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We report experimental and theoretical studies of spin wave eigenmodes in transversely magne-
tized thin film Permalloy wires. Using broadband ferromagnetic resonance technique, we measure
the spectrum of spin wave eigenmodes in individual wires as a function of magnetic field and wire
width. Comparison of the experimental data to our analytical model and micromagnetic simulations
shows that the intrinsic dipolar edge pinning of spin waves is negligible in transversely magnetized
wires. Our data also quantify the degree of extrinsic edge pinning in Permalloy wires. This work
establishes the boundary conditions for dynamic magnetization in transversely magnetized thin film
wires for the range of wire widths and thicknesses studied, and provides a quantitative description
of the spin wave eigenmode frequencies and spatial profiles in this system as a function of the wire
width.

PACS numbers: 76.50.+g, 75.78.-n, 75.30.Ds

I. INTRODUCTION

Ferromagnetic nanowires is an important experimen-
tal platform for observation of magneto-transport and
magneto-dynamic phenomena emerging at the nanome-
ter length scale. Studies of these effects such as field-
and current-induced domain wall motion1–7, domain wall
magneto-resistance8–10 and the interaction of spin waves
with nanoscale spin textures such as domain walls, vor-
tices and skyrmions11–17 heavily rely on the understand-
ing of transport and magnetization dynamics in fer-
romagnetic nanowires. More recently, ferromagnetic
nanowires proved to be useful for studies of inverse
spin Hall effect19 and spin orbit torques20–23. Further-
more, several realizations of spintronic logic gates27–32

and spin wave guides33 based on ferromagnetic nanowires
have been recently proposed. Detailed understanding of
magneto-transport and magneto-dynamic effects in ferro-
magnetic nanowires rely on the quantitative description
of spin waves in this important confined geometry.

While the spectrum of spin waves in nanowires mag-
netized parallel to the wire axis is well understood34,
the situation is less clear for nanowires magnetized per-
pendicular to the wire axis. For example, the bound-
ary conditions describing dynamic magnetization at the
nanowire edges (and therefore the spin wave eigenmode
frequencies) remain to be established. The main compli-
cation in this magnetic configuration is the strong spatial
non-uniformity of the demagnetizing fields, which pre-

vents derivation of simple analytical expressions describ-
ing the spectrum of spin wave eigenmodes. This task
is especially difficult when both the exchange and the
dipole-dipole interactions significantly contribute to the
spin wave energies35,36.

In this paper, we describe experimental and theoretical
studies of spin waves in thin film ferromagnetic wires that
are magnetized transversely to the wire axis in the plane
of the film. In order to simplify the problem, we choose
ferromagnetic wires made of Permalloy (Py≡Ni80Fe20)
which has a negligible bulk magnetic anisotropy. We
use resistively detected broadband ferromagnetic reso-
nance (FMR) technique23,37–41 to measure the spectrum
of spin wave eigenmodes in individual wires as a func-
tion of transverse magnetic field. This technique elimi-
nates inhomogeneous broadening and inter-wire interac-
tion effects inherently present in studies of magnetization
dynamics in large arrays of nanowires45,46. We develop
an analytical model describing the spin wave frequencies
in this system, and establish the boundary conditions
for dynamic magnetization in Py wires studied in this
work via comparison of the experimental data, analyti-
cal model and micromagnetic simulation results.

II. EXPERIMENT

A series of Py(20–25 nm)/Pt(2 nm) wires of rectan-
gular cross section such as that shown in Fig. 1(a) are
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FIG. 1: (color online). (a) Scanning electron micrograph of
wire A. (b) FMR spectrum of wire B measured at the mi-
crowave drive frequency of 9 GHz. QM - quasi-uniform mode,
WM - width modes, EM - edge mode.

