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We study the spin-fluctuation-mediated superconducting pairing gap in a weak-coupling approach
to the Hubbard model for a two dimensional square lattice in the paramagnetic state. Performing
a comprehensive theoretical study of the phase diagram as a function of filling, we find that the
superconducting gap exhibits transitions from p-wave at very low electron fillings to dx2−y2 -wave
symmetry close to half filling in agreement with previous reports. At intermediate filling levels,
different gap symmetries appear as a consequence of the changes in the Fermi surface topology and
the associated structure of the spin susceptibility. In particular, the vicinity of a van Hove singularity
in the electronic structure close to the Fermi level has important consequences for the gap structure
in favoring the otherwise sub-dominant triplet solution over the singlet d-wave solution. By solving
the full gap equation, we find that the energetically favorable triplet solutions are chiral and break
time reversal symmetry. Finally, we also calculate the detailed angular gap structure of the quasi-
particle spectrum, and show how spin-fluctuation-mediated pairing leads to significant deviations
from the first harmonics both in the singlet dx2−y2 gap as well as the chiral triplet gap solution.

PACS numbers: 74.72.-h,74.20.Rp,74.25.Dw

I. INTRODUCTION

The Hubbard model for electrons in metals
is considered by many to contain the essential
ingredients for high-temperature unconventional
superconductivity.1–5 Most recently, it was also realized
with ultracold atoms in optical lattices.6–8 In contrast
to bulk materials, the interaction strength and e.g. the
concentration of fermions can be changed relatively
easily in optical lattice systems, allowing for systematic
studies of the regimes of doping also far away from
half filling (one electron per site). Theoretically,
there has been significant progress in understanding
unconventional superconducting instabilities driven by
repulsive interactions, particularly in the weak-coupling
limit,9–13 and within various numerical techniques
discussed in Ref. 14 and more recently in Refs. 15–18.
At present, however, the superconducting phase diagram
of the two dimensional Hubbard model remains largely
unknown, especially at intermediate fillings and at low
temperatures.

Superconductivity mediated by antiferromagnetic
(AF) spin fluctuations near half filling was studied e.g. in
the early work of Scalapino et al.3 for a three dimensional
paramagnetic system close to an AF instability. There
it was found that the Coulomb repulsion between
two electrons may give rise to a substantial Cooper-
pairing strength due to the proximity of the AF
instability. In this case, the superconducting gap
symmetries are intimately related to the structure of the
paramagnetic spin susceptibility, and therefore sensitive
to the geometry of the Fermi surface. In the work of
Scalapino et al.,3 it was found that the dx2−y2 solution is

favored close to half filling as a consequence of the spin
susceptibility peak at the AF wave vector Q = (π, π, π),
whereas the limit of very small electron filling prefers
a spin triplet p-wave solution due to a susceptibility
peak near q = (0, 0, 0). These arguments also carry
over to two dimensions, where the corresponding wave
vectors are (π, π) and (0, 0), respectively. Since the
seminal work of Ref. 3, spin-fluctuation pairing in
the two dimensional Hubbard model has been studied
extensively by analytical and numerical approaches, and
the sensitivity to the underlying Fermi surface gives
rise to a particularly rich phase diagram with many
emerging gap symmetries. In particular, it has been
noted that there is support for triplet superconductivity
in a quite large region of doping in the limit of small
U .19 In Ref. 13 it was found that the vicinity of
a van Hove singularity near the Fermi level causes
enhancement of the triplet superconductivity compared
to singlet solutions for sizable values of nearest-neighbor
hopping integrals. Furthermore, it was found that
the superconducting phase diagram in the single-band
Hubbard model (with t′ = 0) is quite robust against an
inclusion of the long-range Coulomb interaction at least
in the weak-coupling limit.20

In fact, the dominant interest of the community
regarding possible superconducting channels and angular
variations of the superconducting gaps on the Fermi
surface was often restricted to the doping near the half-
filling because of the high-Tc cuprates. In this regard,
there is a consensus that the dominating gap symmetry
of moderately hole- or electron-doped cuprates is of the
dx2−y2-wave form.21,22 Many experiments, however, find
evidence that the quasi-particle gap does not always
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follow the simplest lowest order harmonic form as given
by ∆k = ∆[cos(kx) − cos(ky)]; the gap may exhibit its
maximum value not at the antinodes, as would be the
case for the leading harmonic d-wave form, but at a
different location on the Fermi surface. In the electron-
doped compounds, such a non-monotonic d-wave form
was observed e.g. in Raman spectroscopy on NCCO23

and in ARPES experiments on PLCCO.24 In these cases,
the position of the maximum gap value was related to
the position of the so-called hot spots, i.e. segments of
the Fermi surface which are connected by Q = (π, π).
This points towards a pairing interaction mediated by AF
spin fluctuations, in which case we expect the dominating
pairing strength at Q, and consequently the largest gaps
to be located at pairs of k and k′ on the Fermi surface
separated by Q. In the case of hole doped cuprates,
ARPES experiments report enhancement of the gap in
the antinodal regions.22 This has been attributed to
the presence of the pseudo-gap since mainly cuprates
in the underdoped regime display a significant non-
monoticity of the observed gap, and the antinodal gap
is known to persist above Tc.

22 However, one report
on La2−xSrxCuO4 with hole doping of 15 %,25 close
to optimal doping, found a strong deviation from the
[cos(kx) − cos(ky)] form. This indicates that the non-
monotonicity may not be entirely caused by the pseudo-
gap, and it is possible that spin-fluctuation pairing effects
also cause gap enhancements near the antinodal regions
of hole-doped cuprates.

Quite generally, the interplay of spin fluctuations,
superconducting gap and the underlying Fermi surface
topology is an interesting characteristic of spin
fluctuations mediated Cooper-pairing within the weak-
coupling approach. In this regard, it is essential to
study their evolution not only near half-filling but
also for the entire phase diagram of the single-band
Hubbard model. Despite previous efforts in this
direction13,16,19,26,27, the systematic knowledge on the
weak-coupling superconducting phase diagram for the
single-band Hubbard model is still missing, especially for
the intermediate doping range and t′/t > 0.5.

