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We experimentally demonstrate that arrays of interacting nanoscale ferromagnetic islands, 

known as artificial spin ice, develop reproducible microstates upon cycling an applied magnetic 

field. The onset of this memory effect is determined by the strength of the applied field relative 

to the array coercivity. Specifically, when the applied field strength is almost exactly equal to the 

array coercivity, several training cycles are required before the array achieves a nearly 

completely repeatable microstate, whereas when the applied field strength is stronger or weaker 

than the array coercivity, a repeatable microstate is achieved after the first minor loop. We show 

through experiment and simulation that this memory exhibited by artificial spin ice is due to a 

ratchet effect on interacting, magnetically-charged defects in the island moment configuration 

and to the complexity of the network of strings of reversed moments that forms during 

magnetization reversal. 
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I. INTRODUCTION 

Memory effects in hysteretic condensed matter systems have long attracted attention. These effects 

are seen in diverse systems, including magnetic multilayers [1-4], sheared particle suspensions [5-8], 

martensitic transformations [9,10], and superfluid helium in capillaries [11]. When a hysteretic system 

reproduces (“remembers”) exactly the same microstate after being driven through a single hysteresis 

loop, the system is said to exhibit a return point memory [12-14]. Other systems require a number of 

training cycles in order to self-organize into a configuration that is replicated after subsequent cycles [6]. 

While memory effects are of both fundamental and applied interest, due to connections with avalanches 

[15,16] and the Barkhausen effect [17-19], experimental investigation of such phenomena in magnetic 

systems has been largely limited to collective phenomena with macroscopic consequences. Magnetic 

microscopy studies to determine the reproducibility of domain structures in thin film systems have 

yielded inconsistent results [4,20-22], which is likely a consequence of differences in material 

properties, thermal fluctuations, and pinning defects in the various material systems studied. 

Furthermore, domain structure imaging is at best a coarse-grained probe of memory at the microscopic 

level, since the resolution of individual spins remains difficult [23].  Some of the most detailed 

experimental investigations of memory effects in magnetic systems have relied on x-ray magnetic 

speckle measurements as a proxy for real space imaging [1-3], but again experimental resolution factors 

limit the theory based on these measurements to continuum models [3].  

Artificial spin ices, originally designed to model frustrated magnetic systems such as spin ice [24-

26], comprise arrays of interacting single-domain ferromagnetic nanoislands [27-29]. Since the 

nanoislands’ magnetic moments have well-defined degrees of freedom and can be directly imaged by 

modern techniques such as magnetic force microscopy (MFM), artificial spin ice has been used to 

extensively study monopole-like excitations in frustrated spin systems [30-37] as well as associated 

cascades occurring during magnetization reversal [37-40]. Many experimental realizations of artificial 

spin ice possess both of the key ingredients for return point memory [14]: quenched disorder [41-43] and 

freedom from thermal fluctuations [27].  A recent numerical study simulated trapped colloids whose 

collective behavior can access an ice-like manifold [44], suggesting that artificial colloidal ice should 

exhibit reproducible microstates upon cycling an external field. While this work did not distinguish 

between return point memory (which, strictly defined, only refers to memory after the first minor loop) 

and more general limit cycles which may require some initial training, and while it is quite different 

from artificial spin ice as usually studied in magnetic systems, it strongly suggested that interesting 

memory effects should be seen and could be locally resolvable in artificial spin ice systems. 
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Here we experimentally demonstrate such memory effects, showing reproducible microstates after 

field cycling in artificial spin ice. For applied fields significantly stronger or weaker than the array 

coercivity, the final microstate is determined during the first loop, so the system exhibits nearly ideal 

return point memory. For applied fields approximately equal in strength to the array coercivity, 

interactions between effective charged defects in the moment configuration prevent the development of 

return point memory, and several “training” loops are required for a reproducible microstate to appear. 

These results are well reproduced by relaxational dynamics simulations that incorporate long-range 

dipolar interactions and quenched disorder. Direct MFM imaging of the island moment configuration 

yields unprecedented access to the microscopic details of these memory effects and allows us to explain 

our data in terms of a model involving the dynamics of the effective magnetic charges in artificial spin 

ice systems [33-35].  

 

II. EXPERIMENTAL DETAILS 

We fabricated small arrays of square lattice artificial spin ice that completely fit within a single 

MFM image, which allowed us to unambiguously identify individual islands across a series of images of 

the same array. The arrays had closed edges (edge geometry may affect an array’s response to an applied 

field for sufficiently-low disorder [43]), and the island spacing (360 nm), island size (220×80×25 nm), 

and material (Ni81Fe19) were identical to samples studied in previous works [27,45]. MFM images 

confirm that the islands are single-domain, with the magnetization along the islands’ long axes. 