patterned on top of a GaAs substrate via e-beam lithog-
raphy, e-beam evaporation and liftoff. The thin Pt cap-
ping layer is employed to prevent oxidation of the Py
wire. Shorted coplanar strips (CPS) shown in Fig. 1(a)
are patterned in close proximity to each wire and are
used for application of a microwave magnetic field Hrf

to the wire. In this paper, we discuss three wire samples
with similar Py thicknesses and different widths: (i) 1.18
µm × 25 nm (wire A), (ii) 620 nm × 25 nm (wire B),
and (iii) 270 nm × 20 nm (wire C). The length of these
wires is approximately 60 µm. We employ an electrically
detected ferromagnetic resonance technique (FMR)23 to
study the spectral properties of spin wave eigenmodes of
these samples as a function of magnetic field H applied in
the plane of the sample perpendicular to the wire axis. In
this technique, a microwave current Iac in the CPS gen-
erates a microwave magnetic field nearly perpendicular
to the sample plane at the nanowire location and excites
spin wave eigenmodes in the Py wire when the frequency
of Iac coincides with its spin wave eigenmode frequen-
cies. Excitation of the spin wave eigenmodes results in
a small change δR in the time-average wire resistance

that arises from anisotropic magnetoresistance (AMR)
of Py23,47,48. This resistance variation is then measured
as a function of H. Peaks in δR(H) such as those shown
in Fig. 1(b) represent the resonance fields of the spin
wave eigenmodes.

The spin wave eigenmodes of in-plane transversely
magnetized thin film ferromagnetic wires can be treated
as width eigenmodes23,24,34,49,50 due to the geometric
confinement of the spin wave spectrum in the wire width
direction. One particular mode that displays its max-
imum amplitude at the wire edges is called the edge
mode (EM). Another mode that shows the lowest num-
ber of nodes along the wire width is usually called the
quasi-uniform mode (QM). To simplify the discussion,
the rest of the eigenmodes will be simply called width
modes (WM) throughout this paper. Fig. 1(b) shows a
typical FMR spectrum measured for wire B at the mi-
crowave drive frequency of 9 GHz. The peaks that appear
at the lowest and highest fields are QM and EM23–26, re-
spectively. Between the two peaks a few width modes
can also be clearly identified34. In our measurements,
care was taken to keep the amplitude of Iac small enough
to remain within the linear regime of FMR. All mea-
surements reported in this paper are performed at room
temperature.

Fig. 2 displays a color plot summary of FMR spec-
tra such as that shown in Fig.1(b) measured at multiple
microwave drive frequencies. In this plot, the blue and
red colors correspond to negative and positive values of
δR, respectively. Fig. 2 shows the dependence of spin
wave mode frequencies on the applied field for all three
samples studied in this work. This figure demonstrates
that the frequency of each spin wave eigenmode exhibits
a minimum as a function of the applied field. For a given
sample, the frequency minimum is found at the same field
Hb for all modes except EM. As we discuss below, Hb is
the field, at which the magnetization in the interior of
the wire becomes aligned along the applied field direc-
tion. Therefore, Hb can be called the bulk saturation
field. Magnetization at the edges of the wire is more dif-
ficult to align with the external field because of the large
demagnetizing field near the wire edges43. For this rea-
son, the minimum frequency of the edge mode is achieved
at the edge saturation field He that significantly exceeds
Hb. For fields H > Hb(He), the bulk(edge) spins become
aligned with the applied field direction and the spin wave
eigenmodes in this regime are called aligned width(edge)
modes. For H < Hb(He), the eigenmodes can be called
non-aligned width(edge) modes.

III. THEORY

In order to analyze our experimental results, we de-
velop a model describing the spin waves in transversely
magnetized thin film wires. In this analytical model,
we use a Cartesian coordinate system shown in the in-
set of Fig. 1(a), in which the external field is applied
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FIG. 2: (color online). The measured spin wave mode spectra (blue-red color plots) compared to the analytical calculation
using the partially pinned boundary condition (lines in (a), (c), and (e)) and to the micromagnetic simulation results (circles
in (b), (d), and (f)). (a) and (b) - wire A, (c) and (d) - wire B, (e) and (f) - wire C.

along the wire width ~H = Hx̂. The cross section of
the Py wire (excluding the Pt layer) has dimensions of
2a× 2b, with 2b being the thickness and b << a. In our
model, we make the following assumptions: (i) the ap-
plied field is strong enough that the wire in equilibrium
is magnetized uniformly along the direction of the ap-
plied field, (ii) the wire is thin enough that the dynamic
magnetization is considered uniform over the thickness
(y axis), and (iii) the wire is long enough that transla-
tional invariance along the wire length (z axis) can be

assumed. Assumptions (ii) and (iii) lead to the follow-
ing form of magnetization of the wire driven by a small-
amplitude alternating magnetic field with angular fre-

quency ω: ~M(~r, t) 'Msx̂+Re
(
~mω(x)e−iωt

)
, where Ms

is the saturation magnetization of Py and ~mω(x) is the
amplitude of dynamic magnetization transverse to x̂.