In this paper, we investigate the spin-fluctuation-
mediated pairing interaction within the RPA for a large
set of possible singlet and triplet solutions to the gap
equations within a weak-coupling approach for the entire
doping range and strong asymmetry between electron
and hole doping. Concentrating on the less explored
intermediate doping range, we show how the shape and
topology of the Fermi surface play a decisive role for the
final preferred gap symmetry. In particular, we find that
the change of the Fermi surface topology, associated with
the chemical potential crossing the van Hove singularity
with a logarithmic divergence in the density of states, has
a strong effect on the potential gap solutions in various
symmetry channels, and favors a higher order triplet
gap over the singlet dx2−y2 solution even at significant
electron filling. We study how the different gap symmetry
solutions evolve as a function of filling and next-nearest

neighbor hopping integral t′/t, and map out the detailed
gap structure arising directly from the spin-fluctuation
pairing mechanism. This includes deviations from the
[cos(kx) − cos(ky)] form of the superconducting gap in
the singlet channel close to half filling, as well as the form
of the higher order triplet gap. In the triplet channel we
find that the preferred solutions are those that break time
reversal symmetry.

II. MODEL AND METHOD

We consider the Hubbard model for a two-dimensional
square lattice

H =
∑
kσ

ξkc
†
kσckσ +

U

2N

∑
k,k′,q

∑
σ

c†k′σc
†
−k′+qσc−k+qσckσ,

(1)
where ξk = −2t[cos(kx)+cos(ky)]−4t′ cos(kx) cos(ky)−µ
with t being the hopping integral to nearest neighbors,
and t′ < 0 the hopping integral between next-nearest
neighbors. In the following we set t = 1 and restrict
ourselves to the case of negative values of t′.

A spin-fluctuation-mediated interaction can combine
two electrons of opposite spin or the same spin into
a Cooper pair. The pairing interaction is derived
from higher order diagrams of the repulsive Coulomb
interaction U .3,28 In the case of opposite electron spins,
the diagrams consist of an even number of bubbles as well
as ladder diagrams, which correspond to spin preserving
or spin flip interactions, respectively. For same spin
electrons, the interaction is derived from an odd number
of bubble diagrams, and in this case only spin preserving
interactions are allowed. Specifically, the interactions are
given by3

Γopp.sp
k,k′ = U +

U2

2
χsp(k−k′) −

U2

2
χch(k−k′) + U2χsp(k+k′),

(2)

Γsame sp
k,k′ = −U

2

2
χsp(k−k′) −

U2

2
χch(k−k′), (3)

with the spin and charge susceptibilities given by

χspq =
χ0(q)

1− Ūχ0(q)
, (4)

χchq =
χ0(q)

1 + Ūχ0(q)
. (5)

Here Ū = U/z is a renormalized Coulomb interaction.
In the main part of the paper we use z = 1
corresponding to the usual RPA, but when solving
the full gap equation we use a renormalization (z =
2, 3) to achieve a larger pairing strength for numerical
convergence. Equations (2) and (3) provide a measure
of the interaction strength, and we neglect the energy
dependence of the interactions. The bare susceptibility in
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the paramagnetic phase is given by the Lindhard function

χ0(q, ω) =
1

N

∑
k

f(ξk+q)− f(ξk)

ω + ξk − ξk+q + iη
, (6)

which is evaluated a zero energy (ω = 0). The gap
equation arises from a standard mean-field decoupling
of the interaction Hamiltonian. In the singlet (s) and
triplet (t) channel it takes the form

∆
s/t
k = − 1

2N

∑
k′

Γ
s/t
k,k′

∆
s/t
k′

2E
s/t
k′

tanh
( Es/tk′

2kBT

)
,

(7)

with

Ek =

√
ξ2k + |∆s/t

k |2. (8)

In the calculation of the superconducting gap, the
potential forms stated in Eqs. (2) and (3) must
be symmetrized or antisymmetrized with respect
to momentum in the singlet and triplet channel,
respectively. In case of singlet pairing, the interaction
potential Γk,k′ is given by the opposite spin vertex, as
stated in Eq. (2), and we have

Γsk,k′ = Γopp.sp
k,k′ + Γopp.sp

−k,k′ . (9)

For triplet pairing, the same effective interaction is
obtained irrespective of whether the same spin or
opposite spin interaction vertex is used

Γtk,k′ = Γopp.sp
k,k′ − Γopp.sp

−k,k′ = Γsame sp
k,k′ − Γsame sp

−k,k′ (10)

This is as expected in the paramagnetic phase. Note
that the potential entering Eq. (7) appears in the singlet
(even in k) and triplet (odd in k) form explicitly. This
symmetry directly carries over to the gap, ensuring that
∆s

k = ∆s
−k and ∆t

k = −∆t
−k.

In order to capture the filling dependence of the
most prominent gap candidates, we project the pairing
potential onto the leading order gap harmonics given by

s∗ = cos(kx) + cos(ky), (11a)

dx2−y2 = cos(kx)− cos(ky), (11b)

dxy = sin(kx) sin(ky), (11c)

g = [cos(kx)− cos(ky)] sin(kx) sin(ky), (11d)

p = sin(kx), (11e)

and the higher order triplet solution

p′ = [cos(kx)− cos(ky)] sin(kx). (12)

Note that in the literature on Sr2RuO4 the p′ solution is
sometimes called fx2−y2-wave.29 The two triplet solutions
p and p′ belong to the same two-dimensional Eu group,
and are visualized in Fig. 1. We follow the procedure
of Scalapino et al.3 and calculate the projection of the
interaction vertex onto the basis functions

kx[π]
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y
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FIG. 1. (Color online) Illustration of the triplet gaps p-wave
(a) and p′-wave (b). The latter is favored in the doping
regime where the spin susceptibility has a peak or plateau
at Q = (π, π). The magnetic zone boundary is indicated by
the dashed red line. Nodal lines in the two cases are shown
by full black lines.

