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In this work we demonstrate explicit analytical expressions for both charge and spin currents which
constitute the 2x2 spinor in magnetic tunnel junctions with non-collinear magnetizations under ap-
plied voltage. The calculations have been performed within the free electron model in the framework
of the Keldysh formalism and WKB approximation. We demonstrate that spin/charge currents and
spin transfer torques are all explicitly expressed through only three irreducible quantities, without
further approximations. The conditions and mechanisms of deviation from the conventional sine
angular dependence of both spin currents and torques are evidenced and discussed. It is shown
in the thick barrier approximation that all tunneling transport quantities can be expressed in an
extremely simplified form via Slonczewski spin polarizations and the newly introduced effective spin
averaged interfacial transmission probabilities and effective out-of-plane polarizations at both inter-
faces. It is proven that the latter plays a key role in the emergence of perpendicular spin torque
as well as for the angular dependence character of all spin and charge transport considered. It is
demonstrated directly also that for any applied voltage, the parallel component of spin current at
the FM/I interface is expressed via collinear longitudinal spin current components. Finally, STT
behavior is analyzed in a view of transverse characteristic length scales for spin transport.
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Interest in spintronics has been strongly accentu-
ated by the discovery of current-induced magnetization
switching (CIMS) caused by spin transfer torque (STT)
in both metallic multilayers and tunnel junctions1–8. In
the ballistic transport regime, such switching is caused by
STT resulting from the non-conservation of transverse
components of spin currents1. On the other hand, in
magnetic tunnel junctions (MTJs), the spin-dependent
charge currents determine the tunneling magnetoresis-
tive (TMR) properties. Consequently, the key for under-
standing the fundamental mechanisms underlying both
STT and TMR in MTJs with non-collinear magnetiza-
tions is the understanding of the fundamental quantum
properties of both spin and charge currents8.

Since the pioneering work of Slonczewski, a number of
theoretical studies have addressed the microscopic details
of STT in MTJs, using various approaches for calculat-
ing spin and charge transport. These include the transfer
matrix formalism9,10, the tight-binding approach11–15,
the free electron approach16–19, and approaches based
on first principles calculations of the electronic struc-
ture20,21. It is now well established that for elastic tun-
neling in MTJs, STT possesses two components of the
form:

T|| = (a1V + a2V
2)MR × (MR ×ML), (1)

T⊥ = (b0 + b1V + b2V
2)MR ×ML, (2)

where ML and MR are the magnetization directions of

the pinned and free layers, respectively. Several proper-
ties can be outlined for the STT components. For in-
stance, it has been shown that a2 in Eq. (1) vanishes for
the case of half-metallic electrodes13,14 while b1 tends to
zero in Eq. (2) for symmetric MTJs yielding quadratic
bias voltage behavior12,13,17–19 as confirmed later experi-
mentally22,23. The roles of inelastic scattering, structural
asymmetries and material compositions have also been
theoretically investigated24–31 resulting in the forms dis-
played in Eqs. (1)-(2) with some of them supported by
a number of recent experiments32–37. In certain cases
the perpendicular torque T⊥ may oscillate with the bias
voltage15 indicating that Eq. (2) is only a low bias ap-
proximation.

Due to the cumbersome form of the actual expressions,
most of the models proposed up to now rely on numerical
simulations12,13,15,17,19. Therefore, no transparent for-
mulas are available to qualitatively describe the torques
in MTJs. In this work we demonstrate explicit analyti-
cal expressions for both charge and spin currents which
constitute the 2 × 2 current matrix in magnetic tunnel
junctions with non-collinear magnetizations of two fer-
romagnetic electrodes, FL and FR with angle γ between
them. The electrodes are separated by an insulator (B)
and there is an applied voltage V. As shown in Fig. 1, the
interface is taken to be perpendicular to the y-direction
and the magnetization of the free (FR) layer is assumed
to be in the z-direction .
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FIG. 1. (top) Schematic structure of the MTJ, consisting of
left and right semi-infinite FM leads separated by a thin non-
magnetic insulating barrier. The magnetization MR of the
right FM lead is along z, whereas the magnetization ML of
the left lead is rotated by an angle γ around the y axis with
respect to MR. (bottom) Schematic illustration of the poten-

tial profile, where U↑
L(R), U

↓
L(R), and UB are the potentials of

the majority and minority bands in the left(right) FM leads,
and the barrier, respectively. The lower dashed line indicates
the Fermi level in equilibrium.