For the wires studied in this work, the first assump-
tion of our model is met when the applied magnetic field
exceeds the edge saturation field H > He. The second
assumption is met because the thickness of the Py wire
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is comparable to the Py exchange length42 and the fre-
quencies of the spin wave eigenmodes discussed in our
work are well below the lowest branch of perpendicular
standing spin waves (PSSW)34,43. The third assumption
is met because the wavelength of the excited spin waves
along the wire width is long (comparable to the CPS
short length ∼10 µm).

The starting point of our model is the Landau-Lifshitz
(LL) equation:

d ~M

dt
= −|γ| ~M × ~Heff , (1)

where γ is the gyromagnetic ratio and ~Heff is the effec-

tive field defined as ~Heff = ~H+ ~HD + ~Hex, with ~HD( ~M)

and ~Hex = (2A/M2
s )∇2 ~M being the demagnetizing field

and the exchange field (A is the exchange stiffness), re-
spectively. The linearized LL equation for the y and
z components of the dynamic magnetization takes the
form:

iomω
y = (h− nx(x))mω

z − d
∂2mω

z

∂x2

iomω
z = − (h− nx(x))mω

y + d
∂2mω

y

∂x2

+〈~hD(~m)〉y(x) , (2)

where o ≡ (ω/|γ|)/(4πMs), h ≡ H/(4πMs),

nx(x) ≡ −〈 ~HD(Msx̂)〉x/(4πMs) is the x-dependent

demagnetizing factor along x̂, 〈~hD(~m)〉y(x) =

〈 ~HD(~m)〉y(x)
/

(4πMs) is the y component of the

reduced dynamic demagnetizing field. Here 〈〉 denotes
the average over the thickness, and d ≡ A/(2πM2

s ) = l2ex
(lex is the exchange length of Py).

The detailed derivation of the expressions for nx(x)

and 〈~hD(~m)〉y(x) is given in the Appendix. Eq. (2) to-
gether with boundary conditions for the dynamic magne-
tization set up an eigenvalue problem for the spin wave
mode frequencies in the wire. The general form of the
boundary conditions used for solving Eqs. (2) takes the
following form51,52:

(
∂mj

∂x
± λmj

)
x=±a

= 0 (j = x, y, z), (3)

where λ is the parameter describing the partial pinning
of the dynamic magnetization at the sample edge (the
pinning parameter).

The value of the pinning parameter is determined by a
number of factors, including the magnitude of magnetic
surface anisotropy at the wire edge, edge roughness, edge
surface profile, and the direction of magnetization with
respect to the edge normal50. For λ = 0, these bound-
ary conditions reduce to the so called free boundary con-
ditions, which correspond to null normal derivatives of

the magnetization at the edge surfaces. In this paper,
we show that the free boundary conditions are appropri-
ate for fully saturated transversely magnetized thin film
wires without edge roughness, edge surface anisotropy, or
irregular edge surface profiles (e.g., rounded or slanted
edge surfaces). We also demonstrate that non-zero val-
ues of λ have to be used to quantitatively describe the
experimental data (which implies non-negligible surface
anisotropy, irregular edge surface profiles and/or edge
damage for our Py wires). Via comparison to the experi-
mental data, we determine the value of λ appropriate for
our system.

