger liquid behavior[8] are that the pore diameter is
sufficiently small, the pore length is sufficiently long and
the temperature is low enough with respect to Tλ.
We developed an apparatus, the so-called UMass

Sandwich[9], to study the possible ability of solid he-
lium to carry a helium mass flux [10–12]. Using porous
media (here, Vycor rods) we are able to apply a chemi-
cal potential difference between two separated regions in
a solid 4He sample without mechanically squeezing the
solid helium lattice itself. It was found that an experi-
mental cell filled with solid 4He can carry a flux[10], but

only below some characteristic temperature, Th, and the
flux rate substantially increases with decreasing temper-
ature. It can be reduced and eliminated with an increase
in pressure[11]. Tiny amounts of the impurity 3He also
change the flux dramatically[13] at a characteristic low
temperature, Td. A brief report that discusses some of
the 3He concentration dependence has appeared[13]. In
this report we will describe our measurements as a func-
tion of the 3He concentration at several pressures in more
detail and discuss our interpretations of the role of the
3He. We will also offer comments on several flow scenar-
ios, including one-dimensional pathways.
We note here that this report corrects a thermometry

error that caused a small shift in the temperature scale
below ∼ 100 mK that was used in the work reported
previously in Ref. [13]. This was caused by a change
in the room temperature electronics which we subse-
quently determined introduced a small but measurable
heating of the thermometer used to measure the solid
helium temperature. The temperature correction[14] for
the work reported in Ref. [13] is less than 1 mk above
120 mK, 5.5 mK at 80 mK, and can be found from
TCnew = TC − 0.09637 exp(−TC/0.02755). TC is the
temperature of the thermometer affixed to the experi-
mental cell, Fig. 1, and is used to define the solid helium
temperature, T . All temperatures reported in this work
include this correction.

II. EXPERIMENTAL TECHNIQUE

In this work many freshly grown (and some partially
annealed) solid 3He-4He mixture samples have been used
to study the effect of the 3He impurity concentration, χ
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(in the range 0.17 < χ < 220 ppm), temperature, and
pressure on the 4He mass flux. Our experimental meth-
ods, have been described in substantial detail in Refs.[10–
12]. We provide a brief discussion of our approach here.

A. Sample Preparation

Solid helium samples are grown at constant tempera-
ture from the superfluid in the temperature range 0.3 <
T < 0.4 K by the condensation of helium into a sam-
ple cell (volume, V = 1.84 cm3) through a direct-access
heat-sunk capillary (capillary 3, Fig. 1) followed by an
increase in the pressure up to near the melting pressure
(about 25.34 bar). Subsequent additions of helium are by
means of two other capillaries (1,2, Fig. 1) in series with
Vycor (porous glass with interconnected pores of diame-
ter ≈ 7 nm) rods (0.14 cm dia., 7.62 cm long). Helium is
added to the Vycor to inject atoms and create the solid at
the desired pressure in the range of 25.6 < P < 26.4 bar.
A cold plate at the base of the sample cell is thermally
connected to the mixing chamber of the dilution refrig-
erator and when the cell is filled with solid 4He it can
be cooled to about 60 mK. The lowest temperature of
the cell is limited by the characteristics of our 1970’s
vintage SHE refrigerator and the heat flux through the
superfluid-filled Vycor rods. Their warmer ends have to
have much higher temperature than the temperature of
the solid-filled cell, up to 1.5 K, to prevent the formation
of solid helium in the two reservoirs R1 and R2 and at
the interface between the Vycor rods and the reservoirs.
The pressure and temperature ranges available have up-
per limits due to the need to maintain an adequate value
of the superfluid density in the reservoir and the Vycor
so as to not restrict the flux of helium in places external
to the solid-filled cell.
To create samples of known 3He concentration, the cell

is emptied between each set of measurements[13]. The
cell is then filled with nominally pure 4He liquid (0.17
ppm 3He) up to the saturated vapor pressure through
use of line 3. Then, a small calibrated volume at room
temperature is filled with pure 3He to a known pres-
sure. This is injected into the cell via line 3 and this
injection is followed by additional 4He, which also en-
ters through line 3, to bring the cell close to the melting
curve. With knowledge of the relevant volumes and pres-
sures, a known concentration of 3He is thus introduced
into the cell. The solid is then grown by injection of 4He
through the two Vycor rods. After the sample is grown,
it is allowed to rest for ≈ 5 − 10 hours at a solid helium
temperature ≤ 0.4 K before starting any measurements.
Most solid helium samples are freshly grown (and not
annealed above 0.5 K). As we will see, we find repro-
ducibility in a given sample with temperature changes,
which suggests that the samples are adequately in equi-
librium after being created. As we reported previously
for nominal-purity well helium (measured for this work
to be ∼ 0.17 ppm 3He concentration), high temperature

annealing leads, on cooling, either to a substantial flux
decrease or to complete flux extinction, with in that case
no evidence for flux at lower temperatures.

FIG. 1. Schematic diagram of the cell used for flow exper-
iments. Two capillaries, 1 and 2, go to liquid reservoirs R1
and R2 at the top ends of the Vycor rods, V 1 and V 2. Cap-
illary 3 enters from the side of the cell and is used for adding
helium to the cell. Two capacitance pressure gauges, C1 and
C2, are located on either end of the cell for in situ pressure
measurements of the solid 4He. Pressures in the lines 1 and
2 are read by pressure gauges, P1 and P2, outside the cryo-
stat. Each reservoir has a heater, H1, H2, which prevents
the liquid in it from freezing and allows the temperatures of
the reservoirs to be controlled. The relevant temperatures are
read by calibrated carbon resistance thermometers T1, T2 and
TC. [Reproduced from figure 1 in Ref. [11]]