Although micromagnetic studies have indicated some magnetization curling may occur at the ends of the 

islands [46], to first order the islands may be treated as giant Ising spins, as evidenced by the agreement 

between our experimental data and single-spin simulations described below. We applied magnetic fields 

at 45 ± 0.5° to the islands (Fig. 1a), first polarizing the sample by applying a field much larger than the 

array’s coercive field ( 650 OecH ≈ ) to provide a consistent initial state, and then driving the arrays 

through six minor hysteresis loops by applying a magnetic field aH  alternately antiparallel and parallel 

to the original polarizing field. After each magnetic field application, we collected MFM images of the 

arrays at zero field (e.g. Fig. 1b) and extracted the microscopic configuration of island moments. Since 

the configuration of island moments in these arrays is frozen at room temperature [27], the configuration 

does not change during the monotonic reduction of the magnetic field from ±Ha to zero. We investigated 

several different sets of minor loops, each set having a different magnitude of Ha. 

We also conducted relaxational dynamics simulations [40] of our arrays. Because detailed 

micromagnetic simulations of the entire arrays are too computationally expensive, we modeled our 



   4 
 

experimental data by simulating the system with individual islands approximated as point dipoles, 

interacting with each other via the dipolar interaction. The magnetization of the islands was described by 

an Ising variable i i s is M=m e , where sM  is the saturation magnetization and ie  is a unit vector 

specifying the orientation of the island. We employed zero-temperature relaxation dynamics for the 

Ising spins: an Ising spin is   was inverted if the total field acting on it, composed of external field and 

local field (including the fields of neighbors up to ten lattice constants away), exceeded the spin’s 

coercivity ,i cH . Quenched disorder was incorporated in our simulations by modulating the local 

coercive fields according to a Gaussian distribution with a standard deviation of 5% of the mean 

coercive field, a disorder level which is consistent with the width of the experimental reversal curve and 

also provided a reasonable fit to the experimental data (Fig. 2). At each minor loop, we first inverted 

those spins for which the total field projected along its axis exceeded its coercive field. After updating 

the dipolar fields, we looked for further flippable spins and inverted those spins too. The process was 

repeated until there were no more flippable spins. 

III. RESULTS 

The configuration of island moments in artificial square spin ice is often analyzed in terms of 

vertices at which four islands meet [27]. The possible configurations of these vertices are shown in the 

inset of Fig. 2a. As in spin ice materials [24-26,30-32], Type I and II vertices in the square lattice, which 

obey the ice rule (i.e., two island moments point in and two out), are lower in energy than Type III 

vertices, which break the ice rule (three-in/one-out or vice versa) [27] and possess an effective magnetic 

charge that results in behavior analogous to that of magnetic monopoles [30-35].   

In Figs. 2a and b, we show the evolution of vertex populations with field cycles.  The key feature of 

both the experimental data and simulations of the vertex populations is that they saturate after at most 

about four minor loops, suggesting that a repeatable microstate is established at this point. The vertex 

populations are an average property, however, and do not significantly add to the insight offered by 

previous bulk probes of memory effects. To quantify the microscopic memory in these artificial spin ice 

arrays, we extracted the spin overlap parameter [44], 

 ( ) ( )11 ,n n
i i

i

q s s
N

−= ∑  

where N is the number of islands, ( )n
is = ±1 is the magnetic moment of island i after minor loop n, and 

( )1n
is

−  is the moment of the same island exactly one minor loop earlier [44]. If, after a complete minor 
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loop, every island in an array returned to its configuration at the same point in the previous loop, 1q = ; 

if there is no correlation between the island configurations of loop 1n −  and n, then   0.q ≈  We can then 

correlate microscopic details of the development of memory effects, e.g., individual island reversals, 

with the overall behavior of the system, characterized by the spin overlap parameter. The experimental 

spin overlap parameter for one lattice is shown in Fig. 2c for different values of Ha.  The spin overlap 

parameter saturates near 1.0 after a few loops. We note that the number of minor loops required to 

produce this memory in artificial spin ice is similar to the numerical results of Ref. 44. The spin overlap 

parameter increased slightly beyond six minor loops but did not reach 1.0. This can be attributed to a 

slight variation in the direction of the applied field in our apparatus: the experimental setup permitted 

alignment only to ±0.5º, and intentionally varying the field direction further decreased the saturation 

value of the spin overlap parameter. 