The expressions derived here can form a good basis
for understanding the physics of TMR, interlayer ex-
change coupling and STT in the case of both symmet-
ric and asymmetric MTJs. The calculations have been
performed within the free electron model using the non-
equilibrium Green function technique in the framework of
the Keldysh formalism and WKB approximation. They
extend the previous approximate expressions reported in
the literature7,16,19,26. The expressions presented here,
however, have a very compact form since they are ex-
pressed through only three irreducible quantities without
further approximations. This allows easy implementa-
tion in commercial software by applying straightforward
integration rules38. Moreover, in the limit of thick bar-
riers all non-collinear transport quantities are expressed
in an extremely simplified form via Slonczewski spin po-
larizations and the newly introduced effective spin av-
eraged interfacial transmission probabilities and effective
out-of-plane polarizations at both interfaces. We demon-
strate that the latter reflects the degree of spin mistrack-
ing which gives rise to the perpendicular STT term and
determines the angular dependence of STT and TMR.

Prior to entering into the details of the obtained re-
sults, it is important to point out the main limitations of

the formulas reported in this letter. It is well established
that the complex band structure of MgO-based MTJs
has an important impact on microscopic transport prop-
erties, such as STT and TMR, and can be accounted for
through first-principle calculations20. This technique al-
lows for considering a realistic density of states, as well as
the symmetry characters of the tunneling electrons, re-
sulting in important properties such as resonant interfa-
cial states and so on. Although this technique, combined
with the Non-Equilibrium Green’s Function (NEGF) for-
malism, provides a realistic bias dependence of STT20,
a simpler model using tight-binding theory has proven
to be sufficient for predicting and describing the essen-
tial characteristics of the spin transfer torques in MTJs,
(including barriers other than MgO12–15). In this case,
the interfacial density of states is modeled by a closed-
form band dispersion relation which allows for varying
the effective band filling, giving rise to unexpected bias
dependencies of the torque components12–15,19.

In the present article, we choose the free electron model
in which the dispersion is parabolic. However, for low
band-filling, tight-binding bands are well approximated
by free-electron dispersion. In particular, for the impor-
tant case of bcc (Co)Fe, the dispersion relation of the
∆1 band is similar to free electron dispersion. This ap-
proach provides an efficient, compact and transparent
qualitative description of ballistic tunneling which may
be useful and important in view of potential new techno-
logical applications of spin transfer torque. Finally, this
approach uses the standard quantum mechanical proce-
dure of matching electron wave functions at the interfaces
of the MTJ, a procedure that is formally equivalent to
the NEGF method developed in Refs. 11–14.

Spin and charge transport across a non-collinear MTJ
are represented by elements of a 2x2 current matrix in
spin space which can be written as

Ĵ =

(
J↑↑ J↑↓

J↓↑ J↓↓

)
=

(
Λ↑(↑) + Λ↑(↓) Ξ↑(↑) + Ξ↑(↓)

Ξ↓(↑) + Ξ↓(↓) Λ↓(↑) + Λ↓(↓)

)
(3)

where Λ and Ξ are described in detail in the Appendix.
The matrix above defines the required charge current and
spin current tensor components Qij (with indices i and j
being in spin and real space, respectively) using the iden-

tity, Î , and the Pauli matrices, (σ̂x, σ̂y, σ̂z). The diagonal
elements of (3) can be used to express the total charge

and longitudinal spin currents as, Je = −(|e|/h̄)Tr(Ĵ Î)

and Qzy = Tr(Ĵ σ̂z)/2, respectively. The non-diagonal

elements J↑↓(↓↑) = Qxy ± iQyy comprise transverse spin
current tensor components which are extracted using σ̂x
and σ̂y, i.e. Qxy = Tr(Ĵ σ̂x)/2 and Qyy = Tr(Ĵ σ̂y)/2. In
the following, the second (real space) index in the spin
current expressions will be omitted. Only the index per-
taining to spin space will be retained.