B. Measurement Procedure

To initiate the flux, an initial chemical potential differ-
ence, ∆µ0, is applied between the tops of the Vycor rods
by changing the temperatures, T 1 and T 2, of the two
reservoirs, R1 and R2, to create a temperature difference
between them (See Fig. 1). This creates a flux due to the
fountain effect, which is seen by observing changes in P1
and P2. Since we monitor the pressures and the temper-
atures as a function of time, the chemical potential ∆µ
can be calculated,

∆µ =

∫
dP

ρ
−

∫
SdT , (1)

where ρ and S are the temperature-dependent density
and entropy of liquid helium, respectively. In contrast to
some of the earlier work from our lab[11], where ∆P =
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P1−P2 was applied by direct mass injection, our current
study uses the application of a temperature difference[15]
∆T = T 1 − T 2. This approach offers two advantages.
It allows for smaller density changes in the solid helium
than was the case for direct injection of 4He to the sample
cell through one of the lines, 1 or 2. And, it allows us to
keep constant the total amount of 4He in the apparatus.
An example of the procedure used for the flux mea-

surements for a solid 4He sample with a 10.2 ppm 3He
impurity content is shown in Fig. 2. The creation of a
change in the energy deposited in heaters H1 and H2 re-
sults in a temperature difference, ∆T = T 1−T 2, between
the reservoirs Fig. 2(a), R1 and R2, at the tops of the
Vycor rods. This results in pressure responses Fig. 2(b),
P1, P2 and ∆P = P1−P2 due to the fountain effect at
a sequence of rising solid helium temperatures Fig. 2(c),
TC. The derivative of ∆P ,

F =
d(P1 − P2)

dt
, (2)

is taken to be reasonably proportional to the flux, F ,
of atoms that move from one reservoir to the other. We
report the rate of pressure change in mbar/s units, where
0.1 mbar/s corresponds to a flux of ≈ 4.8 x 10−8 g/s.
We use measurements of F of this sort in two related

ways. In one, we study how the flux, F , depends on the
chemical potential, ∆µ, as time evolves. The chemical
potential changes from its initially imposed peak value,
∆µ0, imposed by the initial ∆T , to zero as equilibrium is
restored by the creation of a fountain effect induced pres-
sure difference, P1 − P2. In the other, we study, for a
given value of the imposed ∆T , how the maximum result-
ing flux, F , depends on the temperature of the solid 4He.
Data, of the sort shown in Fig. 2 for a specific 10.2 ppm
3He sample, is taken for a variety of solid helium sam-
ples, each with a specific value of the 3He concentration.
We choose to focus on the behavior of ∆P , which also
allows us to eliminate a small long term drift in P1 and
P2, which is typically present in our long-duration mea-
surements due to main helium bath level changes. Our
basic conclusions are not changed if instead we focus on
the individual behaviors of P1 or P2.

C. Flux Dependence on ∆µ

Using data, including that in Fig. 2, F vs. ∆µ is ob-
tained for positive ∆T values and presented in Fig. 3 for a
set of solid helium temperatures. The maximum flux val-
ues are typically constrained by the solid helium sample.
But for the lower cell temperatures, the constraint can
imposed by the temperature of the reservoir at the up-
per end of the Vycor which restricts the magnitude of the
flux, as shown previously[16]. The dashed line in Fig. 3
represents the flux limit imposed by the Vycor. Similar
behavior is seen for negative ∆T values. As was found
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FIG. 2. (color online). An example of flux measurements for
10.2 ppm sample. Here (a) temperatures are established for
each of the reservoirs, held constant while the pressure in each
of the reservoirs stabilizes, and then the temperature values
of the two reservoirs are interchanged. The interchange re-
sults in a flux of atoms driven by the fountain effect which is
recorded by (b) the pressure gauges P1 and P2. The rate of
change of P1−P2 provides a measure of the time dependent
flux. (c) The solid 4He temperature is changed and the pro-
cess continues for a sequence of solid 4He temperatures, TC.

earlier[12], a power law provides a good two-parameter
characterization for data of this sort:

F = A(∆µ)b, (3)

where A and b are fit parameters. Within our errors,
the parameter b is independent of temperature but de-
pends on pressure. In the pressure range of our study b
is less than 0.5 [12]. We will return to a discussion of the
characteristics of A and b later.

D. Flux Dependence on Temperature

The maximum flux measured through the solid he-
lium that results from a specific imposed ∆T (typically
±10mK, Fig. 2) occurs for a resulting ∆µ in the range
5-8 mJ/g, and has a temperature dependence as illus-
trated in Fig. 4. This is for the case of a different solid
sample with a 3He concentration of 19.5 ppm. As we
will see, this temperature dependence is present for all of
the concentrations we have studied. This maximum flux,
F , increases with falling temperature, with warming and
cooling showing the same values of the flux for a given
sample, so long as the sample is not annealed. And there
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FIG. 3. (color online). An example of the F (∆µ) depen-
dence for different solid helium temperatures for the case of
a sample with a 3He concentration of 10.2 ppm. Solid lines
are power law fits by use of Eq.(3). The dashed line is the
upper limit of the flux due to the Vycor bottle-neck for reser-
voir temperatures of 1.48 K (see Fig.3 in Ref.[16]). Note,
before taking a derivative to calculate F , a moving average
of the ∆P (t) data, Fig.2, was determined: by 3 points for
TC < 0.25 K, by 7 points for 0.25 < TC < 0.40 K, by 9
points for TC = 0.445 K and by 12 points for TC = 0.492 K.

is a sharp, hysteretic, reversible decrease of the flux at a
concentration-dependent temperature, Td.