The spin overlap parameter approaches saturation most slowly for a cH H≈ , in agreement with the 

simulations (Fig. 2d). This is confirmed in Figs. 2e and f, which show the spin overlap parameter after 

six minor loops as a function of applied field. In contrast, the spin overlap parameter saturates rapidly 

for a cH H<  and a cH H> , indicating the development of near-perfect return point memory. The 

development of a memory state may be understood in terms of the nucleation, dissociation, and 

annihilation of magnetically-charged Type III vertices during the series of field applications, as 

described below. 

 

IV. DISCUSSION 

We now describe in detail how the magnetically-charged Type III vertices affect the development of 

memory in artificial spin ice. The interactions between island moments play a crucial role here. The 

long-range nature of the dipolar interaction suggests that a quantitative description must include the 

effects of many neighbors, as is done in our relaxational dynamics simulations; however, a qualitative 

understanding may be obtained by considering adjacent islands only, as shown in Fig. 3. For an island 

moment to reverse, the projection of the total field (applied field aH  plus local field localH ) antiparallel 

to the island moment im  must exceed the island’s coercivity, ,c iH : 

( ) ,ˆa local i c iH− + ⋅ >H H m . 

If the array is initially polarized with a field in the direction that we define as positive (i.e., in the ˆ ˆ+ +x y  

direction in Fig. 4), then for the first application of aH−  to the polarized array, a negative local field will 
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assist the applied field in reversing the island moment, while a positive local field will partially cancel the 

applied field and inhibit island moment reversal. 

Let NNH  be the projection along an island long axis of the field from a nearest neighbor (green in 

Fig. 3), and similarly let NNNH  be the projection along an island moment of the field from a next-nearest  

neighbor (yellow in Fig. 3). Note that | |NN NNNH H> . As with aH , we define NNH  and NNNH  to be 

positive when they are parallel to the original direction of the island moment, i.e., when they have 

positive projections on the original, saturating field. The first application of aH−  to the polarized array 

nucleates pairs of oppositely-charged Type III vertices wherever a single island of particularly low 

coercivity is reversed. In order for this to happen, the applied field must overcome not only the island’s 

intrinsic coercivity, but also the local field 2 NNNH+ , which inhibits formation of these effective 

magnetic charges. The Type III vertices are then driven apart by the field through successive moment 

reversals of neighboring islands, leaving a string of flipped island moments joining them [34,35]. The 

string can grow via two different possible moves, illustrated in Fig. 4, which we name “parallel” and 

“perpendicular” hops. 

We first consider the case of an island moment to be flipped to create a perpendicular hop (Fig. 4a,b). 

Adding the fields from an island’s four nearest-neighbors and two next-nearest-neighbors, we find that 

the local field on that island is given by 

( )2 3 2 0local NNN NN NN NN NNNH H H H H H= − + = − − < . 

Note that, for this case, the local field on the island to be flipped is negative, so the local field adds to the 

applied field, helping to induce the perpendicular hop.  

We now consider the case of an island moment to be flipped to create a parallel hop (Fig. 4c,d). The 

local field on an island moment to be flipped to create a parallel hop is 

 2 2 0local NNN NNN NN NNH H H H H= − + − = . 

For a parallel hop, the local field is zero, so it has no effect on reversing the island moment. The string 

can thus grow through either parallel or perpendicular hops until it terminates when the Type III vertices 

at the ends encounter islands of particularly high intrinsic coercivity and become pinned. 

 When the applied field is reversed ( aH+ ), the magnetically-charged Type III vertices will be driven 

back toward each other, erasing the string as they go. Since the local field for a parallel hop is zero, the 

parallel hops can be retraced without difficulty. The local field for perpendicular hops, parallel to the 

applied field in the previous step, now partially cancels the applied field and may prevent the Type III 

vertices from retracing the perpendicular hops, depending on the coercivity of the individual island. The 
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local field thus provides a ratchet mechanism that supports the growth of the strings when aH−  is 

applied, but impedes their erasure when aH+  is applied.  

In Fig. 5, we demonstrate the dynamics of the magnetic charges for Ha well below Hc, showing an 

example of our experimental data taken from MFM images and displayed to highlight the flipped 

moments and Type III vertices. In this case, the first application of aH−  after polarization (Fig. 5a) 

nucleates only isolated pairs of Type III vertices, so their associated strings rarely cross. When the field 

is switched back and forth, the charged Type III vertices simply move back and forth at the ends of their 

respective strings but do not significantly interact with each other. They return to the same pinning site 

after each field application, and so the moment configuration will be reproduced after the first minor 

loop, as can be seen in Fig. 5. Similar behavior is observed in the simulation results, presented in Fig. 6. 