The spin-dependent wave vectors in the i-th electrode
are denoted by kσi (i is “L” or “R”, σ is “↑”(+) or “↓”(-))
and the wave vector inside the barrier is denoted by q(y).
Detailed expressions for these quantities are given in the
Appendix [Eqs. (A.35) and (A.36)]. In order to give an
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explicit account of the torques and current, we define

three irreducible factors, Pi = (k↑i − k
↓
i )/(k↑i + k↓i ), αi =

(q2
i −k

↑
i k
↓
i )/(q2

i +k↑i k
↓
i ) and ηi = qi(k

↑
i +k↓i )/(q2

i +k↑i k
↓
i ).

Note that qi should be replaced by qi/meff where meff =
m∗/me when meff 6= 1. The first two factors are referred
to as Stearns’ polarization39 and Slonczewski’s factor16

with their product giving Slonczewski’s spin polarization
PSi = Piαi for both interfaces. For reasons clarified fur-
ther later, PSi can be viewed as an effective in-plane po-
larization while the product of Pi and ηi, P

η
i = Piηi, will

be referred as an effective out-of-plane polarization.
We will now proceed to the expressions for spin trans-

fer torques as well as spin and charge currents which,
even in the general case, can be conveniently expressed
using only Pi, αi and ηi [see Eqs. (4)-(6) and (8)-(10)].
After that, we will show that for a barrier that is suffi-
ciently thick and high, these expressions take extremely
simple and clear forms which can be expressed straight-
forwardly using only PSi , P ηi and the effective spin av-
eraged interfacial transmission probabilities defined as
Ti = ηi/(η

2
i + α2

i ) [Eqs. (11)-(14)]. Note that the latter
represents the effective transmission probability through
interfaces for both spin channels and in this sense is dif-
ferent from the one traditionally used which is expressed
for each spin channel separately9,40,41.

In the absence of spin relaxation and spin-orbit cou-
pling, the spin transfer torque, T, can be written as,
T = −∇Q, where the real-space part of the spin current
tensor (Fig. 1) is contracted by the divergence operator.
Taking into account the vanishing of the transverse spin
current far from the interface11–13, the in-plane and per-
pendicular torques exerted by the left layer on the right
layer can be expressed through the interfacial spin cur-
rent integrand in the barrier T||(⊥) = QBx(y) and are given

by the following expressions:

T‖ =
4 sin γ

|Den|2
PL
(
2αR − αL[E2

n + E−2
n ]
)

[fL − fR] (4)

T⊥ = − 4 sin γ

|Den|2
PLPR (αLηRfL + αRηLfR) [E2

n − E−2
n ]

(5)

|Den|2 =
1

ηLηR

{
(αLηR + αRηL)

2 (
E2
n − E−2

n

)2
+
[
(αLαR − ηLηR) (E2

n + E−2
n )

−2αLαR + 2PLPRηLηR cos γ
]2}

(6)

where En is defined in Eq. (A.33) and fL, fR are the stan-
dard Fermi distribution functions shifted by ±eV/2, re-
spectively . Note that all transport quantities presented
here are functions of E and κ2 = k2

x + k2
y, so in order

to obtain numerical results, the above explicit formulas
need to be integrated over the Fermi sphere, consider-
ing 2mE/h̄2 + κ2 ∈ [−∞, EF ]. A detailed calculation
procedure is given in Appendix.

FIG. 2. The field-like T⊥ and parallel T‖ torques as a function
of applied bias in an asymmetric MTJ. UB = 1 eV, ∆0 =
2.62eV, meff = 0.4, γ = π/2, d = 7 Å.

It is worth commenting on the above equations. First,
note that the perpendicular torque, T⊥ (Eq. 5) is not
modified under R↔ L exchange. Therefore, for the case
in which the left and right electrodes are equivalent, the
term αLηRfL + αRηLfR becomes symmetric in the bias
voltage. It can be shown straightforwardly by series ex-
pansion in voltage that this situation yields a perpendic-
ular torque on the form36