By representing the dynamic magnetization as a func-
tion of a specific Fourier series that satisfies the boundary
conditions of Eq. (3) at the edges x = ±a, the linearized
Eq. (2) is reduced to a linear eigenvalue problem that can
be easily solved by the standard linear algebra techniques
as described in the Appendix. From these eigen-solutions
we obtain the frequencies and spatial profiles of the spin
wave eigenmodes. We calculated the spin wave mode fre-
quencies versus H for H > He for several values of the
pinning parameter λ, and found good agreement with
the experimental data for all three samples for λ = 0.05
nm−1 as shown in Fig. 2 (a),(c),(e).

In order to test our analytical approach and gain un-
derstanding of the boundary conditions for the dynamic
magnetization appropriate for our system, we performed
micromagnetic simulations54 of FMR spectra for the Py
wires studied in this paper. The wires are divided to 1024
(along the length) × 256 (along the width) × 1 (along
the thickness) cells. Since the dynamic magnetization
is expected to be width dependent only, the numbers of
cells along the wire length and thickness are not critical.
In these simulations, we applied a spatially uniform con-
tinuous wave magnetic drive field to the wire55–57. The
simulation results were analyzed after the system had
reached the dynamic equilibrium. The eigenmode reso-
nance fields for a given drive frequency were extracted by
examining the dependence of the dynamic magnetization
amplitudes on the static external field.

The micromagnetic simulations also allow us to calcu-
late the spectrum of non-aligned spin wave eigenmodes
in the low field regime (H < He). The aligned (non-
aligned) spin wave modes can be clearly distinguished by
the dependence of their frequencies on H35: the aligned
mode frequency increases with H while the non-aligned
mode frequency decreases with H. Therefore, the fields
of the minimum frequency, Hb and He mark transitions
from the aligned to the non-aligned regimes of the spin
wave modes. Fig. 2 (b),(d),(f) compares the field depen-
dence of spin wave eigenfrequencies obtained from the
micromagnetic simulations to the experimental data for
all three samples. It is clear from this figure that the
micromagnetic simulations describe the spectrum of QM
and WM with a high degree of accuracy. However, there
are significant discrepancies for the edge mode. As we
discuss in detail below, these discrepancies result from
the extrinsic pinning of the dynamic magnetization at
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FIG. 3: (color online). Comparison of spin wave eigenmodes calculated via the micromagnetic simulations (circles) to the
analytical calculation (lines) using both boundary conditions: (a), (d) and (g) are free boundary conditions (λ = 0) for wire
A, B and C respectively; (b), (e) and (h) are partially pinned boundary conditions (λ = 0.05 nm−1) for wire A, B and C
respectively. (c), (f) and (i) show the edge spin wave mode spatial profiles along the wire width at H= 2.7 kG for wire A, B and
C respectively: blue solid line - analytical calculation using free boundary conditions (λ = 0), red open squares - micromagnetic
simulations. The insets show the zoom-in view near the wire edges.

the wire edges by magnetic surface anisotropy, edge di-
lution, edge roughness, and/or irregular edge surfaces50.

IV. RESULTS AND DISCUSSION

We employed our resistively detected FMR technique
to measure the saturation magnetization Ms of each in-
dividual Py wire. As discussed in Ref. 23, Ms can
be reliably determined via measurement of the quasi-
uniform mode frequency versus external field applied par-
allel to the wire axis. From these measurements we de-
termined the saturation magnetization Ms of each wire:
790 ± 1 emu/cm3 (wire A), 785 ± 1 emu/cm3 (wire B),
850± 3 emu/cm3 (wire C), which are typical for Py thin

films59–63. These values of Ms together with a g-factor of
2.163,64 and an exchange stiffness of 1.3 µerg/cm59,61 are
used as material parameters for our analytical calcula-
tions and micromagnetic simulations. We also note that
the out-of-plane saturation field of our thin film wires was
measured to be similar to 4πMs, which indicates that the
Py/Pt interfacial anisotropy is small.