Consequently, the spin overlap parameter saturates rapidly, as is seen in both experiment 

/ 0.949a cH H =  in Fig. 2a) and simulation (Fig. 2b), and the sample exhibits near-perfect return point 

memory. 

In Fig. 7, we demonstrate the dynamics of the magnetic charges for Ha ≈ Hc, again showing 

experimental data. For a cH H≈ , the Type III vertices and strings are no longer isolated. During the first 

application of aH− , the Type III vertices annihilate with oppositely-charged Type III vertices from other 

strings, and strings can merge or cross. The result is a network of inverted island moments, shown in Fig 

7a, rather than just sparse tracks. This leads to an entirely different regime of magnetic charge 

annihilation during the subsequent application of aH+  (Fig. 7b). Since the Type III vertices populate the 

boundaries of a complex network of inverted moments, when the field is reversed again, the Type III 

vertices can again annihilate with oppositely-charged Type III vertices other than the ones from which 

they originally dissociated. In particular, a charge that had tracked a step-like string no longer has to 

annihilate with the oppositely-charged vertex from which it originally dissociated, but can now travel 

back along an easier parallel path to annihilate with a different one. The dynamics is collective and 

complex, with the trajectories of the Type III vertices dictated by network’s topology, interactions with 

other Type III vertices, and the spatial distribution of local disorder. The network of strings allows for 

more freedom during each field reversal as the complicated magnetic charge and string interactions react 

to the new initial conditions produced after each minor loop, delaying the development of a repeatable 

memory state. In this case, the behavior of the system cannot be properly termed return point memory, 

but may be more appropriately classified as a limit cycle. This explains the delayed saturation of the spin 

overlap parameter for / 1.005a cH H =  in Fig. 2a and b, and the larger differences among the panels of 
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Fig. 7 compared to those of Fig. 5. Nevertheless, the differences between the moment configurations 

decrease as the number of minor loops increases. The Type III vertices eventually find the most 

favorable configurations, and so the spin overlap parameter saturates (within experimental uncertainty) 

after about four minor loops, similar to Ref. 44.  Again, our simulations produce similar results, shown 

in Fig. 8. The dynamics of the magnetic charges is approximately symmetric in applied field, since at 

still higher applied magnetic fields, Ha well above Hc, nearly all the island moments are reversed by the 

first application of aH− , leaving only a sparse distribution of strings (now comprised of unflipped 

islands) behind. 

 

V. CONCLUSION 

Our results demonstrate how artificial spin ice can be used to examine the microscopic basis of other 

phenomena associated with hysteretic systems.  We envisage several possibilities for future works. For 

example, investigating thermally active artificial spin ice [47] would further permit the microscopic 

investigation of non-repeatable [20-22] as well as repeatable [4,18] Barkhausen effects. Here we have 

demonstrated how applied field can tune regimes, from unidirectional, ratchet-like behavior to more 

complex dynamics on a network. Nontrivial geometries of artificial spin ice [48,49] can expand this 

control, potentially allowing such exotic phenomena as chiral magnetic ratchets, as well as magnetricity-

based devices [50]. Furthermore, the coupling of these sources and sinks of the H field to 2D systems of 

correlated electrons could lead to control of quantum states, such as superconducting vortices and 

antivortices [51-53], through the manipulation of the magnetic charges, suggesting numerous paths for 

future studies. 

 

ACKNOLWEDGEMENTS 

This work was primarily funded by the US Department of Energy, Office of Basic Energy Sciences, 

Materials Sciences and Engineering Division under grant no. DE-SC0010778. Electron beam 

lithography was supported by the National Nanotechnology Infrastructure Network. The work of G.-W. 

Chern and C. Nisoli was carried out under the auspices of the US Department of Energy at LANL under 

contract no. DE-AC52-06NA253962. We thank Liam O’Brien for assistance with sample fabrication 

and Karin Dahmen and James Sethna for useful discussions. 

____________________________________________ 
 

*pschiffe@illinois.edu 



   9 
 

1. M.S. Pierce, R.G. Moore, L.B. Sorensen, S.D. Kevan, O. Hellwig, E.E. Fullerton, & J.B. Kortright, 

Quasistatic x-ray speckle metrology of microscopic magnetic return-point memory. Phys. Rev. Lett. 90, 

175502 (2003). 