∑
n b2nV

2n which agrees with
to the symmetric (even parity) bias dependence obtained
numerically15. When structural asymmetries are present
in the junction, so that the left and right interfaces are
no longer equivalent, the perpendicular torque displays
linear and higher order antisymmetric components26,36

taking the form
∑
n bnV

n as shown in Fig. 2 and ob-
served experimentally36. Interestingly, the curve peak
displacement is proportional to the difference between
the exchange splitting of the right and left FM layers.
Note also, that the n = 0 term in these expansions for
T⊥ as well as in Fig. 2 represents the inter-layer exchange
coupling16,42–44. On the contrary, the in-plane torque,
T||, given by Eq. (4), does not have this type of struc-
tural symmetry and therefore displays a wide range of
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FIG. 3. Angular dependence of an universal deviation function given by Eq. (7) for T⊥ (top panels) and T‖ (bottom panels)
for different values of thickness d, exchange splittings ∆L,R and applied voltages V. The parameters are: ∆0 = 2.62eV, ,
UB = 0.5 eV, meff = 0.4.

behavior as a function of applied bias even in a symmet-
ric junction12–14,19. It is interesting to note in Fig. 2 that
the in-plane torque is almost insensitive to the exchange
splitting of the right layer and depends instead on that
of the polarizer in perfect agreement with Eq. (4) where
it is defined indeed by the Stearns and more importantly
by Slonczewski in-plane polarizations of the left layer.

The angular dependence on the torques displayed in
Eqs. (4-6) is one of the important results of this work.
It is apparent that the deviation from the conventional

sin γ dependence is contained in the denominator |Den|2,
where the angular dependence is given by the term pro-
portional to ηLηRPLPR cos γ. For thicker and/or higher
barriers this term is negligible compared to E4

n so that
the denominator is independent on the angle resulting in
the torque being simply proportional to sin γ in this limit.
However, when the barrier is made thinner or lower, the
denominator terms with cos γ can no longer be neglected
and the angular dependence deviates from the standard
sin γ form. One can introduce a universal deviation func-
tion for both torques of the following form:

T (γ)

T (π/2)
− sin γ = −

4 sin γP ηLP
η
R

|Den|2
×
{[
αLαR

(
En − E−1

n

)2 − ηLηR (E2
n + E−2

n

)]
cos γ + P ηLP

η
Rcos2γ

}
(7)

A major role in these deviations is played by the effec-
tive out-of-plane polarization P ηi through the P ηLP

η
R cos γ

term. Fig. 3 represents the deviation function behav-

ior for both torques for different barrier thicknesses, ex-
change splittings and applied voltages. One can see that
the angular dependence of the deviation function for all
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cases shows a sin 2γ form governed by the first term in
Eq. (7). The magnitude of the deviations is of the order
of 1% or less for barrier thickness and height as low as
5 Å and 0.5 eV, respectively, indicating that the usual
sin γ-dependence of STT is quite robust for a wide range

of materials including MgO or AlOx barriers, consistent
with the thick barrier approximation which will be intro-
duced below.

The parallel and perpendicular spin currents in the
right FM electrode are given by the following expressions:

QRx =
4 sin γ

|Den|2
PL
[
PRηRαL[E2

n − E−2
n ] sin{∆kRy} +

(
2αR − αL[E2

n + E−2
n ]
)

cos{∆kRy}] [fL − fR] (8)

QRy =
4 sin γ

|Den|2
PL

{[(
2αR − αL[E2

n + E−2
n ]
)

sin{∆kRy} − PRηRαL[E2
n − E−2

n ] cos{∆kRy}
]
[fL − fR]

+ PRfR

[ (
(ηLηR − αRαL) [E2

n + E−2
n ] + 2(1− ηLηRPLPR cos γ)

)
sin{ΣkRy}

− (ηLαR + ηRαL) [E2
n − E−2

n ] cos{ΣkRy}
]} (9)

where ∆ki = k↑i − k
↓
i and Σki = k↑i + k↓i . The beating

described in Ref. 19 is now displayed explicitly in the

cos{(k↑R + k↓R)y}, cos{(k↑R− k
↓
R)y}, sin{(k↑R + k↓R)y}, and

sin{(k↑R − k↓R)y} terms. The corresponding local spin
transfer torques in the right FM electrode can be ob-
tained by taking the derivative of Eqs. (8) and (9) with
respect to the y-coordinate. As one can see in Fig. 4 both
STT terms within the right FM electrode oscillate and
decay as a function of distance from the B|FR interface
in agreement with previous reports for MTJs11,19 and
metallic spin valves45–47. It is interesting to note that the
period of oscillations λL, (which is related to the Larmor
spin precession length, lL, by a factor 2π), is different un-
der positive and negative applied voltages [cf. Figs. 4(a)
and (b)]. This is due to the asymmetric voltage depen-
dence of ∆kR which defines the oscillation wavelength
λL as 2π/∆kR. Indeed, as shown by the solid lines in
the inset of Fig. 4, ∆kR is larger (smaller) for negative
(positive) applied voltage resulting in smaller (larger) λL
in Fig. 4(a) and (b), respectively. The oscillations de-