The analytical calculation typically provides a large
number of eigen-solutions that have spin wave mode pro-
files either symmetric or anti-symmetric with respect to
the wire center. We calculated the coupling coefficients
of the microwave field profile (< ±15% amplitude vari-
ation across the widest wire as shown in Fig. 5(d)) to
both types of modes and found that the coupling to the
antisymmetric modes is one order of magnitude smaller
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FIG. 4: (color online). Spin wave eigenfrequencies for wire
B at H = 2.7 kG: experiment (crosses), free boundary con-
ditions (squares), and partially pinned boundary conditions
(circles). EM – edge mode, QM – quasi-uniform mode,
WM#1 through WM#3 – width modes with increasing fre-
quencies.

than that to the symmetric modes. This makes the sig-
nal arising from excitation of the antisymmetric modes
comparable to the noise level of our measurement. For
this reason, we only consider the modes with symmet-
ric mode profiles across the wire width throughout this
paper.

Fig. 3 provides a comparison of our micromagnetic
simulations to the analytical calculations for the three
studied wires. Analytical results for two values of the
pinning parameter are shown: λ = 0 (free boundary con-
ditions) and λ = 0.05 nm−1 (partially pinned bound-
ary conditions). Both types of boundary conditions give
similar eigenfrequencies for QM and WM, which are also
similar to the micromagnetic simulation results and the
experimental data (see Fig. 2). For the edge mode,
however, the micromagnetic simulations only agree with
the analytical calculation that employs the free boundary
conditions. Since the simulations automatically account
for the dipolar interaction at the wire edges, this indicates
that the intrinsic dipolar edge pinning of spin waves44 is
negligible in transversely magnetized wires for the range
of wire thicknesses and widths studied in present work.
This is an important result as it proves that the free
boundary conditions for the dynamic magnetization are
appropriate for the description of spin wave eigenmodes
in ideal (i.e., zero edge roughness, no edge dilution, zero
surface anisotropy, and absence of rounding or slanting
of the edge surfaces) ferromagnetic thin film wires that
are transversely magnetized to full saturation. In other
words, the edge pinning of magnetization in wires trans-
versely magnetized to full saturation must have extrinsic
character. This situation is to be contrasted with the
case of ideal wires magnetized parallel to the wire edge,
where demagnetizing fields lead to intrinsic partial pin-

ning of the dynamic magnetization at the wire edges44. It
has also been previously shown that the effective bound-
ary conditions for wires that are not fully magnetized by
a transverse magnetic field H < He are different from
the free boundary conditions34. Fig. 3(c), (f) and (i)
compare the edge spin wave mode profiles in the studied
wires calculated analytically with the free boundary con-
ditions (λ = 0) to the profiles given by micromagnetic
simulations. The nearly perfect agreement between the
two approaches also lends support to our conclusion that
the free boundary conditions are appropriate for trans-
versely magnetized wires for the range of wire thicknesses
and widths studied in this work.

The left panel of Fig. 2 compares the experimentally
measured FMR eigenmodes to the analytical calculation
using the partially pinned boundary condition with λ =
0.05 nm-1. The calculated frequencies of all eigenmodes
are in good agreement with the experimental data, es-
pecially in the high field limit. This is illustrated in
Fig. 4 that compares the measured eigenmode frequen-
cies to those calculated by using the free and the partially
pinned boundary conditions for wire B at H = 2.7 kG.
It is also clear from this figure that the free boundary
conditions fail to describe the edge mode, and, therefore,
extrinsic edge pinning must be invoked to explain the
experimental data.

Fig. 5 shows the spin wave mode profiles (spatial de-
pendences of the mode amplitudes across the wire width)
calculated for both the free (λ = 0) and the partially
pinned (λ =0.05 nm-1) boundary conditions at H = 2.7
kG. The general behavior of the spin wave mode profiles
is a gradual shift of the maximum spin wave amplitude
from the wire center towards the wire edge with decreas-
ing mode frequency. We also note that there is no direct
correlations between the mode index and the number of
nodes in the mode profile along the wire width, which
is a consequence of the complex interplay between the
exchange and dipolar interactions for these spin waves.
It is clear from Fig. 5 that the edge pinning (λ > 0) in-
creases the curvature of the mode profiles near the edges,
which leads to increase of the exchange energy and the
associated increase in the mode frequency. Fig. 4 clearly
shows that the mode frequency difference between the
free and partially pinned boundary conditions increases
with decreasing mode frequency, which results from the
shift of the mode profile towards the wire edge.