λ̄α = −
∫
FS

dk

|vk|

∫
FS

dk′

|v′k|
gα(k)Γ

s/t
k,k′gα(k′)/

∫
FS

dk

|vk|
g2α(k),

(13)

with gα being one of the functions stated in Eqs. (11a)-
(12). This procedure does not include possible higher
order solutions. To determine these, we also solve the
linearized gap equation in the singlet and triplet channel[

− 1

2(2π)2

∫
FS

dk′

|vk′ |
Γ
s/t
k,k′

]
∆k′ = λk∆(k), (14)

by diagonalization of the matrix

Mk,k′ = − 1

2(2π)2
lk′

|vk′ |
Γ
s/t
k,k′ . (15)

Here k and k′ are located on the Fermi surface and lk
is the length of the Fermi surface segment associated
with the point k. By this procedure we identify
the leading instability as a function of electron filling
and next-nearest neighbor hopping constant, t′. We
characterize the leading singlet solution according to its
transformation properties into one of the four singlet
representations A1g : s∗, B1g : dx2−y2 , A2g : g, B2g : dxy.
Note that the square lattice has one class of triplet
solution (Eu) of which the p-wave is the lowest harmonic.
However, in general we find the leading triplet solution
to be higher order, as discussed in detail below.

The linearized gap equation does not allow for a
determination of complex gap solutions, which are time
reversal symmetry broken (TRSB) solutions. TRSB
solutions can lead to a removal of gap nodes from the
Fermi surface whereby there is a gain in condensation
energy. In the triplet channel, where solutions are doubly
degenerate, TRSB solutions might be favored due to this
effect. Therefore, we also address the non-linearized gap
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FIG. 2. (Color online) (a-j) Spin susceptibility in the RPA approximation and (k-t) Fermi surfaces for fillings 〈n〉 =
0.05, 0.35, 0.50, 0.65, 0.80 and 〈n〉 = 1.05, 1.2, 1.35, 1.55, 1.90 with t′ = −0.35 and U = 1.75. The AF zone boundary is shown
by the dashed red line. Note the different colorbar range for each susceptibility plot. (u) Phase diagram for λ as stated in
Eq. (13) for a band with t′ = −0.35 and U = 1.75. The temperature is kBT = 0.015. Projection onto s∗-wave (cos kx + cos ky)
gives a negative value of λ at all fillings. The left inset shows a zoom for low filling values 〈n〉 = 0− 0.2. The inset to the right
shows the density of states at the Fermi level, ρ(0), as a function of filling. Note that at the filling for which ρ(0) is maximal
the triplet p′ solution is the leading instability. This we refer to as the van Hove critical density. For t′ = −0.35 the van Hove
critical density is 〈n〉vH=0.66.

equation as stated in Eq. (7) and show that the full self-
consistent calculation finds that the triplet solutions are
TRSB. Finally the solution of the full gap equation is
used to obtain the angular structure of the resulting gap
which may exhibit significant changes from the standard
lowest harmonic due to the details of the momentum
structure of the spin susceptibility.

III. RESULTS

A. Doping dependence of the lowest harmonic
solutions

First we consider the Fermi surfaces and spin
susceptibilities throughout the entire doping range for
a next-nearest hopping integral t′ = −0.35 relevant for
cuprates. As opposed to the early work in Ref. 3, which
reported the t′ = 0 case, we pay special attention to
the electron-hole asymmetric case when the next-nearest
neighbor hopping t′ is non-zero. In Fig. 2(k-t) the Fermi
surfaces at different electron fillings are shown. Note

the transition of the Fermi surface between Fig. 2(n)
and Fig. 2(o). In the latter case, the Fermi surface has
”split up” at the antinodal positions (π, 0) and (0, π).
This splitting occurs when the van Hove singularities at
(±π, 0) and (0,±π) cross the Fermi level for a chemical
potential of µ = 4t′. For t′ = −0.35 this happens at the
van Hove critical density, 〈n〉vH = 0.66.

The spin susceptibilities at the corresponding doping
levels are shown in Fig. 2(a-j). At very large dopings the
susceptibility exhibits a broad peak around q = (0, 0) as
seen in Figs. 2(a) and 2(j) which develops into peaks at
(±π, 0) and (0,±π) as the doping is decreased as seen
for 〈n〉 = 0.35 in Fig. 2(b). At intermediate doping levels
the peaks at (±π, 0), (0,±π) move inwards, and develop
into the well-known quartet of incommensurate peaks at
(π ± δ, π) and (π, π ± δ) as shown in Fig. 2(c), with δ
decreasing as the system gets closer to half filling. A
special feature is observed for fillings close to the van
Hove critical density as seen from Fig. 2(d) where a q =
(0, 0) peak develops as a direct consequence of the large
density of states at the Fermi level. Close to half filling, a
clear peak around Q = (π, π) develops as shown Fig. 2(e-
g). Finally, at very large fillings the spin susceptibility
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FIG. 3. (Color online) Phase diagram of the leading
superconducting instability as a function of electron filling
〈n〉 and next-nearest neighbor hopping constant |t′| at a
temperature of kBT = 0.015. Throughout, the value of U
is adjusted such that the leading eigenvalue is λ = 0.1. The
value of U is indicated by contour lines. For values of U < 3,
the eigenvalue is shown in full color. For large U values in
the range 3 − 8 the eigenvalue is shown with brighter color
in order to indicate this. We include only fillings 〈n〉 ≤ 1.5
since the instability is negligible for higher electron dopings
for U < 8. The four green stars mark the positions for which
we plot the singlet solutions in Figs. 8 and 10, and the two
black filled circles mark the position for which we solve the full
(non-linearized) gap equation in the triplet channel, Fig. 7.

becomes almost featureless as seen from Fig. 2(h-j).