cay with an exponential envelope function e−(y−d)/λd

which results from the dephasing due to integration over
the in-plane momentum κ within the tunneling cone19.
Here, λd, indicates the characteristic transverse spin de-
cay length48. The latter is strongly dependent on the
applied voltage, varying from ∼20 Å to ∼7.5 Å as the
bias changes from +1 V to -1 V as shown in Fig 4(a)
and (b), respectively. Similar behavior is observed when
the right FM electrode becomes a half-metal [Fig. 5] with
both λL and λd being smaller compared to the aforemen-
tioned case of non-half-metallic FM electrode [cf. Figs. 5
and 4]. Such behavior can again be explained by a change
in the dependence of ∆kR as a function of applied voltage
when one compares insets in Figs. 5 and 4. In particular,
the presence of the imaginary part of ∆kR in all ranges
of negative voltages yields a significantly stronger decay
of oscillations as displayed in Fig. 5(b).

Next, we give exact expressions for the longitudinal
spin current Qz and charge current Je which are con-
served through the barrier and the right electrode and
can respectively be expressed as:

Je = − 8

|Den|2

{
(1 + αLαRPLPR cos γ) [E2

n + E−2
n ]

− 2 (αLαR + PLPR cos γ− ηLηR(1− αLPL)(1− αRPR))

}
[fL − fR]

QBz = − 4

|Den|2

{
(αRPR + αLPL cos γ) [E2

n + E−2
n ] + 2 (αLPR + αRPL cos γ)

}
[fL − fR]

(10)

One of the most important results of this work is the
form of the aforementioned expressions when the barrier

is thick, i.e. E2
n � 1, and as justified above by small

deviations from sine angular dependencies of STT given
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FIG. 4. Distribution of the voltage induced in-plane and out-
of-plane STT terms in the right FM electrode of a symmetric
MTJ for (a) V=+1 V and (b) V=-1 V applied voltage. The
parameters are: ∆0 = 2.62eV, ∆L = ∆R = 1.96eV, UB =
3eV, meff = 0.4, γ = π/2, d = 7Å. T0⊥ indicates the field-like
torque at zero voltage. The inset shows a voltage dependence
of the real and imaginary parts of ∆kR = k↑R − k↓R.

by Eq. (7) and shown in Fig. 3. In this case, the formulas
can be written using only PSi , P ηi and Ti and take a very
simple form:

T|| = −4TLTRP
S
LE
−2
n [fL − fR] sin γ (11)

T⊥ = −4TLTR
(
PSLP

η
RfL + PSRP

η
LfR

)
E−2
n sin γ (12)

Je = −8TLTR
(
1 + PSLP

S
R cos γ

)
[fL − fR]E−2

n (13)

Qz = −4TLTR
(
PSR + PSL cos γ

)
[fL − fR]E−2

n (14)

One can note that the previously introduced in-plane
(Slonczewski’s) polarization, PSi , and the out-of-plane
polarization, P ei ta, play a very different role. While the
former defines the magnitude of the TMR and both com-
ponents of the spin torque [see Eqs. (11)-(14)], the lat-
ter participates only to the out-of-plane torque, T⊥ [see

FIG. 5. The same as in Fig. 4 for case in which the right FM
electrode is a half-metal. Exchange splittings are ∆0 = ∆R =
2.62eV and ∆L = 1.96eV while other parameters unchanged.