The dependence of the spin wave eigenmode proper-
ties on the wire width is best exemplified by the quasi-
uniform and the edge modes. Fig. 6(a) shows the de-
pendence of the bulk saturation field Hb and the quasi-
uniform mode frequency on the wire width. This figure
demonstrates that the bulk saturation field rapidly in-
creases with decreasing wire width. This increase in Hb

results from the increase of the demagnetizing field in-
side the wire. Fig. 6(b) shows the spatial profile of the
demagnetizing field 4πMsnx(x) in the wire interior as de-
rived in the Appendix. It is clear from this figure that
the bulk saturation field shown in Fig. 6(a) is similar to



7

FIG. 5: (color online). Spin wave mode spatial profiles along the wire width at H = 2.7 kG for wire A (a), wire B (b), and
wire C (c). EM – edge mode, QM – quasi-uniform mode, WM#1 through WM#5 – width spin wave modes with increasing
frequencies. Blue and red traces represent the free (λ = 0) and the partially pinned boundary conditions (λ = 0.05 nm-1). For
clarity, the phases of the mode profiles for the two boundary conditions are chosen to be opposite. (d) Reduced amplitude of
the applied microwave magnetic field from CPS along the wire width (x axis).

the demagnetizing field in the center region of the wire.
For a given value of the applied field, the higher demag-
netizing field in narrower wires results in a smaller net
magnetic field in the wire interior, and hence leads to
lower spin wave mode frequencies in narrower wires as
shown in Fig. 6(a).

While the demagnetizing field is a strong function of
the wire width in the center region of the wire, it is nearly
width-independent at the wire edge as illustrated in Fig.
6(c). For this reason, the edge saturation field He is
expected to be nearly independent on the wire width.
This indeed is the case as shown in Fig. 7(a). Since the
edge demagnetizing field profile is nearly independent on
the wire width, the edge mode frequencies and spatial
profiles are also expected to be the same. Fig. 7(a) shows
that both the measured and the calculated edge mode
frequencies are indeed nearly independent on the wire
width.

While taking into account extrinsic pinning is needed
to explain the observed frequencies of the edge mode,
we expect this extrinsic pinning to be nearly the same
for all three wire samples studied because these wires
were prepared via the same fabrication protocol. This
is indeed the case, because the same pinning parameter
(λ = 0.05 nm−1) gives the eigenfrequency values very
similar to those observed in the experiment. Fig. 7(b)
and (c) show the calculated edge mode profiles for the

free and the partially pinned boundary conditions. These
figures illustrate that the edge mode profiles are indeed
nearly independent on the wire width for both types of
the boundary conditions used in this study.

It is important to note that the maximum demagne-
tizing field occurs at the wire edges (∼ 2πMs, see Fig.
6(c)) and is larger than the calculated edge saturation
field assuming ideal wires with no extrinsic edge pinning
(2.4∼2.5 kG, see Fig. 3). In other words, for an external
field not too much larger than the edge saturation field
He, there is a small region near the wire edges where the
net field opposes to the external field. The length scale of
this region is comparable to the exchange length (see Fig.
6(c)). The negative net field will not cause noticeable
misalignment of the edge spins from the external field,
which otherwise would introduce significant exchange en-
ergy increase. As a result, the equilibrium magnetization
is stabilized by the exchange interaction close to edges,
as also noted in Ref. 50. In non-ideal wires, extrinsic pa-
rameters such as the edge surface anisotropy also play a
stabilizing role for the equilibrium magnetization.

In summary, we present detailed experimental and the-
oretical studies of spin wave eigenmodes in transversely
magnetized thin film Py wires as a function of the wire
width. Using resistively detected ferromagnetic reso-
nance technique, we measure the spectrum of spin waves
in individual Py wires as a function of magnetic field ap-
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FIG. 6: (color online). (a) The measured bulk saturation fields Hb (open squares), measured (open circles) and calculated
(crosses) quasi-uniform mode eigenfrequencies as a function of the wire width. The calculated spatial profiles of the demagne-
tizing field at H = 2.7 kG across the wire width (b) and at the wire edge (c).