In order to map out the filling dependence of the
gap symmetries as defined in Eqs. (11a)-(12) we project
the pairing potential onto these symmetries as stated
in Eq. (13). In the following, we do not show the s∗-
wave results since these are highly suppressed at all
doping levels. We have chosen the Coulomb interaction
U = 1.75. While this choice leads to small values of λ, it
allows us to avoid the instability to long range magnetic
order over the entire phase diagram. At very large hole
and electron dopings, the peaks in the spin susceptibility
are weak in intensity and, as a direct consequence, the
projected pairing strengths are relatively small compared
to half filling. This doping regime has a leading triplet
p-wave solution, which for the hole doped case is visible
from the left inset of Fig. 2. This is in agreement with
the result of the t′ = 0 band.3 In the filling regime
〈n〉 ∼ 0.2 − 0.4, the g-wave solution is favored, whereas
none of the lowest harmonic solutions are supported in
the filling regime around 〈n〉 = 0.45. It is important
to note that the projection method does not take into
account possible higher order solutions. These might
dominate in some regions. For instance, the absence of
a positive λ for 〈n〉 ∼ 0.45 indicates that the leading
solution in this region is a higher order solution. For the
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FIG. 4. (Color online) (a) Spin susceptibility Re χ0(q, ω = 0)
at the wave vector q = (0, 0) as a function of filling, 〈n〉 and
next-nearest hopping constant t′. The full black line and the
black dashed-dotted line show where the van Hove singularity
crosses the Fermi level at the positions (±π, 0)/(0,±π) and
(k,±k), with k = ± cos−1( 1

2|t′| ), respectively. The dashed line

shows where a hole pocket is removed from the Fermi surface.
(b) Spin susceptibility weight at the wave vector Q = (π, π).
(c) The wave vector q, for which the bare spin susceptibility
achieve its maximum value (color indicates q according to
inset), plotted as a function of filling 〈n〉 and next-nearest
hopping constant t′.

more general solution we determine the leading solution
to be a higher order s∗-wave in this case, as we shall see
below.

Close to half filling the dx2−y2 solution is clearly
dominant. When the system is hole doped away from
half filling, the dx2−y2 solution becomes increasingly
strong as the van Hove critical density, 〈n〉vH = 0.66,
is approached. However, an abrupt change occurs
very close to the van Hove critical density, where the
dx2−y2 solution becomes unstable. This is manifested
by a sharp dip of the dashed cyan curve in Fig. 2(u).
The dx2−y2 solution becomes unfavorable due to the
development of a peak at q = (0, 0) in the susceptibility.
This gives rise to a large repulsive interaction between
neighboring momenta k and k′ in the singlet channel,
and causes a suppression of all singlet solutions, in this
case the dx2−y2 solution. Such a suppression of singlet
superconductivity due to the q = (0, 0) peak in the
spin susceptibility was originally discussed by Berk and
Schrieffer28 in their pioneering work on spin-fluctuation
mediated pairing. As clearly visible in Fig. 2(u) the
sharp dip of the singlet solution around the van Hove
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critical density is accompanied by an increase in the
triplet solution p′ shown by the red line. Thus, the
q = (0, 0) susceptibility peak not only suppresses the
singlet solution, but actually supports the development of
a triplet gap because it gives rise to an effective attraction
for neighboring k and k′ at the Fermi surface. In the
absence of additional structures in the spin susceptibility
the p-wave solution is favored, as in the case of very small
filling shown in the inset of Fig. 2(u). However, if the
spin susceptibility shows additional peaks as in the case
of fillings close to the van Hove critical density, Fig. 2
(d), higher order triplet solutions will be favored. The
detailed structure of the potential turns out to favor a
six node p′-wave gap, see Eq. (12) and Fig. 1(b). We will
return to this is section III C.

B. Phase diagram as a function of doping and t′

In order to further investigate the generality of the
results obtained by projection in Fig. 2 we turn to a
solution of the (non-projected) linearized gap equation,
Eq. (14), for different next-nearest neighbor hopping
strengths |t′| in the range 0 − 1.5. In contrast to the
projection method, this general procedure determines
the leading solution amongst all possible higher order
harmonics. We classify the solution according to its
transformation properties into one of the four singlet
solutions s∗, dx2−y2 , dxy, g or triplet. In the
two subsequent sections, we will discuss the triplet
states in more detail. Note that in general solutions
may correspond to higher order harmonics and have
additional nodes compared to the leading harmonics
given in Eqs. (11a-11e). For each point in the phase
diagram (〈n〉, t′) we solve Eq. (14) and adjust the value of
U such that the leading eigenvalue is λ = 0.1. The result
of this procedure is shown in Fig. 3, where the leading
superconducting instability for fillings and next-nearest
neighbor hopping strengths in the range 0−1.5 is shown.
This procedure is justified as follows. Since we cover a

k
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FIG. 5. Fermi surfaces for t′ = −0.8 at three fillings. (a) At
small fillings, 〈n〉 = 0.3, the Fermi surface consists of four
electron pockets centered at (±π, 0) and (0,±π). (b) For
a filling of 〈n〉 = 0.9, which is above the van Hove critical
density, a hole pocket is centered at (0, 0) and four hole
pockets are centered at (±π,±π) and (±π,∓π). (c) At a
larger filling, 〈n〉 = 1.14, the central hole pocket is removed
from the Fermi surface.

large range of different Fermi surface structures, a fixed
value of the Coulomb interaction of e.g. U = 2 will cause
a break-down of the paramagnetic RPA formalism due to
the instability to long range magnetic order. By allowing
for a variation in U this is avoided, and at the same time
we discuss only instabilities with a non-negligible critical
temperature. Note that this approach is different than
a previous report,19 where the genuinely weak-coupling
approach U → 0 limit was taken. Nevertheless, our
results show some qualitative agreement with Ref. 19;
a g-wave and a (small) dxy region appear in the filling
regime of 〈n〉 = 0.25 − 0.4 for |t′| < 0.5 and at fillings
around 〈n〉 = 0.7 a dx2−y2 region dominates at all
|t′| < 0.4, whereas an s-wave domain takes over for
0.4 < |t′| < 0.5 in this filling regime. In our approach,
the region of triplet solutions has substantially shrunk
compared to Ref. 19, with different higher order singlet
solutions taking over in the regime of small t′ close to
a filling of 〈n〉 = 0.5. In the case of large electron
dopings, where the spin susceptibility shows only very
weak structure, U must be very large to obtain a leading
instability of λ = 0.1 and we omit this regime in Fig. 3.
Further, regions for which U > 3 the colors are less
saturated to indicate this.