As seen in Fig. 4 for this χ = 19.5 ppm 3He impu-
rity sample, the flux that results from a given ∆T is an
increasing function of decreasing temperature until the
temperature drops below ∼ 105 mK, below which there is
no flux. As an illustration of just how sharp and prompt
the extinction behavior is, consider Fig. 5 and Fig. 6.
These figures illustrate that for a χ = 10.2 ppm sample,
the transition from flux to no flux is no more than ≈ 1.5
mK wide, with the cessation of the flux complete within
no more than ∼ 350 seconds. Similarly, in Fig. 6 we see
that there is no flow at a cell temperature of 99 mK, but
that an increase in the cell temperature to a fixed value
near 100 mK results in a growth of the flux, with a flux
recovery time of ∼ 600 seconds. The difference in the
temperature of the sharp change in F between cooling
and warming shows a small hysteresis at this value of the
3He concentration. The sharp gradient in the slope of F
vs. T near 100 mK seen in Fig. 4 is stable. That is, if the
temperature remains fixed, then the value of F remains
stable at any point in the Td transition region[17].

Now, the time noted for the flux to make the no-flow
to flow recovery (or the reverse) likely places some con-
straints on scenarios for what causes the transition from
a state of no flow to a state of flow. One possibility is
that it takes this long for the temperature of the solid to
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FIG. 4. (color online). Maximum values for the flux as a
function of temperature for the case of a solid with 19.5 ppm
3He at P = 26.40 bar. The sharp behavior of the flux extinc-
tion in a very narrow range of temperature near T = Td is
evident.
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FIG. 5. (color online). An example of the extinction of the
flux as the temperature of the solid helium falls below T = Td

for a 10.2 ppm 3He sample at P = 26.30 bar. This figure
has the corrected temperature scale and is a revision of the
similar figure presented in Ref. [13]

change. To explore this, a calculation for our cylindrical
geometry that incorporates the Kapitza resistance be-
tween the solid and the copper wall and the properties of
solid helium has been done by Mullin[18] with the result
that the time for this thermal equilibration to take place
is predicted to be no more than ∼ 50 msec. This result
is geometry-dependent, but generally consistent with the
thermal equilibration experiments carried out by Huber
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FIG. 6. (color online). An example of the recovery of the flux
near T = Td for the same 10.2 ppm sample as in Fig. 5. No
flux is seen in the presence of an imposed ∆T until the cell
temperature increases above about 100 mK, after which the
flux recovers in a few hundred seconds. This figure has the
corrected temperature scale and is a revision of the similar
figure presented in Ref. [13]

and Maris[19]. That work indicated that equilibration
near 100 mK is achieved in ∼ 10 msec. These facts in-
dicate that the equilibration time for temperature of the
solid is much faster than the observed recovery times and
thus the flux change must be related to the movement of
the 3He and not due to a thermal time constant. We will
discuss this further later.

E. Flux Dependence on 3He Concentration

The same procedure shown in Fig. 2 has been used
for a substantial set of solid helium samples with differ-
ent 3He impurity concentrations, χ, that ranged from a
low for nominal well-helium of 0.17 ppm 3He to a high
of 220 ppm, as listed in Table I. Two examples of the
mass flux temperature dependencies are shown in Figs. 7
and 8 for χ = 0.17 and 2 ppm, respectively. Data points
here represent the maximum flux values normalized to
the maximum flux rate at 200 mK to facilitate the com-
parison. The relevance of such normalization will become
more apparent shortly.
Figs. 7 and 8 document hysteresis in the vicinity of Td

with the flux drop during cooling typically taking place
at slightly lower temperature than the flux rise during
warming. This hysteresis is measurable at most of the
3He concentrations studied and may be considered as a
feature of a first order phase transition. This suggests
that phase separation my be important and we will re-
turn to this point later. The hysteresis is most evident at
the lowest concentrations. The width of this hysteresis

TABLE I. Sample Characteristics

χ δχ P (bar) Td (mK) δTd (mK)

0.17 – 25.64 72.5 7
0.17 – 25.90 72.5 3
1.0 0.2 25.86 80.5 5
2.0 0.2 26.10 88.5 5
4.0 0.5 26.09 91.5 5
10.2 0.5 26.30 97.0 5
15.0 3 25.92 99.5 3
19.5 1 26.40 103 3
25.5 1.2 26.12 106 3
40.0* 5 26.15 109 2
61.0 3 26.36 111 2
119.3 6 26.40 115.5 2
220.0* 30 25.90 125 2

The 3He concentration (ppm) is in two cases estimated (*)
based on the ln(χ) vs. 1/T linear dependence shown in

Fig.13, inset. The quantities δχ and δTd represent
uncertainties in the determination of χ and Td.
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FIG. 7. (color online). An example of flux reduction and hys-
teresis near T = Td for a 0.17 ppm 3He and P = 25.64 bar
sample. The smooth curve will be discussed in the next sec-
tion.

for low concentrations is shown in Fig. 9. Figs. 7 and 8
demonstrate that for low concentrations the flux does not
drop to zero and recovers on cooling below T < Td. The
recovery of the flux as the temperature is lowered below
Td[13, 20] suggests that the role played by the 3He sat-
urates. We will return to this point in the Comments
section, section IV. The dashed curves on the figures
are vertically shifted continuations of the solid smooth
curves, which serve to characterize the data. The sig-
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FIG. 8. (color online). An example of flux reduction and
hysteresis near T = Td for a 2.0 ppm 3He and P = 26.10 bar
sample. The smooth curve will be discussed in the next sec-
tion.

nificance of these smooth curves will be discussed in the
next section. If χ is more than about 10 ppm, e.g. as
shown in Fig. 4, then there is no flux recovery down to ∼

60 mK (the lowest temperature for these measurements).
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FIG. 9. (color online). The width of the hysteresis seen in
the vicinity of T = Td for low 3He concentrations. The width
of the hysteresis region narrows steeply with increasing con-
centration.