2. M.S. Pierce, C.R. Buechler, L.B. Sorensen, J.J. Turner, S.D. Kevan, E.A. Jagla, J.M. Deutsch, T. Mai, O. 

Narayan, J.E. Davies, K. Liu, J.H. Dunn, K.M. Chesnel, J.B. Kortright, O. Hellwig, & E.E Fullerton, 

Disorder-induced microscopic magnetic memory. Phys. Rev. Lett. 94, 017202 (2005). 

3. M.S. Pierce, C.R. Buechler, L.B. Sorensen, S.D. Kevan, E.A. Jagla, J.M. Deutsch, T. Mai, O. Narayan, J.E. 

Davies, K. Liu, G.T. Zimanyi, H.G. Katzgraber, O. Hellwig, E.E. Fullerton, P. Fischer, & J.B. Kortright, 

Disorder-induced magnetic memory: Experiments and theories. Phys. Rev. B 75, 144406 (2007). 

4. T. Hauet, C.M. Günther, B. Pfau, M.E. Schabes, J.-U. Thiele, R.L. Rick, P. Fischer, S. Eisebitt, & O. Hellwig, 

Direct observation of field and temperature induced domain replication in dipolar coupled perpendicular 

anisotropy films.  Phys. Rev. B 77, 184421 (2008). 

5. D.J. Pine, J.P. Gollub, J.F. Brady, & A.M. Leshansky, Chaos and threshold for irreversibility in sheared 

suspensions. Nature 438, 997 (2005). 

6. L. Corté, P.M. Chaikin, J.P. Gollub, & D.J. Pine, Random organization in periodically driven systems. Nature 

Phys. 4, 420 (2008). 

7. N.C. Keim & S.R. Nagel, Generic transient memory formation in disordered systems with noise. Phys. Rev. 

Lett. 107, 010603 (2011). 

8. J.D. Paulsen, N.C. Keim, & S.R. Nagel, Multiple transient memories in experiments on sheared non-

Brownian suspensions. Phys. Rev. Lett. 113, 068301 (2014). 

9. F.-J. Pérez-Reche, M. Stipcich, E. Vives, L. Manosa, A. Planes, & M. Morin, Kinetics of martensitic 

transitions in Cu-Al-Mn under thermal cycling: Analysis at multiple length scales. Phys. Rev. B 69, 064101 

(2004). 

10. A. Amengual, L. Manosa, F. Marco, C. Picornell, C. Segui, & V. Torra, Systematic study of the martensitic 

transformation in a Cu-Zn-Al alloy. Reversibility versus irreversibility via acoustic emission. Thermochim. 

Acta 116, 195 (1987). 

11. M.P. Lilly, P.T. Finley, & R.B. Hallock, Memory, congruence, and avalanche events in hysteretic capillary 

condensation. Phys. Rev. Lett. 71, 4186 (1993). 

12. G. Bertotti, Hysteresis in Magnetism, (Academic Press, New York, 1998). 

13. J.P. Sethna, K.A. Dahmen, and Olga Perković, in The Science of Hysteresis (Academic Press, New York, 

2006), Vol. 2, p. 107. 

14. J.P. Sethna, K. Dahmen, S. Kartha, J.A. Krumhansl, B.W. Roberts, & J.D. Shore, Hysteresis and hierarchies: 

Dynamics of disorder-driven first-order phase transitions. Phys. Rev. Lett. 70, 3347 (1993). 

15. J.P. Sethna, K.A. Dahmen, & C.R. Myers, Crackling noise. Nature 410, 242 (2001). 



   10 
 

16. O. Perković, K.A. Dahmen, & J.P. Sethna, Disorder-induced critical phenomena in hysteresis: Numerical 

scaling in three and higher dimensions. Phys. Rev. B 59, 6106 (1999). 

17. H. Barkhausen, Zwei mit Hilfe der neuen Verstärker entdeckte Erscheinugen. Physik Z. 20, 401 (1919). 

18. J.S. Urbach, R.C. Madison, & J.T. Markert,  Reproducibility of magnetic avalanches in an Fe-Ni-Co 

ferromagnet. Phys. Rev. Lett. 75, 4694 (1995). 

19. G. Durin & S. Zapperi, in The Science of Hysteresis (Academic Press, New York, 2006), Vol. 2, p. 181. 

20. D.-H. Kim, S.-B. Choe, & S.-C. Shin, Time-resolved observation of Barkhausen avalanche in Co thin films 

using magneto-optical microscope magnetometer. J. Appl. Phys. 93, 6564 (2003). 

21. D.-H. Kim, S.-B. Choe, & S.-C. Shin, Direct observation of Barkhausen avalanche in Co thin films. Phys. 

Rev. Lett. 90, 087203 (2003). 