The structure of the spin susceptibility plays a decisive
role for the gap symmetry, and this is very tightly
connected to the geometry of the Fermi surface. Two
different regimes of t′ give rise to very different Fermi
surface geometries. For |t′| < 0.5 the Fermi surface
evolution as a function of doping is similar to the case
t′ = −0.35 shown in Fig. 2(k-t). In this case, a
transition of the Fermi surface occurs when the van Hove
singularities at (±π, 0) and (0,±π) cross the Fermi level.
This happens when µ = 4t′. For |t′| > 0.5 the transition
occurs at µ = 1/t′ and invokes van Hove singularities at
diagonal positions ky = ±kx = ± cos−1( 1

2|t′| ). The Fermi

surface evolution with doping for t′ = −0.8 is depicted
in Fig. 5. For the special case of |t′| = 0.5 the van Hove
singularity resides at the bottom of the energy band.

The correlation between the van Hove singularity at
the Fermi level and the appearance of spin susceptibility
weight at the wave vector q = (0, 0) is shown in Fig. 4(a).
Here the value of the spin susceptibility at q = (0, 0) is
shown as a function of 〈n〉 and t′. We also show where the
van Hove singularity crosses the Fermi level, indicated by
the full black line in the case of |t′| < 0.5) and the dashed-
dotted line for the |t′| > 0.5 case. The black dashed line
shows where a hole pocket is removed from the Fermi
surface. In Fig. 4(b) the spin susceptibility weight at
the wave vector Q = (π, π) is depicted. As expected,
the signatures of a strong peak at Q are clearly visible
near half filling and t′ = 0. The weight at Q expands
in a doping region around half filling for |t′| < 0.5. In
addition, it shows a clear correlation with the van Hove
critical density shown by the full black line. This explains
why the dx2−y2 solution is increasingly favored upon hole
doping away from half filling for t′ = −0.35, as observed
in Fig. 2(u).
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FIG. 6. (Color online) Singlet (dashed lines) and triplet (full lines) pairing interaction in the form stated in Eq. (7), Γ
s/t

k,k′±Γ
s/t

−k,k′

for filling (a) 〈n〉 = 0.80 and (b) 〈n〉 = 0.65. Two different positions of the momentum k have been chosen, as shown by the
colored crosses in the Fermi surface inset. The pairing between k and all k′ in region (1), (2), (3) and (4) of the Fermi surface
are shown in the main panels with the position of k′ being parametrized by the angle θ measured with respect to the x axis.
The next-nearest neighbor hopping is t′ = −0.35 and the Coulomb interaction is U = 1.75.

By a comparison of the red regions in Fig. 3 and
Fig. 4(a), we observe that the two triplet solution
branches that expand from the low filling regime in
Fig. 3 are explained by the weight at q = (0, 0) in
the spin susceptibility, which is correlated with the
van Hove critical densities. This is in agreement
with the expectations that a q = (0, 0) peak in
the pairing interaction favors triplet superconductivity.
The reason why we see a shift from triplet to singlet
(dx2−y2) superconductivity at the lower red branch
around 〈n〉 ∼ 0.6 is because the Q peak becomes
dominant in this regime. This transition from triplet
to dx2−y2 superconductivity is most clearly visible in
Fig. 4(c), where we capture the dominating structure
of the spin susceptibility at every position (〈n〉, t′) of
the phase diagram, by plotting the wave vector q for
which the bare spin susceptibility achieves its maximum
value. Note how the structure of the spin susceptibility
transforms from being dominated by a q ∼ (0, 0) peak
in the regime of the triplet branch, to being dominated
by the Q peak. Also, from the large magenta region in
Fig. 4(c) we see why triplet superconductivity governs the
phase diagram in an extended regime around |t′| = 0.5
for small fillings. As expected, a Q peak dominates in
the region around half filling.

In other regions of the phase diagram where we observe
a different type of singlet superconductivity, other q
structures of the susceptibility become dominant, as seen
in Fig. 4(c). Note, however, that subdominant features in
the susceptibility which might influence the gap equation,
are not visible from this figure. The large region of dxy
superconductivity, which occurs at small to moderate
hole dopings and small electron dopings for |t′| > 0.5 is
correlated with spin susceptibility peaks near (π, 0) and
(0, π). We return to the different manifestations of the

dxy for small and large |t′| in section III F.

C. Triplet gap at the van Hove critical density

In the section above we saw how the suppression
of singlet superconductivity and concurrently, the
development of a triplet gap is intimately related to a
q = (0, 0) peak in the susceptibility which occurs at the
van Hove critical density. Now we turn to a more detailed
investigation of the structure of the pairing potential and
the consequences for the favored gap symmetries. In our
model two contributions are important for the pairing
structure: 1) the hot spot effect, which for most filling
levels is more accurately described as a plateau around Q
rather than a sharp peak at Q as seen e.g. from Fig. 2(f),
2) the van Hove effect with pairing contributions arising
due to the appearance of a quartet of peaks at the
diagonal corners at qvH = (δ, δ) where δ → 0 as the
van Hove singularity crosses the Fermi level (in the case
of |t′| < 0.5). The peaks at qvH are visible in Fig. 2(e)
and appear as a purple region in Fig. 4(c) when hole
doping is increased towards the van Hove critical doping,
shown by the full black line in Fig. 4(c). To visualize
the hot spot effect and the van Hove effect explicitly, we
plot the pairing potential for the band with t′ = −0.35
and fillings 〈n〉 = 0.80 and 〈n〉 = 0.65 in Fig. 6(a) and
6(b), respectively. In the case of 〈n〉 = 0.80, the largest
pairing potential is found due to the hot spot effect, as
seen by the red curve close to the angles θ = π