FIG. 7: (color online). (a) The measured edge saturation field He (open squares), measured (open circles) and calculated
(crosses) edge mode eigenfrequencies at H = 2.7 kG as a function the wire width. Edge modes spatial profiles at H = 2.7 kG
for (b) free (λ = 0) and (c) partially pinned (λ = 0.05 nm-1) boundary conditions.

plied perpendicular to the wire axis. We observe several
spin wave modes and compare their frequencies to the
predictions of our analytical model and micromagnetic
simulations. Comparison of the analytical model and
micromagnetic simulations demonstrates that the free
boundary conditions for dynamic magnetization provide
adequate description of the spin wave eigenmode spec-
trum in transversely magnetized wires in the absence
of extrinsic edge pinning. Comparison of our theoreti-
cal model to the measured spin wave frequencies reveals
that the extrinsic edge pinning is present at the wire
edges and that the pinning parameter λ ≈ 0.05 nm−1

is nearly independent on the wire width. Using our an-
alytical model, we calculate the spin wave mode profiles
across the nanowire width and show how the maximum
of the mode amplitude progressively shifts from the wire
center to the wire edge as a function of the eigenmode fre-
quency. We find that the frequency of the quasi-uniform
mode decreases with decreasing width of the wire while
the frequency of the edge mode is nearly independent of
the wire width. These trends are explained by the width
dependence of the static demagnetizing fields in the bulk

of the wire and near the wire edges. Our work estab-
lishes the boundary conditions for the dynamic magne-
tization for transversely magnetized thin film Py wires
for the range of wire thicknesses and widths studied, and
provides quantitative explanation of the spin wave eigen-
mode frequencies and spatial profiles in this system as a
function of the wire width.
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V. APPENDIX

In this section, we present the solution of the spin
wave eigenvalue problem based on the linearized Landau-
Lifshitz given by Eq. (2).

We start by calculating the static demagnetizing field
~HD(Msx̂) produced by the equilibrium magnetization
saturated in the sample plane perpendicular to the
wire axis, Msx̂. More specifically, we calculate the x-
component of the demagnetizing field averaged over the

film thickness 〈 ~HD(Msx̂)〉(x). This demagnetizing field
can be calculated as a derivative of a magnetostatic scalar
potential φ(x, y):

〈 ~HD(Msx̂)〉(x) = −
〈∂φ
∂x

〉
x̂ = −4πMsnx(x)x̂, (4)

where nx(x) is the spatially dependent demagnetizing
factor. The magnetostatic potential is z-independent due
to z-axis translational invariance of the system.

The potential φ(x, y) is generated by magnetic charges
of density ±Ms located at the wire edges (x′ = ±a). By
using the well known expression for the potential created
by an infinite (in z direction) line of charges located at

(x′, y′): φ̃(x, y) = −2Λ ln(
√

(y − y′)2 + (x− x′)2, where
Λ is the linear magnetic charge density, we can write
down an expression for the potential generated by each
of the two edges of the wire:

φ±(x, y) = −2Λ

∫ b

−b
dy′ ln(

√
(y − y′)2 + (x± a)2) . (5)

By averaging over the wire thickness and taking a
derivative with respect to x, we obtain an expression for
the effective demagnetizing field generated by each wire
edge:

−
〈∂φ±
∂x

〉
x̂ = x̂

Λ

b

∫ b

−b
dy

∫ b

−b
dy′

(x± a)

(y − y′)2 + (x± a)2
.

(6)

Evaluating the integrals in Eq. (6), we obtain an ex-
act analytical expression for the demagnetizing factor
nx(x)53:

nx(x) =
1

π
[tan−1(2p/(1 +X)) + tan−1(2p/(1−X)]

+
1

4πp

[
(1 +X) ln

(
(1 +X)2

(2p)2 + (1 +X)2

)
+(1−X) ln

(
(1−X)2

(2p)2 + (1−X)2

)]
. (7)

where X ≡ x/a and p ≡ b/a.