Eq. (12)]. This is the second important role of the out-
of-plane polarization, besides being responsible for the
aforementioned angular deviation. In fact, P ηi is decisive
for T⊥ since it accounts for the degree of out-of-plane
precession at the interfaces for a spin initially polarized
along ML which ensures the appearance of Qy giving rise
to the perpendicular torque (see Fig. 1). Interestingly, it

can be shown in the approximation where q2
i � k↑i k

↓
i ,

that P ηi and PSi can be literally assigned respectively to
the sine and cosine of the out-of-plane precession angle φ
at the interfaces which in this case is very small. This is
the reason that we named P ηi and PSi the in-plane and
out-of-plane interfacial polarizations, respectively. The
situation changes as the electron energy becomes closer
to the barrier height, i.e. when qi no longer dominates

the geometrical mean of k↑i and k↓i . In this case, the
electron spin starts to ”precess” or get reoriented prior
to arrival at the right interface since it begins to have
enough energy to interfere with its reflected part lead-
ing to a much stronger decrease of PSi compared to P ηi
affecting thereby the TMR and T‖ amplitudes. Finally,
when the barrier becomes low and thin, the terms in
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FIG. 6. Bias voltage dependence of the torque efficiency for
an MTJ. ∆T⊥ = T⊥(V ) − T⊥(0). The parameters are: ∆0 =
2.62eV, ∆L = ∆R = 1.96eV, UB = 2eV, meff = 0.4, γ = π/2,
d = 7Å.

the denominator given by Eq. (6) accounting for mul-
tiple “interferences” of transmitted and reflected non-
collinear evanescent states due to their strong overlap be-
tween two interfaces, result in further modulation of the
out-of-plane spin component taken into account through
P ηi . This leads to the aforementioned deviations from
the standard sine angular dependences of spin transfer
torques and the standard cosine angular dependence of
the charge and spin currents.

Another important result is that it is straightforward
to show using Eqs. (11) and (14) that the parallel spin
current in the barrier region which represents the total
in-plane spin torque deposited in the right FM electrode
can be expressed using the longitudinal spin current for
parallel and antiparallel components respectively as12

T‖ = Qx =
Qz(0)−Qz(π)

2
MR × (MR ×ML). (15)

Finally, one can get a corrected generalized expression
for spin torque efficiency by dividing Eqs. (4) and (5)
by Eq. (10) without forgetting to subtract the zero volt-
age part which accounts for the equilibrium exchange
coupling through T⊥. For instance, in the limit of a
thick/high barrier, using Eqs. (11) and (13) the in-plane
torque efficiency becomes T‖/Je = −(1/2)PSL sin γ/(1 +

PSLP
S
R cos γ). The bias voltage dependence of torque effi-

ciency is represented in Fig. 6 for T⊥ and T‖. They both
change sign with bias. These curves are in very good
agreement with those obtained within the tight binding
model (cf. Fig. 6(a) and (b) in Ref. 28).

To conclude, we derived explicit analytical formulas
for spin and charge currents as well as for spin trans-
fer torques for MTJ with non-collinear moment orien-
tation, using only three irreducible quantities without
further approximation. We showed the voltage depen-
dence properties of STT and established conditions for

deviation from the conventional sine angular dependence
of both spin currents and spin torques. Furthermore,
we have shown that in the large barrier approximation
all tunneling transport quantities can be expressed in an
extremely simplified form via Slonczewski spin polariza-
tion and the newly introduced “effective spin-averaged
interfacial transmission probabilities” and “effective out-
of-plane polarizations” at both interfaces which define
the detailed angular dependence of TMR and STT. In
addition, it is directly proven that for any applied volt-
age, the parallel component of spin current at the FM/I
interface is expressed via collinear longitudinal spin cur-
rent components. The developed model can be easily
adapted to study thermally induced transport properties
including magnetopower, thermal torques as well as other
spin caloritronics phenomena by performing the energy
integration exposed in the Appendix using finite temper-
ature Fermi-Dirac distributions. We provide in Ref. 38
the Mathematica code used in the present work.

APPENDIX

An expression for the current density is:

Je = −|e|
h̄

Tr(Ĵ Î) = −|e|
h̄

∑
i,σ

JσσB,i, (A.16)

where i is “L” or “R”, σ is “↑”(+) or “↓”(-) and the
current in the barrier is given by:

JσσB,i =
∑
σ′

Λ
σ(σ′)
B,i . (A.17)

Spin current densities and spin transfer torques in the
barrier are:

QBx = T‖ =
1

2
Tr(Ĵ σ̂x) =

1

2

∑
i,σ

Jσ−σB,i ,

QBy = T⊥ =
1

2
Tr(Ĵ σ̂y) = − i

2

∑
i,σ

σJσ−σB,i ,

(A.18)

where

Jσ−σB,i =
∑
σ′

Ξ
σ(σ′)
B,i . (A.19)