2 and

θ = 3π
2 in Fig. 6(a). A smaller signature due to the

van Hove effect is seen in the red curve close to θ = 0
and θ = π. As the hole doping is increased, the van
Hove effect becomes more pronounced, and very close to
the van Hove critical density at 〈n〉vH = 0.66, we observe
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FIG. 7. (Color online) (a) Solution to the full gap
equation Eq. (7) with triplet potential and the bare Coulomb
interaction U = 7.4 renormalized to Ū = 3.7. The filling
level is 〈n〉 = 0.03. Real (full red line) and imaginary (black
dashed-dotted line) part of the chiral p-wave gap as a function
of angle θ defined in the Fermi surface inset. (b) Solution to
Eq. (7) with triplet potential and bare Coulomb interaction
U = 5.7 renormalized to Ū = 1.9. The filling level is
〈n〉 = 0.65. Real (full red line) and imaginary (black dashed-
dotted line) part of the chiral higher order triplet gap as a
function of angle θ defined in the Fermi surface inset. The
absolute value of the gap |∆(θ)| is shown by the blue dash
dotted line. In both cases, the next-nearest neighbor hopping
is t′ = −0.35, temperature is kBT = 0.01 and energy cut-off
is set to εc = 0.012. The size of εc does not change the gap
structure qualitatively.

sharp peaks at θ = 0 and θ = π in the red dashed curve in
Fig. 6(b). These peaks are responsible for suppression of
the singlet solution. At the same time the van Hove effect
gives rise to attractive potentials in the triplet channel,
as seen in from the full blue line at θ = π

4 and the full
red line at θ = 0.

At very small fillings, the triplet solution has the simple
p-wave form as stated in Eq. (11e), but away from the
small filling regime, the triplet solution is represented by
higher order harmonics. One of these solutions is the p′

solution given in Eq. (12). The main difference between

the p-wave and the p′-wave is that the latter gap has the
same sign for sgn[∆k+Q] = sgn[∆k], whereas the p-wave
solution obeys sgn[∆k+Q] = −sgn[∆k]. These properties
are illustrated in Fig. 1. When the susceptibility has a
peak or a plateau at Q = (π, π), it is favorable for the
triplet gap to display the same sign at k and k′ displaced
by Q, since the triplet pairing potential contains the

term −U
2

2 χ(k − k′). Therefore the p′-wave gap will
be favored in the filling regime where the susceptibility
shows a q = (0, 0) peak as well as a peak or plateau
structure around Q = (π, π). In the more general case of
a quartet peak structure around Q as seen in Fig. 2(d)
the triplet gap will resemble the structure of p′, but with
the nodes slightly displaced, which we will discuss in the
next section.

In Ref. 33 the changes in gap symmetry as a function
of electron- and hole doping within spin fluctuation
mediated pairing to second order in U = 6t were
discussed. The pairing potential was V (k,k′) = U +
U2χ(k+k′), and the next-nearest hopping constant fixed
at t′/t = −0.276. The dx2−y2 solution dominates at all
moderate doping levels, also at the van Hove critical
density, in agreement with our findings. However, in
contrast to our results, Ref. 33 reports a regime of triplet
superconductivity at smaller fillings. As mentioned
above, Ref. 19 also reports an extended region of triplet
superconductivity which is unrelated to the van Hove
critical density. We suspect this discrepancy to arise from
the details of procedure; in Refs. 19 and 33 gap solutions
was truncated to the first 15 harmonics, whereas in
our case we do not invoke any restrictions on the gap
functions.

In a recent work by Deng et al.,16 the emergence of
pairing for the paramagnetic liquid was also addressed in
a numerical study of the two-dimensional Hubbard model
with t′ = 0 and U ≤ 4. They reported a transition from
p-wave superconductivity at small fillings through a dxy
gap at intermediate filling levels to a dx2−y2 symmetry
close to half filling. For the smallest values of U ≤ 0.08,
a higher order triplet gap with six nodes was also found
for fillings around 〈n〉 ' 0.55. This triplet solution is
thus unrelated to the van Hove critical density. In our
approach we also find a p-wave solution at small fillings,
as well as a higher order triplet solution around 〈n〉 '
0.55 for small values of U . However, since nesting is
very weak, small values of U give rise to solutions of the
linearized gap equation with very small values of λ. This
is the reason why the triplet solutions do not appear at
t′ = 0 in the phase diagram of Fig. 3.

D. Time reversal broken triplet gap solutions

The fact that all triplet solutions found in the
linearized approach are two-fold degenerate suggests that
a TRSB solution might be favored. Therefore we turn to
the full gap equation as given in Eq. (7). When solving
the full gap equation we invoke a small energy cut-off
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around the Fermi surface, εc, and allow for Cooper pair
formation of all electronic states with ξk ∈ [−εc, εc].

We focus on solutions to the full gap equation in
the triplet channel at two special fillings of 〈n〉 = 0.03
and 〈n〉 = 0.65 where in both cases t′ = −0.35. At
very low filling, the susceptibility exhibits only a weak
structure around q = (0, 0) as seen in Fig. 2(a). In
this case the p-wave triplet solution is favored and, as
shown in Fig. 7(a), the full solution is the nodeless
TRSB gap of the form px ± ipy. In this filling regime,
strong Coulomb interactions are required to achieve a
superconducting instability due to the weak structure
of the spin susceptibility. We use a bare Coulomb
interaction of U = 7.4 which is renormalized in the RPA
expressions to Ū = 3.7.

At higher fillings, the spin susceptibility acquires more
structure and supports a superconducting gap with a
bare Coulomb interaction U = 5.7 renormalized to
Ū = 1.9. The preferred solution in this case is also a
TRSB solution. If the TRSB solution had been of the
form p′x ± ip′y only the nodes along the zone axes kx or
ky would be lifted with the four nodes along the zone
diagonals preserved. In this case, since only two of the
six nodes are lifted, the gain in condensation energy of
the TRSB solution compared to one of the solutions, p′x
or p′y, would be limited. However, in the present case
of 〈n〉 = 0.65 where the spin susceptibility displays a
quartet of peaks around Q, the simple form p′x ± ip′y is
replaced by a more complicated gap solution displayed
in Fig. 7(b), which indeed provides a fully gapped TRSB
solution. From the angular gap dependence shown in
Fig. 7(b), strong effects due to the susceptibility structure
are clearly visible from the absolute value of the gap,
|∆trip(θ)| as shown by the full blue line. The maximum
of the gap achieved close to θ = 0 and π

2 is due to the
van Hove effect, and the peaked feature at θ ∼ π/8 is
related to the quartet of peaks around the Q vector in
the susceptibility as shown in Fig. 2(d). This underlines
again the strong connection between the Fermi surface
structure, spin susceptibility, and the detailed angular
dependence of the superconducting gap. Lastly, we note
that the gap minimum of this higher order triplet solution
is achieved at θ = π

4 , which is at the position of the nodal
lines of the dx2−y2 structure.