Data for a range of samples with different concentra-
tions and sample histories are shown in Fig. 10. In each
case the maximum flux value shown is that which results
from the same value of the imposed ∆T . The shift in
Td with concentration is evident. Different samples with
different histories at a given concentration have some-
what different absolute values of F , but the temperature
dependence and value of Td are reproducible for a given

concentration.
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FIG. 10. (color online). The temperature dependence of the
flux observed for 4He with several 3He impurity concentra-
tions and experimental conditions, determined in each case
with a constant value of ∆T , which yields a maximum flux,
F , that appears for ∆µ in the range 5-8 mJ/g. This figure
has the corrected temperature scale and is a revision of the
similar figure, Fig. 1, presented in Ref. [13]. For each data
set the solid pressure was in the range 26 ± 0.4 bar.

III. DISCUSSION

A. Universal Temperature Dependence

We now present in more detail the temperature depen-
dence for temperatures above Td. As we will show, the
temperature dependence for T > Td is robust, but the
absolute value of the flux depends importantly on the
sample and its history. As an example of the sort of vari-
ability that we have found consider the data shown in
Fig. 11 for the sample with χ = 19.5 ppm. The flux val-
ues are presented here in mbar/s units (not normalized
values) in order to compare the behavior of the flux be-
fore and after the temperature was increased to 620 mK,
where the flux was no longer measurable. When cooled,
after the sample cell was warmed, the flux was greatly
reduced (circles). The data set for the larger values of F
shown here is the same data set shown in Fig. 4.
What is not immediately apparent in Fig. 10 and

Fig. 11 is that the temperature dependence at tempera-
tures above the peak flux reached is robust. To demon-
strate this most clearly, we normalize the many data sets
shown in Fig. 10. We accomplish this by use of a mul-
tiplicative factor for each data set to force the various
values of F to superimpose at T = 0.2 K. The normal-
ized flux temperature dependencies for the samples of
different 3He concentrations are presented in Fig. 12.
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FIG. 11. (color online). An example of flux extinction near
T = Td for a 19.5 ppm 3He sample at P = 26.40 bar sample.
For comparison, data for cooling is shown (solid circles) after
the flux ceased at T = 0.625 K. Note, flux values are shown
in mbar/s units.

One can see again here, as was evident in Fig. 10, that
the Td values shift to higher temperatures with higher χ
values. At the same time, F (T ) for different samples at
T > Td collapse to a universal temperature dependence
[13]. This Figure also shows that in the temperature
range in the vicinity of the peak value of the flux (near
T = Td) the peak becomes more rounded with less cur-
vature for larger χ values.
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FIG. 12. (color online). The temperature dependence of the
normalized flux observed for 4He with several 3He impurity
concentrations and experimental conditions, with the solid
4He pressure 26± 0.2 bar. Fitted line: see text.

Td values determined from the data in Fig. 12 and
other data like them are shown in Fig. 13 to show how
the 3He concentration affects Td. Because there is hys-
teresis, we define Td to be the average of the value of
the temperature at the foot of the cooling and warming
data sets. It is natural to compare these temperature-
dependent data to the data on phase separation in solid
helium. According to Ref. [21], extrapolated to 26 bar,
the temperature of Solid-Solid (bcc 3He-rich inclusions
form inside the hcp 4He-rich matrix) phase separation
temperature, Tps, can be found from

Tps = [0.80(1− 2χ) + 0.14] / ln(1/χ− 1) (4)

and this is represented in Fig. 13 by the dashed line. The
number 0.80 in this expression comes from the extrapo-
lation to the pressure of our experiment. In the case of
bulk phase separation for our pressure range, another sit-
uation is present: liquid 3He-rich regions form inside the
solid 4He matrix (the so-called, Solid-Liquid case). This
scenario was calculated in Ref.[13] and is shown by the
solid line in the same Figure. It can be seen here that
our Td vs. χ dependence has a shape similar to but lies
above the solid-Liquid case for phase separation. This
will be discussed further in Section III C.
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FIG. 13. (color online). Temperature of the sharp drop in
F , Td. Inset: ln(χ) vs. 1/T ; see text. This figure has the
corrected temperature scale and is a revision of the similar
figure, Fig. 5, presented in Ref. [13].

In an attempt to further characterize the data we have
utilized several functions. In recent presentations[12, 13],
we have favored F = A − B exp(−E/T ), which is moti-
vated by the thought that some thermally activated pro-
cess may be relevant. Independent fits of this functional
dependence to all of the data sets results in the charac-
terization of the universal behavior of the temperature
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FIG. 14. (color online). Pressure dependence of the parame-
ter E.

dependence. We find a good characterization of the data
with .

F = F0[1− 1.21 exp(−E/T )], (5)

The value of E that results from such a characteriza-
tion of the data depends weakly on pressure as shown in
Fig.14. The higher the pressure (density), the lower the
value of E, i.e. the F (T ) dependence gets steeper with
pressure. The use of colors for symbols in this Figure is
the same as in Fig. 11 and Fig. 12. There is no apparent
dependence of E on χ.
The value of F0 may be interpreted to be proportional

to the number of conducting pathways inside the solid
helium. I.e. at T ∼ Th conducting pathways are being
partially annealed (completely in some cases) leading to
a substantial flux decrease in the whole Td < T < Th

temperature range on subsequent cooling.
As we have pointed out earlier[16] (e.g., Figure 9 in

that earlier work and the associated comments[16]) the
entire temperature dependence is not fully explained by
thermal activation since the flux extrapolates to zero at
a finite temperature. So, whatever controls the decrease
in flux with increasing temperature must have an expla-
nation that goes beyond simple thermal activation.
As an alternate approach to characterize the tem-

perature dependence, the normalized universal data for
T > Td from Fig. 12 can be inverted, (F )−1, to obtain
something we might call a flux resistance[22] as shown in
Fig. 15. This approach allows us to explore whether there
might be any power law behavior, although the tempera-
ture range is very narrow for such an approach. One can
see in Fig. 15 that there appears to be a crossover in the
behavior of the temperature dependence. The data for
the range of samples studied can be described reasonably

well by

(F )−1 = F (0.2K)/F = AT k +BTm, (6)

where A, B, k and m are parameters. We find that with
the choice of k = 1 a fit to the data yields m = 5.8± 0.3.