The spin channel fluxes, Λ and Ξ are expressed as:

Λ
σ(σ′)
B,i =

i

(2π)
3

EkT,i∫
Eσ
′
i

kσ
′
F,i∫

0

κ dκ dE

× fi
(
Aσσ

′

i Bσσ
′∗

i −Aσσ
′∗

i Bσσ
′

i

)
,

Ξ
σ(σ′)
B,i =

i

(2π)
3

EkT,i∫
Eσ
′
i

kσ
′
F,i∫

0

κ dκ dE

× fi
(
Aσσ

′

i B−σσ
′∗

i −A−σσ
′∗

i Bσσ
′

i

)
,

(A.20)
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where

kσF,i =

√
2m

h̄2

(
E + ∆0 + σ∆i + ζi

eV

2

)
, (A.21)

where E and κ are the electron energy and in-plane wave

vector and ∆L(R) = (U↓L(R) − U
↑
L(R))/2 is the exchange

energy in the left(right) electrode,

ζi =

{
−1, if i = “L”

1, if i = “R”
(A.22)

Eσi = −∆0 − σ∆i − ζieV/2, (A.23)

EkT,i = −ζi
eV

2
+ ∆kT , (A.24)

where ∆kT is a smearing width for the functions fL and
fR and can be taken, for example as 7kT .

fi =
1

exp
(
E+ζieV/2

kT

)
+ 1

, (A.25)

Aσσ
′

L = 2iξσσ
′

√
kσ
′
L qL

D
qR + ikσR
En

×[(
qL + ik−σ

′

L

) (
qR + ik−σR

) 1

En

−En
(
qL − ik−σ

′

L

) (
qR − ik−σR

)]
,

(A.26)

Bσσ
′

L = 2iξσσ
′

√
kσ
′
L qL

D
(qR − ikσR)En×[(

qL + ik−σ
′

L

) (
qR + ik−σR

) 1

En

−En
(
qL − ik−σ

′

L

) (
qR − ik−σR

)]
,

(A.27)

where ξσσ
′

is defined as:

ξσσ
′

=


cos (γ/2) , if σ = σ′

sin (γ/2) , if σ =“↓”, σ′ =“↑”
− sin (γ/2) , if σ =“↑”, σ′ =“↓”,

(A.28)

A
↓↑(↑↓)
R = 2e−ik

↑(↓)
R d

√
k
↑(↓)
R qR

D
×

k↑L − k
↓
L

En
qL

(
qR + ik

↓(↑)
R

)
sin γ,

(A.29)

B
↓↑(↑↓)
R = 2e−ik

↑(↓)
R d

√
k
↑(↓)
R qR

D
×

EnqL

(
k↑L − k

↓
L

)(
qR − ik↓(↑)R

)
sin γ,

(A.30)

A
↑↑(↓↓)
R = 2ie−ik

↑(↓)
R d

√
k
↑(↓)
R qR

D

[(
qR + ik

↓(↑)
R

)
×
(
q2
L + k↑Lk

↓
L − iqL

(
k
↑(↓)
L − k↓(↑)L

)
cos γ

) 1

En

− En
(
qR − ik↓(↑)R

)(
qL − ik↑(↓)L

)(
qL − ik↓(↑)L

)]
,

(A.31)

B
↑↑(↓↓)
R = 2ie−ik

↑(↓)
R d

√
k
↑(↓)
R qR

D

[(
qR + ik

↓(↑)
R

)
×
(
qL + ik↑L

)(
qL + ik↓L

) 1

En
− En

(
qR − ik↓(↑)R

)
×
(
q2
L + k↑Lk

↓
L + iqL

(
k
↑(↓)
L − k↓(↑)L

)
cos γ

)]
,

(A.32)

En = exp

d∫
0

q (y) dy =

= exp

[
2h̄2d

6m∗eV

(
m∗

m

)3 (
q3
L − q3

R

)]
,

(A.33)

q(y) =
1

meff

√
2m∗

h̄2

(
UB − E + eV/2− y eV

d

)
+ κ2,

(A.34)

kσi =
√
kσ 2
F,i − κ2, (A.35)

qi =
1

meff

√
2m∗

h̄2 (UB − E − ζieV/2) + κ2, (A.36)

where UB and d represent respectively the barrier height
and thickness with m∗ = meffme being electron effec-
tive mass. It has to note that bias voltage V = 1Volt
corresponds to eV = 1eV.
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D =
(
qL + ik↑L