E. The dx2−y2 solution

The dx2−y2 solution of the one-band Hubbard model is
commonly discussed in the region with |t′| < 0.5 around
half filling, due to the relevance for cuprates. From the
phase diagram in Fig. 3, we observe that there is in fact
another large region of the phase diagram for which a
dx2−y2 solution dominates corresponding to |t′| > 0.5
where the Fermi surface topology is quite different. In
order to show a solution in both regimes, we plot in Fig. 8
the dx2−y2 solution in the case of t′ = −0.35, 〈n〉 = 0.8
and t′ = −0.8, 〈n〉 = 0.5. Note that even though the
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FIG. 8. (Color online) (a) dx2−y2 solution to the linearized
gap equation as stated in Eq. (14) for a band with t′ = −0.35
and U = 1.75 at a filling of 〈n〉 = 0.8. (b) dx2−y2 solution to
the linearized gap equation as stated in Eq. (14) for a band
with t′ = −0.8 and U = 1.75 at a filling of 〈n〉 = 0.5. The
magnetic zone boundary is indicated by the red dashed line.
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FIG. 9. (Color online) Solution to the full gap equation
Eq. (7) with singlet pairing interaction for t′ = −0.35 at
filling levels 〈n〉 = 0.85 (full red line) and 〈n〉 = 0.75 (dashed
blue line) at temperature kBT = 0.01. The renormalized
Coulomb interaction is Ū = 2, 1.88, respectively and the
Coulomb renormalization is z = 3. The energy cut-off is set to
εc = 0.015, and the gap value at the antinodes is ∆φ=0 = 0.01
in both cases. The angle φ is defined in the Fermi surface
inset. The vertical lines show the position of the hot spots for
the 〈n〉 = 0.85 (full red line) and 〈n〉 = 0.75 (dashed blue line).
Note that there is a clear correlation between the position of
the hot spot and enhancement of the superconducting gap
away from a simple harmonic gap function in the case of
〈n〉 = 0.85. However, at 〈n〉 = 0.75, which is closer to the van
Hove critical density, the higher harmonic angular dependence
of the gap function is not directly related to the position of
the hot spot.

Fermi surface of the t′ = −0.8 band has no Fermi surface
weight along the zone diagonals, which are the nodal lines
of the simple harmonic d-wave, it displays more nodes at
the Fermi surface than the solution for the t′ = −0.35
band, namely eight nodes instead of four.

A closer inspection of the dx2−y2 solution for the band
with t′ = −0.35 indicates deviations from the simple
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FIG. 10. (Color online) Leading solutions to the linearized
gap equation as stated in Eq. (14) for a band with t′ = −0.35
and U = 1.75. (a) At filling of 〈n〉 = 0.25 the singlet g-
wave solution dominates. (b) At intermediate filling level of
〈n〉 = 0.50 the singlet higher order s-wave solution with eight
nodes is the leading instability. The magnetic zone boundary
is indicated by the red dashed line.

form of ∆[cos kx − cos ky] due to the presence of higher
harmonics, i.e. longer range superconducting pairing
interaction. The maximum gap value is achieved away
from the antinodal direction, an effect which has been
discussed previously as a signature of spin-fluctuation-
mediated pairing.23,30–34 Special attention was drawn
to the hot spots defined as the k positions where the
Fermi surface intersects the magnetic zone boundary. In
some of the previous work,30–32 the pairing potential
was empirically modeled by an Ornstein-Zernike form
χ0(q) ∝ 1

(q−Q)2+ξ2 , leading to gap maxima at the hot

spot positions.
In Fig. 9 we show the singlet gap as calculated by the

full (non-linearized) gap equation, Eq. (7). In the figure
we also show the position of the hot spot by the vertical
lines. It is seen that the non-monotonicity of the gap
is not directly related to the hot spot effect, since the
hot spot position moves towards φ = 0, but the strong
gap enhancement moves closer to the nodal direction
upon increased hole doping. This deviates from the non-
monotonicity of the gap resulting from a pairing potential
of the Ornstein-Zernike form and is a consequence of the
more complex structure of the spin susceptibility at these
fillings, see Fig. 2 (e). In particular, the higher harmonic
content of the gap function becomes very pronounced
close to the van Hove critical density. This tendency was
also pointed out in Ref. 33. Note that proximity of the
van Hove singularity leads to an increase in the number of
states participating in the formation of Cooper pairs, but
the corresponding formation of additional nesting peaks
in the susceptibility at small qvH = (δ, δ), see Fig. 2(e), in
fact work against the dx2−y2 solution, since in the singlet
channel this will favor nodes along the zone axes.

F. Other singlet solutions

From the phase diagram in Fig. 3 we observe that
the regime of |t′| < 0.5 and intermediate hole doping
levels, has two robust regions of singlet superconductivity
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FIG. 11. (Color online) (a) dxy solution to the linearized gap
equation as stated in Eq. (14) for a band with t′ = −0.35
and U = 1.5 at a filling of 〈n〉 = 0.55. (b) dxy solution to
the linearized gap equation as stated in Eq. (14) for a band
with t′ = −1.2 and U = 1.5 at a filling of 〈n〉 = 0.65. The
magnetic zone boundary is indicated by the red dashed line.

besides the dx2−y2 solution, namely a g-wave and s-wave
region. We show the solutions for t′ = −0.35 at fillings
〈n〉 = 0.25 and 〈n〉 = 0.5 in Fig. 10 for which we obtain
a g-wave, and higher order s-wave, respectively. In the
regime of |t′| > 0.5 the dxy solution is largely dominating
in a large region close to half filling. In Fig. 11 we show
the dxy solution in the case of |t′| < 0.5 (Fig. 11(a)) and
|t′| > 0.5 (Fig. 11(b)). Due to the difference in Fermi
surface topology, the appearance of the dxy solution is
quite different in the two cases.