The dynamic demagnetizing field 〈 ~HD(~mω)〉 produced
by the dynamic magnetization ~mω and its average over
the nanowire thickness can be calculated using the Reci-
procity theorem58. We start by averaging the dynamic
demagnetizing field (for example, its y component) over
the section of the wire of width ∆x (and of volume
∆V(x) = 2b∆x∆z) evaluated at x:

〈 ~HD(~mω)〉y(x) =
1

∆V(x)

∫
∆V(x)

dV ′ ~HD(~mω) · ŷ. (8)

Using the Reciprocity theorem, this expression can be
written in the following form:

〈 ~HD(~mω)〉y(x) =
1

∆V(x)

∫
V

dV ′ ~HD(ŷ(x))(x′) · ~mω(x′)

= − 1

2b∆x

∫ a

−a
dx′∆φŷ

(x)

(x′)my(x′),

(9)

where ŷ(x) is defined as an “auxiliary” magnetization re-

stricted to the ∆x section located at x and ∆φŷ
(x)

(x′) is
given by:

∆φŷ
(x)

(x′) = −4∆x ln(
|x− x′|√

(x− x′)2 + (2b)2
). (10)

This leads to:

〈 ~HD(~mω)〉y(x) =

−1

p

∫ 1

−1

dX ′my(X ′) ln(1 + (2p/(X −X ′))2). (11)

The reduced dynamic demagnetizing field in Eq. (2)

is given by 〈~hD(~m)〉y(x) = 〈 ~HD(~mω)〉y(x)
/

(4πMs).

We first solve the spin wave eigenmode problem for the
case of free boundary conditions ∂my,z/∂x(±a) = 0. The
eigenvalue integro-differential equations in Eq. (2) can be
solved by introducing a Fourier series representation for
the dynamic magnetization that satisfies the boundary
conditions (∂my,z/∂X = 0 at X = ±1, i.e. at the wire
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edges):

my(X) = A0 +

L∑
l=1

[Al cos(lπX) +Bl sin((2l − 1)πX/2)]

mz(X) = C0 +

L∑
l=1

[Cl cos(lπX) +Dl sin((2l − 1)πX/2)].

(12)

The integro-differential equations in Eq. (2) then be-
come the problem of solving the eigenvalue matrix equa-
tions for the coefficients of the Fourier expansions. There
are independent equations for the symmetric modes:

ioA0 = (ho − ncc00/2)C0 − ncc0lCl/2

ioC0 = −(ho − ncc00/2)A0 + ncc0lAl/2

+(cc00A0 + cc0lAl)/4πp

ioAn = (ho + d(nπ/a)2)Cn − nccnlCl

ioCn = −(ho + d(nπ/a)2)An + nccnlAl

+(ccn0A0 + ccnlAl)/2πp,

(13)

and for the antisymmetric modes:

ioBn = (ho + d((2n− 1)π/2a)2)Dn − nssnlDl

ioDn = −(ho + d((2n− 1)π/2a)2)Bn + nssnlBl

+ssnlBl/2πp.

(14)

In these equations, the Einstein summation convention
is used and the coefficients are given by the following

expressions:

nccnl ≡
∫ 1

−1

dXnx(X) cos(nπX) cos(lπX)

nssnl ≡
∫ 1

−1

dXnx(X) sin((2n− 1)πX/2) sin((2l − 1)πX/2)

ccnl ≡
∫ 1

−1

dX ′
∫ 1

−1

dX ln(
|X −X ′|√

(X −X ′)2 + (2p)2
)

× cos(nπX ′) cos(lπX)

ssnl ≡
∫ 1

−1

dX ′
∫ 1

−1

dX ln(
|X −X ′|√

(X −X ′)2 + (2p)2
)

× sin((2n− 1)πX ′/2) sin((2l − 1)πX/2).

(15)

In the case of partially pinned boundary conditions
given by Eq. (3), a similar Fourier series that guarantees
satisfaction of the boundary conditions was used:

my(X) =
∑
n

[An cos(κsnX) +Bn sin(κanX)]

mz(X) =
∑
n

[Cn cos(κsnX) +Dn sin(κanX)] ,

(16)
with the wave vectors κ

(s,a)
n obtained by solving the fol-

lowing transcendental equations:

tan(κsn) = (λa)κsn
cot(κan) = −(λa)κan. (17)