0.1 0.2 0.3 0.4 0.5 0.6

1

10

F(
0.

2K
) /

 F
(T

)

T(K)

(Fmax)-1 = AT + BTm

m = 5.8 +/- 0.3

FIG. 15. (Color online) Temperature dependence of the flux
resistance, (F )−1, measured through the solid sample (see
Ref.[13], Fig.4) and presented here on log-log scale. The solid
line is a fit of the data by Eq. (6) and the dashed and dotted
lines represent linear and T 5.8 behavior, respectively.

It is an open question as to what the origin of those two
apparently distinct contributions to the temperature de-
pendence of the mass flux resistance is. But, such behav-
ior is not without precedent for a quasi-one-dimensional
system. Consider, for example, the case of supercon-
ducting nanowires below the transition temperature, Tc.
These nanowires demonstrate nonzero resistance at any
finite temperature, apparently due to the presence of
phase slips in the order parameter that result in dissi-
pation, which destroys superconductivity. These phase
slips are due to thermal fluctuations at higher tempera-
tures close to, but below Tc, or to quantum-mechanical
tunneling at low temperatures, so-called quantum phase
slips (QPS). Electrical transport measurements in single-
crystal Sn nanowires [23] and its analysis [24] showed a
power-law dependence ρ(T ) ∼ Tα at T < Tc with an ex-
ponent α ≈ 5 for nanowires of diameter 20 and 40 nm,
but much larger values of α for larger wire diameters.
These data were interpreted in terms of the unbinding
of quantum phase slips with temperature. Also it was
predicted [25] that in the limit of very thin wires and low
temperatures, where unbound QPS behave as a gas, the
temperature dependence of the wire resistivity should be-
come linear at the transition to the disordered (i.e. non-
superconducting) phase. As shown in Fig. 15, the data is
consistent with a linear dependence of the flux resistance
for the flux that we observe at low temperature. The rela-
tionship that might exist between these rather different
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physical systems, conducting pathways in solid helium
and very thin wires, has not been explored theoretically,
but both systems may be describable by Luttinger liquid
theory.

B. Luttinger Liquid

An example of the non-linear behavior of F vs. ∆µ
shown in Fig. 3 is reasonably well represented by Eq.
(3), where b is less than 0.5, and within our errors is in-
dependent of T . An example of the independence of b
from temperature is shown in Fig. 16 for χ = 10.2 ppm.
Here, as in our earlier measurements for nominal purity
well helium[12], all of the temperature dependence is con-
tained in the amplitude A. We have previously shown
that for well helium b depends on pressure. As we have
suggested, this non-linear behavior and independence of
b from temperature supports the possibility that the flux
is carried by one-dimensional paths, e.g. perhaps the
cores of edge dislocations [12], and can be described by
the properties of a, so-called, Bosonic Luttinger liquid
[4].

0.1 0.2 0.3 0.4 0.5
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FIG. 16. (color online). Temperature dependence of fit pa-
rameters A (a) and b (b) for the data in Fig.3; see Eq.(3).

As noted, the exponent b is temperature independent,
but it depends on the solid helium pressure. The higher
the pressure, the larger is the value of b. Data for b as
a function of the distance from the melting curve, δP =
P −PMC is presented in Fig. 17 for nominally pure (170
ppb) helium as well as for a number of concentrations.
Although the number of concentrations for which we have
data adequate to determine b for a range of pressures is
limited, there is apparently no significant dependence of
b on χ.
The data for b above can be used to obtain the pressure
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FIG. 17. (color online). Pressure dependence of the fit param-
eter b. Open square data points here correspond to nominally
pure 4He samples (0.17 ppm 3He) and other data points rep-
resent the data for 3He-4He mixtures with χ > 0.17 ppm.
Here, δP is the distance above the melting curve in bar.

dependence of the Luttinger parameter, g. The param-
eter g provides a measure of the strength of the inter-
actions among the 4He atoms in one dimension. If we
presume that we have a number of independent random
scattering sites that introduce phase slips, then the Lut-
tinger parameter g can be obtained from b by means of
g = [(1/b) + 1]/2 [26]. The results shown in Fig. 18 sug-
gest that for such a scenario we are well in the Luttinger
regime, but that with increasing pressure g decreases and
we approach the non-superfluid regime. This is consis-
tent with previous work[10, 11] in which the flux dis-
appeared at higher pressures. The colors of symbols in
Fig. 18 have the same sense as in Fig. 17.
Based on the pressure (density) dependence of g and

E, Figs.18 and 14, respectively, one can see that 3He
impurities in its range studied do not affect these data.
This suggests that for T > Td there is no measurable 3He
role in either the F (∆µ) or the F (T ) dependencies.

C. COMMENTS

We have discussed the effect of 3He impurities on the
flux measured and we here summarize the 3He effects
that we have observed. First of all, there is a sharp flux
extinction at a characteristic temperature Td, which itself
depends on 3He concentration, χ, and this Td(χ) depen-
dence (see Fig.13) is reminiscent of the bulk phase sepa-
ration shifted to higher temperatures. Another point is
that this extinction is a slow process compared with the
thermal equilibration time for the solid (∼ 10’s of msec),
but a fast process (∼ 100’s of seconds), compared to the
time required for complete solid phase separation (dozens
of hours [27]) in samples of higher concentrations than we
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FIG. 18. (color online). Pressure dependence of the Luttinger
parameter, g, presuming that g = [(1/b) + 1]/2. Again here,
δP is the distance above the melting curve in bar.

have used here.