IV. CONCLUSIONS

In this paper we have studied the superconducting
gap structures in a single band Hubbard model within
spin-fluctuation-mediated Cooper-pairing scenario in the
weak-coupling paramagnetic limit for an extended region
of phase space. It complements our earlier study
of pairing in the spin density wave phase in the
same model.35,36 In contrast to previous studies of the
paramagnetic phase, our main emphasis was to study
the gap structure for a large range of next-nearest
neighbor hopping integrals, t′, and doping levels away
from half-filling, which could be potentially relevant for
future systems including new classes of unconventional
superconductors as well as optical lattices loaded with
interacting fermions. We discussed the details of the
gap structure and related this directly to the spin
susceptibility at all filling levels. Furthermore, we also
focused on the role of a van Hove singularity in close
proximity to the Fermi level for the transition between
various Cooper-pairing channels. This has drastic effects
on the gap symmetry since it strongly suppresses singlet
superconductivity and leads to the emergence of a
nodeless TRSB triplet gap solution. This is a direct
consequence of the additional q = (0, 0) peak structure
in the spin susceptibility which reflects the presence of a
van Hove singularity at or very near to the Fermi level.
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6 M. Köhl, H. Moritz, T. Stöferle, K. Günter, and T.

Esslinger, Phys. Rev. Lett. 94, 080403 (2005).
7 R. Jördens, N. Strohmaier, K. Günter, H. Moritz and T.

Esslinger, Nature 455, 204 (2008).
8 U. Schneider, L. Hackermuller, S. Will, Th. Best, I. Bloch,

T. A. Costi, R. W. Helmes, D. Rasch, A. Rosch, Science
322, 1520 (2008).

9 M. Y. Kagan and A. V. Chubukov, JETP Lett. 50, 517
(1989); A.V. Chubukov and J. P. Lu, Phys. Rev. B 46,
11163 (1992); A. V. Chubukov, Phys. Rev. B 48, 1097
(1993).

10 D. Zanchi and H.J. Schulz, Phys. Rev. B 54, 9509 (1996);
11 C. J. Halboth and W. Metzner, Phys. Rev. Lett. 85, 5162

(2000).
12 C. Honerkamp and M. Salmhofer, Phys. Rev. Lett. 87,

187004 (2001).
13 S. Raghu, S. A. Kivelson, and D. J. Scalapino, Phys. Rev.

B 81, 224505 (2010).
14 D.J. Scalapino, Numerical Studies of the 2D

Hubbard model, in Handbook of High-Temperature
Superconductivity, Ed. J.R. Schrieffer and J.S. Brooks,
(Springer, New York, 2007), pp. 495526.

15 E. Gull, O. Parcollet, and A. J. Millis, Phys. Rev. Lett.
110, 216405 (2013).

16 Y. Deng, E. Kozik, N. V. Prokofev, and B. V. Svistunov,
EPL 110, 57001 (2015).

17 P. Staar, T. Maier, T. C. Schulthess, Phys. Rev. B. 89,
195133 (2014).

18 B.-X. Zheng, and G. K.-L. Chan, arXiv:1504.01784
(unpublished).

19 R. Hlubina, Phys. Rev. B 59, 9600 (1999).
20 S. Raghu, E. Berg, A. V. Chubukov, and S. A. Kivelson

Phys. Rev. B 85, 024516 (2012).
21 N. P. Armitage, P. Fournier, and R. L. Greene, Rev. Mod.

Phys. 82, 2421 (2010).
22 M. Hashimoto, I. M. Vishik, R.-H. He, T. P. Devereaux,

and Z.-X. Shen, Nature Phys. 10, 483 (2014).
23 G. Blumberg, A. Koitzsch, A. Gozar, B. S. Dennis, C. A.

Kendziora, P. Fournier, and R. L. Greene, Phys. Rev. Lett.
88, 107002 (2002).

24 H. Matsui, K. Terashima, T. Sato, T. Takahashi, S.-C.
Wang, H.-B. Yang, H. Ding, T. Uefuji, and K. Yamada,
Phys. Rev. Lett. 94, 047005 (2005).

25 K. Terashima, H. Matsui, T. Sato, T. Takahashi, M. Kofu,
and K. Hirota, Phys. Rev. Lett. 99, 017003 (2007).

26 A. V. Chubukov and J. P. Lu, Phys. Rev. B 46, 11163
(1992).

27 A. A. Katanin and A. P. Kampf, Phys. Rev. B 68, 195101
(2003).

28 N. F. Berk and J. R. Schrieffer, Phys. Rev. Lett. 17, 433
(1966).

29 I. Eremin, D. Manske, C. Joas, K. H. Bennemann,
Europhys. Lett. 58, 871 (2002).

30 D. Parker and A. V. Balatsky, Phys. Rev. B 78, 214502
(2008).

31 V. A. Khodel, V. M. Yakovenko, M. V. Zverev, and H.
Kang, Phys. Rev. B 69, 144501 (2004).

32 P. Krotkov and A. V. Chubukov, Phys. Rev. Lett. 96,
107002 (2006).

33 F. Guinea, R. S. Markiewicz, and M. A. H. Vozmediano,
Phys. Rev. B 69, 054509 (2004).

34 I. Eremin, E. Tsoncheva, and A. V. Chubukov, Phys. Rev.
B 77, 024508 (2008).

35 W. Rowe, I. Eremin, A. T. Rømer, B. M. Andersen and P.
J. Hirschfeld, New J. Phys. 17, 023022 (2015).

36 A. T. Rømer, I. Eremin, P. J. Hirschfeld, B. M. Andersen,
arXiv:1505.03003 (unpublished).