22. M.-Y. Im, P. Fischer, D.-H. Kim, & S.-C. Shin, Direct observation of individual Barkhausen avalanches in 

nucleation-mediated magnetization reversal processes. Appl. Phys. Lett. 95, 182504 (2009). 

23. R. Wiesendanger, Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495 (2009). 

24. M.J. Harris, S.T. Bramwell, D.F. McMorrow, T. Zeiske, & K.W. Godfrey, Geometrical frustration in the 

ferromagnetic pyrochlore Ho2Ti2O7. Phys. Rev. Lett. 79, 2554 (1997). 

25. S.T. Bramwell & M.J.P. Gingras, Spin ice state in frustrated magnetic pyrochlore materials. Science 294, 

5546 (2001). 

26. C. Castelnovo, R. Moessner, &.S.L. Sondhi, Spin ice, fractionalization, and topological order. Ann. Rev. 

Condens. Matt. Phys. 3, 35 (2012). 

27. R.F. Wang, C. Nisoli, R.S. Freitas, J. Li, W. McConville, B.J. Cooley, M.S. Lund, N. Samarth, C. Leighton, 

V.H. Crespi, & P. Schiffer, Artificial ‘spin ice’ in a geometrically frustrated lattice of nanoscale ferromagnetic 

islands. Nature 439, 303 (2006). 

28. L.J. Heyderman & R.L. Stamps, Artificial ferroic systems: Novel functionality from structure, interactions, 

and dynamics. J. Phys.: Condens. Matter 25, 363201 (2013). 

29. C. Nisoli, R. Moessner, & P. Schiffer, Artificial spin ice: Designing and imaging magnetic frustration. Rev. 

Mod. Phys. 85, 1473 (2013). 

30. C. Castelnovo, R. Moessner, & S.L. Sondhi, Magnetic monopoles in spin ice. Nature 451, 42 (2008). 

31. D.J.P. Morris, D.A. Tennant, S.A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. 

Meissner, K.C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, & R.S. Perry, Dirac strings and 

magnetic monopoles in the spin ice Dy2Ti2O7.  Science 326, 411 (2009). 

32. T. Fennel, P.P. Deen, A.R. Wildes, K. Schmalzl D. Prabhakaran, A.T. Boothroyd, R.J. Aldus, D.F. 

McMorrow, & S.T. Bramwell, Magnetic Coulomb phase in the spin ice Ho2Ti2O7. Science 326, 415 (2009). 

33. J.P. Morgan, A. Stein, S. Langridge, & C.H. Marrows, Thermal ground-state ordering and elementary 

excitations in artificial magnetic square ice. Nature Phys. 7, 75 (2011). 



   11 
 

34. C. Phatak, A.K. Petford-Long, O. Heinonen, M. Tanase, & M. De Graef, Nanoscale structure of the magnetic 

induction at monopole defects in artificial spin-ice lattices. Phys. Rev. B 83, 174431 (2011);  

35. S.D. Pollard, V. Volkov, & Y. Zhu, Propagation of magnetic charge monopoles and Dirac flux strings in an 

artificial spin-ice lattice. Phys. Rev. B 85, 180402(R) (2012). 

36. S. Ladak, D.E. Read, G.K. Perkins, L.F. Cohen, & W.R. Branford, Direct observation of magnetic monopole 

defects in an artificial spin-ice system. Nature Phys. 6, 359 (2010). 

37. E. Mengotti, L.J. Heyderman, A.F. Rodríguez, R.V. Hügli, & H.-B. Braun, Real-space observation of 

emergent magnetic monopoles and associated Dirac strings in artificial kagome spin ice. Nature Phys. 7, 68 

(2011). 

38. R.V. Hügli, G. Duff, B. O’Conchuir, E. Mengotti, L.J. Heyderman, A.F. Rodríguez, F. Nolting, & H.B. 

Braun, Emergent magnetic monopoles, disorder, and avalanches in artificial kagome spin ice. J. Appl. Phys.  

111, 07E103 (2012). 

39. K. Zeissler, S.K. Walton, S. Ladak, D.E. Read, T. Tyliszczak, L.F. Cohen, & W.R. Branford, The non-

random walk of chiral magnetic charge carriers in artificial spin ice. Scientific Reports 3, 1252 (2013). 

40. G.-W. Chern, C. Reichhardt, & C.J. Olson Reichhardt, Avalanches and disorder-induced criticality in 

artificial spin ices. New J. Phys. 16, 063051 (2014). 