These facts suggest that the behavior of the 3He is rel-
evant. It is likely that only a small fraction of 3He is
responsible for the flux extinction and this phenomenon
is due to 3He redistribution in the vicinity of the phase
separation temperature. Work by Edwards et al.[28] indi-
cates deviations from T 3 behavior in the specific heat for
mixture solids for T > Tps. This suggests local

3He con-
centration fluctuations[29] are likely relevant to our ob-
servations; the 3He fluctuates in position and is thereby
able to block the flux at a temperature above the bulk
phase separation temperature. It is the case that for
the very low concentrations we have for the most part
used in this work, diffusion can be quite fast. This is
true whether the 3He considered is in the solid mixture
or elsewhere in a liquid mixture. We will explore this
further below.

Based on the F ∼ (∆µ)b dependence, as was already
shown in Ref.[12], we suggested that the flux could be
consistent with a one-dimensional scenario. One can en-
vision candidates for these 1D pathways: (1) liquid chan-
nels, e.g. between grain boundaries and the sample cell
wall[30] or (2) the cores of dislocations in solid helium.
But a number of other possibilities come to mind and
have at times been discussed. In an effort to be reason-
ably complete we will discuss them, at least briefly, here.
In doing so, we will offer comments and also present some
qualitative numerical calculations that relate to the 3He.

It has at times been suggested that the mass flux seen
to exist between the two reservoirs might not be an ac-
tual flux through the solid, but instead a crystallization
of the solid where mass enters and a melting where mass
leaves. We believe that this is not likely. Substantial
evidence that this is not the explanation is found in the

behavior of the flux when the history of the sample in-
cludes an increase in temperature above 650 mK and a
subsequent cool down to low temperatures. When this
sort of protocol is followed it is typically the case that the
warming-cooling cycle results in a substantial reduction
of the flux, or its elimination. We believe that were the
suggested crystallization process at work it should not be
much modified by such a cycle. Instead, we believe that
such a cycle, an annealing cycle, modifies the flow paths
that exist.

1. Liquid Channels

Although we have previously argued that liquid chan-
nels are likely not responsible for the flux, we discuss
them further here. Were they present, the superfluid
density in them could be reduced or eliminated by the
migration of 3He. Unfortunately, there is no reasonable
estimate of how many of these liquid channels there might
be. In the pressure range we have studied, the diameter
of these channels can be calculated [30] to be 6− 31 nm;
the higher the pressure, the smaller the channel diam-
eter. In the most extreme example, if one such liquid
channel were to span the distance between the Vyror rods
with diameter of 20 nm, to fill it with 3He would require
1.4× 1011 atoms. To take a specific case, if we take a 10
ppm 3He concentration for the 3He in the solid, there are
enough 3He atoms present in our solid mixture sample to
fill ∼ 3 × 106 such channels. Although we don’t have a
good estimate of the number of such channels, given the
expected diffusion times it appears that diffusion to such
channels would be a fast process. Thus, the presence of
3He would be expected to block flow through them.
In work reported in Ref. [31], torsional oscillator,

TO, measurements to determine the superfluid density,
ρs, were carried out for nanometer-size channels (folded
sheet mesoporous materials) of diameter D = 1.5 −

4.7 nm [31, 32] filled with superfluid helium. This study
revealed a transition from a Kosterlitz-Thouless behavior
to a 1D-like temperature dependence of the apparent su-
perfluid density only for D < 2.2 nm. The temperature
dependence they found, ρs for D = 1.8 nm [31], can be
well fit by Eq.(5) which has been chosen to fit our flux
temperature dependence, F (T ) (see Fig. 19). A value of
E ∼ 0.4 K for the parameter E is found for the data
of Ref.[31]. This functional dependence, which is not
present in the work of Ref.[31] above D = 2 nm, lends
support to the notion of a 1D scenario for our observed
flux and at least suggests that the liquid channels that are
predicted would be too large in diameter to demonstrate
1D behavior.

2. Wall Effects

Instead of liquid channels that might form at grain
boundaries, one might consider the possibility that a
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FIG. 19. (color online). Temperature dependence of the tor-
sional oscillator data from Ref.[31] for a pore diameter of 1.8
nm. Here ∆f/∆f(T = 0) is the relative frequency shift seen
in the torsional oscillator as a function of temperature. The
smooth curve is a fit of the data directly to Eq. (5) that we
have used to characterize the universal temperature depen-
dence of our flux through solid helium; we find in this case
E ∼ 0.4 K. If we convert to a flux resistance in this case, the
power law, Eq. (6), does not provide a reasonable fit.

rough cell wall surface might crate a percolating liquid
pathway along the cell wall that might carry a flux. We
doubt that this is a possibility because if this were the
case it is unlikely that warming the solid and then cooling
it would remove the ability of such percolating liquid to
show mass flux. These rough-valley wall-pathways should
persist on thermal cycling. But, a thermal cycle above
650 mK typically causes a substantial reduction in the
measured flux on subsequent cooling. This same reason-
ing concerning the behavior in response to thermal cycles
should also apply to the possibility of liquid channels at
grain boundaries unless annealing destroyed them.
Recently Livne et al.[33] have reported measurements

of the macroscopic relative motion of grains of solid 4He.
What relation that evolving work may have to mass flow
studies is not yet clear.