)(
qL + ik↓L

)(
qR + ik↑R

)(
qR + ik↓R

) 1

E2
n

+
(
qL − ik↑L

)(
qL − ik↓L

)(
qR − ik↑R

)(
qR − ik↓R

)
E2
n

− 2
(
q2
L + k↑Lk

↓
L

)(
q2
R + k↑Rk

↓
R

)
+ 2qLqR

(
k↑L − k

↓
L

)(
k↑R − k

↓
R

)
cos γ

(A.37)

Similar expressions can be written for the right FM
layer:

JσσR,i =
∑
σ′

Λ
σ(σ′)
R,i . (A.38)

Spin current densities and spin transfer torques in the
right FM layer are:

QRx = T‖ =
1

2
Tr(Ĵ σ̂x) =

1

2

∑
i,σ

Jσ−σR,i ,

QRy = T⊥ =
1

2
Tr(Ĵ σ̂y) = − i

2

∑
i,σ

σJσ−σR,i ,

(A.39)

where

Jσ−σR,i =
∑
σ′

Ξ
σ(σ′)
R,i . (A.40)

The spin channel fluxes, Λ and Ξ are expressed as:

Λ
σ(σ′)
R,L =− 1

2

1

(2π)
3

EkT,L∫
Eσ
′
L

kσ
′
F,L∫

0

κ dκ dE,

× fL (kσR + kσ∗R )
∣∣∣Tσσ′ ∣∣∣2

Λ
σ(σ′)
R,R =− 1

2

1

(2π)
3

EkT,R∫
Eσ
′
R

kσ
′
F,R∫

0

κ dκ dE

× fR(1− (kσR + kσ∗R )
∣∣∣Rσσ′ ∣∣∣2),

Ξ
σ(σ′)
R,L =− 1

2

1

(2π)
3

EkT,L∫
Eσ
′
L

kσ
′
F,L∫

0

κ dκ dE

× fLk+
R,σT

σσ′T−σσ
′∗eiσk

−
R,σy,

Ξ
σ(σ′)
R,R =− 1

2

1

(2π)
3

EkT,R∫
Eσ
′
R

kσ
′
F,R∫

0

κ dκ dE

× fR
[
−σ′k−R,σR̃

σσ′R̃−σσ
′∗e−iσσ

′k+R,σy

+ k+
R,σR

σσ′R−σσ
′∗eiσk

−
R,σy

]
,

(A.41)

where

R̃σσ
′

=


1√
kσR
, if σ = σ′

Rσσ
′
, if σ 6= σ′

k±R,σ =

{
k↑ ± k↓∗, if σ = 1(” + ”)

k↑∗ ± k↓, if σ = −1(”− ”)

Tσσ
′

L =4iξσσ
′

√
qLqRkσ

′
L

D
e−ik

σ
Rd

×

[(
qL + ik−σ

′

L

) (
qR + ik−σR

) 1

En

−
(
qL − ik−σ

′

L

) (
qR − ik−σR

)
En

]
,

(A.42)

R↓↑(↑↓) =4e−i(k
↑
R+k↓R)d

√
k
↑(↓)
R

D
× qLqR

(
k↑L − k

↓
L

)
sin γ,

(A.43)

R↑↑(↓↓) = 2ie−2ik
↑(↓)
R d

√
k
↑(↓)
R

D

[

2i
(
k
↓(↑)
R

(
q2
L + k↑Lk

↓
L

)
∓ qLqR

(
k↑L − k

↓
L

)
cos γ

)
+
(
q2
L − k

↑
Lk
↓
L + iqL

(
k↑L + k↓L

))(
qR + ik

↓(↑)
R

) 1

E2
n

−
(
q2
L − k

↑
Lk
↓
L − iqL

(
k↑L + k↓L

))(
qR − ik↓(↑)R

)
E2
n

]

− e−2ik
↑(↓)
R d√

k
↑(↓)
R

(A.44)
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