41. K.K. Kohli, A.L. Balk, J. Li, S. Zhang, I. Gilbert, P.E. Lammert, V.H. Crespi, P. Schiffer, & N. Samarth, 

Magneto-optical Kerr effect studies of square artificial spin ice. Phys. Rev. B 84, 180412(R) (2011). 

42. Z. Budrikis, P. Politi, & R.L. Stamps, Disorder regimes and equivalence of disorder types in artificial spin ice. 

J. Appl. Phys. 111, 07E109 (2012). 

43. Z. Budrikis, J.P. Morgan, J. Akerman, A. Stein, P. Politi, S. Langridge, C.H. Marrows, & R.L. Stamps, 

Disorder strength and field-driven ground state domain formation in artificial spin ice: Experiment, 

simulation, and theory. Phys. Rev. Lett. 109, 037203 (2012). 

44. A. Libál, C. Reichhardt, & C.J. Olson Reichhardt, Hysteresis and return-point memory in colloidal artificial 

spin ice systems. Phys. Rev. E 86, 021406 (2012). 

45. S. Zhang, I. Gilbert, C. Nisoli, G.-W. Chern, M.J. Erickson, L. O’Brien, C. Leighton, P.E. Lammert, V.H. 

Crespi, & P.Schiffer, Crystallites of magnetic charges in artificial spin ice. Nature 500, 553 (2013). 

46. N. Rougemaille, F. Montaigne, B. Canals, M. Hehn, H. Riahi, D. Lacour, & J.-C. Toussaint, Chiral nature of 

magnetic monopoles in artificial spin ice. New J. Phys.15, 035026 (2013). 

47. A. Farhan, P.M. Derlet, A. Kleibert, A. Balan, R.V. Chopdekar, M. Wyss, J. Perron, A. Scholl, F. Nolting, & 

L. J. Heyderman, Direct observation of thermal relaxation in artificial spin ice. Phys. Rev. Lett. 111, 057204 

(2013). 

48. M.J. Morrison, T.R. Nelson, and C. Nisoli, Unhappy vertices in artificial spin ice: New degeneracies from 

vertex frustration. New J. Phys. 15, 045009 (2013). 



   12 
 

49. I. Gilbert, G.-W. Chern, S. Zhang, L. O’Brien, B. Fore, C. Nisoli, & P. Schiffer, Emergent ice rule and 

magnetic charge screening from vertex frustration in artificial spin ice. Nature Phys. 10, 670 (2014). 

50. R.P. Loreto, L.A. Morais, C.I.L. de Araujo, W.A. Moura-Melo, A.R. Pereira, R.C. Silva, F.S. Nascimento, & 

L.A.S. Mól, Emergence and mobility of monopoles in a unidirectional arrangement of magnetic nanoislands. 

Nanotechnology 26, 295303 (2015). 

51. A. Libál, C.J. Olson Reichhardt, & C. Reichhardt, Creating artificial ice states using vortices in 

nanostructured superconductors. Phys. Rev. Lett. 102, 237004 (2009). 

52. M.L. Latimer, G.R. Berdiyorov, Z.L. Xiao, F.M. Peeters, & W.K. Kwok, Realization of artificial ice systems 

for magnetic vortices in a superconductor MoGe thin film with patterned nanostructures. Phys. Rev. Lett. 111, 

067001 (2013). 

53. J. Trastoy, M. Malnou, C. Ulysse, R. Bernard, N. Bergeal, G. Faini, J. Lesueur J. Briatico, & J.E. Villegas, 

Freezing and thawing of artificial spin ice by thermal switching of geometric frustration in magnetic flux 

lattices. Nature Nanotech. 9, 710 (2014). 
54. G. Möller & R. Moessner, Magnetic multipole analysis of kagome and artificial spin-ice dipolar arrays. Phys. 

Rev. B. 80, 140409(R) (2009). 
55. L.A.S. Mól, W.A. Moura-Melo, & A.R. Pereira, Conditions for free magnetic monopoles in nanoscale square 

arrays of dipolar spin ice. Phys. Rev. B 82, 054434 (2010). 
 