3. Dislocations

Based on the possibility of 1D conducting
pathways[34], one approach is to assume that 3He
impurities bind on dislocation cores (or their intersec-
tions) in the solid helium and block the flux that is
carried by such pathways. This notion is supported by
QMC simulations [35] that show that 3He impurities
diminish the superfluid density along the core of screw
dislocations in hcp 4He by binding on them. To illus-
trate this point, the inset to Fig.13 shows ln(χ) vs 1/T .
Straight lines here are presented by χ = exp(−R/T )

with R approximately independent of temperature, and
R = 0.94 K and 1.02 K for Solid-Solid (dashed curve)
and Solid-Liquid (solid curve) bulk phase separation,
respectively[13]. A fit of the Td data (squares, dark solid
line) by χ = exp(−R/T ) gives R = 1.11 K. A model[13]
that includes a small number of binding sites for 3He or
4He atoms yields the function form χ = exp(a − R/T ),
where exp(a)/(1 + exp(a)) is the minimum impurity
concentration that blocks superflux, and R includes
the binding energy. This function form gives better fit
(solid red line), with R = 1.32 K and a = 2.18. The
numbers reported in this paragraph are revisions of
those previously reported[13] because they take into
account the temperature scale revision mentioned earlier
in this report. This energy value is higher than the
measured[36–38] and predicted [35, 39] binding energy
(∼ 0.7 K) of single 3He atoms to dislocations. Although
to our knowledge it has not been calculated, the binding
energy to dislocation intersections should exceed this.
These facts are not inconsistent with the possibility
that the flux extinction results from the 3He binding to
dislocation intersections [35], where the 3He blocks the
flux. To our knowledge, the binding energy for 3He at
the intersections of dislocations has not been considered
theoretically and is not known.

It is perhaps useful to carry out qualitative numeri-
cal estimates that relate to the decoration of such cores
(or intersections) with 3He atoms. We will do this in
this section and again later with the recognition that at
times the choices we make will be arbitrary. There are a
number of unknowns. One of these is the number of such
structures that span the cell, Vycor to Vycor. We previ-
ously took[12] this number to be of order 105. If we take
the solid 4He density to be ≈ 2.9 × 1022 atoms/cm3 we
find that about 6×107 4He atoms would be along a 2 cm
direct strictly 1D pathway between the two Vycor rods; a
pathway of diameter ∼ 1 nm[34] would require ∼ 5× 108

atoms. Thus to fully decorate 105 such cores would re-
quire ∼ 1013 atoms (or ∼ 1014 for a 1 nm diameter case).
Since Corboz et al.[35] have shown that the decoration of
dislocation cores does not have to be complete to influ-
ence the superfluidity on the core, we rather arbitrarily
take a smaller number, ∼ 1 × 1012 atoms. Of course, a
much smaller number could also be relevant since only
a local dense decoration would be needed along a short
segment of a dislocation core or at an intersection to sub-
stantially reduce the flux. None the less, we continue
with this number. Now, in our experimental geometry a
3He concentration of 10 ppm results in the presence of
about 5.4×1017 3He atoms in the cell, which, if uniformly
distributed is a 3He density of 2.9× 1017 atoms/cm3.

So, we can ask from what volume the needed number
of atoms (e.g. for the 1013 case) would have to diffuse
in the solid to decorate the dislocation cores. If we as-
sume that these atoms diffuse from a cylindrical region
to a dislocation core on the axis of the cylinder we can
estimate the radial distance from the core over which
they would have to travel. We find this radial distance
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to be ∼ 1.5 × 10−4 cm. We can then ask how long this
will take. Those from a region near the core will arrive
relatively quickly while those from further away (an in-
creasing number in any radial interval) will arrive later.
For this we take the 3He diffusion constant near 26 bar
and 100 mK at ∼ 10 ppm (extrapolating from the work
of Eselson et al.[40]) to be D ≈ 1.5× 10−6 cm2/sec and
< x2 >∼ 6Dt, where t is the time, and we find the time
to be about 2.5× 10−3 seconds. For higher 3He concen-
trations the atoms would have to travel less far, but for
higher concentrations the diffusion constant is smaller.
The time for flux recovery at Td is well documented in
Fig. 6, but the time for flux extinction is not yet well de-
termined; we can only say that it is apparently less than
∼ 200 seconds. In spite of the approximations involved,
if we compare the computed numbers for diffusion times
with the times cited near Fig. 5 and Fig. 6 for the flux to
be extinguished or recover, we conclude that diffusion of
3He from the solid to dislocations or their intersections
is not likely the controlling constraint in the flux change
at Td. The diffusion would likely be a rather fast process
for the concentrations that we have studied.

4. A Helium Film

Another unlikely possibility is the flow of a helium film
along the surfaces of the Vycor and the experimental cell.
Were this to be the cause of the mass flux, one might ex-
pect that the temperature dependence would behave like
a Kosterlitz-Thouless transition. This behavior is not ev-
ident in the data shown in Fig. 4 or other similar sets of
data. None the less, we might imagine a surface layer of
liquid 4He at the walls with a thickness of two atomic lay-
ers. Such a liquid 4He layer is known to be located adja-
cent to a semi-solid layer next to a wall in liquid mixture
situations. The number of 4He atoms involved would be
∼ 1.4 × 1016. At 1 ppm 3He this is approximately the
number of 3He atoms in the cell. Given diffusion times,
it is conceivable such a film could be poisoned. But, the
fact that annealing reduces or eliminates the ability of
the solid to carry a flux when subsequently cooled argues
strongly against a superfluid film as the carrier of the
flux.

5. Vycor Pore Openings

Another possibility for what causes a reduction in the
flux at Td is 3He accumulation at the openings to the
Vycor pores. This possibility has recently been empha-
sized by Cheng et al.[41]. In their experiments a variation
of our approach was used. Instead of a superfluid-solid-
superfluid geometry, they used a solid-superfluid-solid ge-
ometry. They were able to observe some temperature de-
pendencies that are similar to those we have found in our
various experiments, particularly the presence of Td. In
their discussion of the pore opening scenario, which they

supported by calculations of the temperature-dependent
binding of 3He to various possible binding sites, the pic-
ture is that at Td the 3He moves to the solid-liquid in-
terfaces at the openings of the Vycor pores. Cheng et
al.[41] suggest the 3He atoms decorate the solid surface
at the pore openings. Another possibility could be accu-
mulation of 3He at the pore ends.

For the flux to be fully blocked by 3He in this sce-
nario, the openings of the pores where the superfluid in
the Vycor meets the solid must be blocked by 3He. For
our experimental apparatus each Vycor rod surface meets
the solid 4He over a macroscopic surface area of about 0.3
cm2. Given the properties of Vycor, we estimate that the
open area of this surface that is comprised of pore open-
ings is no less than 0.084 cm2. Each pore of diameter 7
nm will have an open area at the surface of the Vycor
no less than 3.84× 10−13 cm2. The number of such pore
openings is estimated to be at least 2.18 × 1011. All of
these need to be blocked by 3He. How much is needed
at each pore opening? It is not clear that one monolayer
would be adequate. If accumulation in the pore opening
is responsible, more would be needed. So, as a specific
case, we take as an estimate a distance along the pore
of two pore diameters and presume that if this volume
were to fill with 3He the pore would be blocked. This
choice is certainly arbitrary; a greater or smaller length
certainly might be appropriate. But, this choice might
be appropriate for a model in which the 3He blocks the
pore itself by filling it at the end. In the vicinity of 100
mK the expected phase separation for a liquid 3He-4He
mixture indicates that if the 3He were to be in the pores
and blocking the flux it would be due to a high concentra-
tion normal mixture in the pores. Clearly our numbers
provide only a rough estimate, but it is not unreasonable.
As we will show, there is more than enough 3He for the
pore-blocking scenario.

To fill such a volume for all of the pores would require
≈ 2.6× 1015 atoms. At 10 ppm, this is about 0.5 percent
of all of the 3He available; for higher (lower) concentra-
tions it is a proportionally smaller (larger) fraction. So,
we can ask in this case about how long it will take for
the 3He to accumulate at the pore openings by migration
from the solid. We take the same parameters of 26 bar,
10 ppm 3He with a diffusion constant of ≈ 1.5 × 10−6

cm2/sec and note that the 3He will have to travel macro-
scopic distances. For the case of 10 ppm 3He we find that
the time required is ∼ 20 seconds. It is much shorter if
all that is required is the appearance of a monolayer on
the solid surface. Changing the concentration changes
the time required; increasing the length of the pore that
needs to be filled with 3He increases it. These estimates
are short times compared with the times shown for recov-
ery of the flux documented in Fig. 6, especially when it
is recognized that as 3He accumulates in the solid near a
pore opening the local concentration may increase, which
will cause the diffusion constant to decrease[40]. Were
the 3He to accumulate at the solid-liquid interface from a
liquid mixture in a pore, we estimate that the time would
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be fast (∼ msec). As we have noted, flux extinction is
complete in ∼ 200 seconds; recovery in ∼ 500 seconds.
These equilibration times are substantially longer than
the diffusion estimates, unless, for example, the diffusion
is from the solid and a much longer pathway in a pore
must accumulate 3He for the flux to be blocked. One fact
that lends support for the mixture solid as the source of
the 3He is the fact that the Td vs. χ behavior closely
resembles the phase separation locus (solid line, Fig. 13).
There is need for for more work to better understand the
duration time for flux recovery and the details of how the
3He manages to cause the conductance transition.
To explore the flux increase for T < Td at the lowest

concentrations it may be that the 3He is exhausted and
incompletely effective in blocking the flux from the pores.
For the case of 0.17 ppm 3He the filled cell will have
9.2 × 1015 3He atoms in it. As we have noted, to fill
the pores to a depth of two pore diameters will require
≈ 2.6× 1015 atoms. We have seen that the flux recovers
for 3He concentrations up to 10 ppm (in which case there
are 5.4 × 1017 3He atoms in the cell). These estimates
have a number of assumptions; in spite of them it is not
clear why there is not enough 3He to completely block the
flux. The transition to low flux for low concentrations is
not complete. One possible cause for this, if the 3He
source is the solid, is that at a given temperature, which
is Td for the concentration in the solid, once 3He atoms
begin to leave the solid matrix, the solid now contains a
lower concentration of 3He. This naturally shifts the Td

to a lower temperature and at the given temperature no
additional 3He atoms leave the matrix. This observation
explains the fact clearly seen in, for example, Fig. 4 and
evident in other data sets, that the flux in the middle
of the Td region is stable if the temperature is fixed[17].
That is, the data taken while cooling or warming is stable
once a fixed temperature is achieved.

6. Behavior above and below Td

It is not clear what might explain the universal tem-
perature dependence above Td. And, unless the estimates
made here are substantially in error, it is also not fully
clear why the flux increases for low 3He concentrations

below Td. One possibility below Td is that if the 3He
has been exhausted, but the blockage incomplete, then
a lower temperature could be expected to provide an in-
crease in the superfluid density in the confining conduc-
tance pathway.

In very recent work we have reported evidence that for
the region of universal temperature dependence, T > Td,
the limitation to the flux is unrelated to the Vycor inter-
face with the solid and takes place in the bulk solid[42].
This suggests that this temperature dependence may be
due to a temperature-dependent superfluid density along
the conducting pathways. Additional work is currently
in progress and will be discussed more extensively in a
future publication.

IV. CONCLUSIONS

We find the presence of 3He as an impurity in hcp solid
4He has a strong effect on the sharp flux reduction at a
concentration-dependent characteristic temperature Td.
On the other hand, we find that the presence of 3He does
not alter the universal temperature dependence of the
limiting mass flux above Td. The magnitude of the flux
is typically sample-dependent, and sample-dependent at
any concentration, but the temperature dependence is
universal. The specific reason for the universal temper-
ature dependence for T > Td remains unresolved. It is
likely due to the physics associated with the conducting
pathways. The results also suggest that the presence of
3He does not destroy the apparent Luttinger-like behav-
ior of the flux. More experimental and theoretical study
of solid helium and 1D superfluidity[7, 31, 43] and its
pressure dependence are certainly needed.
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