 

 

 

 

 

 

 

 

 



   13 
 

Figures 
 

 
 

FIG. 1 (color). Artificial spin ice for memory measurements. Panel (a) shows a scanning electron micrograph of 

the 360 nm square lattice, and panel (b) shows a magnetic force microscope image of the same lattice. The 

black/white contrast in (b) indicates the north and south magnetic poles of the nanomagnets. The double-headed 

arrow in (a) denotes the axis along which magnetic fields were applied. 
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FIG. 2 (color). The development of memory in artificial square spin ice. The populations of the different types of 

vertices (enumerated in the inset of (a)) are shown as a function of number of minor loops for experiment (a) and 

simulation (b). The evolution of the spin overlap parameter q with repeated cycles of field is shown in panels (c) 

and (d) for experiment and simulation, respectively. The spin overlap parameter saturates more slowly in the 

intermediate field regime ( / 1.005a cH H = ) than for a cH H<  and a cH H> . Panels (e) and (f) show the spin 

overlap parameter after six minor loops ( 6q ) as a function of /a cH H . Experiment (e) and simulation (f) both 

show a minimum just above / 1a cH H = . 
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FIG. 3 (color). Near neighbors in artificial spin ice. When calculating the local field produced on an island by its 

neighbors, we here consider only the adjacent islands, i.e.  nearest- and next-nearest-neighbors. For example, for 

the black island above, we would only consider the field NNH  from each of the four nearest neighbors (green) and 

the field NNNH  from each of the two next-nearest-neighbors (yellow). Note that micromagnetic simulations show 

the interactions between the central black island and the NNN yellow islands are more than three times stronger 

than the interactions with the horizontal gray islands directly above and below the black island, even though both 

pairs are separated by the same distance. Consequently, we include only the yellow NNN islands in our 

qualitative description. 
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FIG. 4 (color). Hopping possibilities for a magnetically-charged Type III vertex lengthening a string of reversed island 

moments. The applied field in all panels is in the ˆ ˆ− −x y  direction. The outlined island in (a) reverses to form a 

perpendicular hop, shown in (b). Of the nearest neighbors (islands 1-4) of the island outlined in (a), the fields from 1, 3, 

and 4 all add to the applied field (since they are head-to-head or tail-to-tail with the outlined island), while the field from 2 

partially cancels it (since it is already aligned head-to-tail with the outlined island moment). Similarly, both of the next-

nearest-neighbors (islands 5 and 6) are already aligned head-to-tail with the outlined island, producing fields that inhibit 

reversal. Adding local field contributions from all six neighbors, we find that 

( )
6

1
2local i NN NN NN NN NNN NNN NN NNN

i
H H H H H H H H H H

=
= = − + − − + + = − −∑ . The outlined island in (c) reverses 

to form a parallel hop, shown in (b). Adding the local field contributions as before, we find that 
6

1

0local i NN NN NN NN NNN NNN
i

H H H H H H H H
=

= = − + + − + − =∑ . Note that while only vertical island moment 

reversals are shown here, vertical and horizontal reversals occur with equal frequency since the external magnetic field is 

applied at 45° to the islands. 
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FIG. 5 (color). Snapshots of the experimental string configuration in the regime aH  well below cH  (taken from MFM 

images for / 0.919)a cH H = . The configuration is shown after the first aH−  (a), the first aH+  (b), the second aH−  (c), 

and the second aH+  (d). Positively (negatively) charged Type III vertices  are represented by red (blue) dots, gray lines 

represent island moments aligned by the original polarizing field or aH+ , and black lines represent moments reversed by 

aH− . When the field is brought back to aH+  (b), Type III vertices can only partially retrace their associated string. From 

this history, the configurations at further inversions are determined, so (c) and (d) are almost identical to (a) and (b), thus 

yielding return point memory. 
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FIG. 6 (color). Snapshots of the simulated string configuration of artificial square spin ice arrays with parameters similar 

to those of our experimental data, with 0.91a cH H= . The configuration is shown after the first aH−  (a), the first aH+    

(b), the second aH−   (c), and the second aH+    (d). Positively (negatively) charged Type III vertices  are represented by 

red (blue) dots, gray lines represent island moments aligned by the original polarizing field or aH+ , and black lines 

represent moments reversed by aH− . As in Fig. 5, we see that there are strong similarities between island moment 

configurations one loop apart (i.e., compare (a) with (c) and (b) with (d)). 
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FIG. 7 (color). Snapshots of the experimental string configuration in the regime a cH H≈ . These data are taken from 

MFM images for / 1.005a cH H = . The configuration is shown after the first aH−  (a), the first aH+   (b), the second  

aH−   (c), and the second aH+   (d). Positively (negatively) charged Type III vertices  are represented by red (blue) dots, 

gray lines represent island moments aligned by the original polarizing field or aH+ , and black lines represent moments 

reversed by aH− . The Type III vertices can choose new paths to annihilate, leaving the tracks in (b) when the field is 

restored to  aH+ . This asymmetry between dissociation and annihilation means that the configurations in the subsequent 

loop (after the second aH−  (c) and the second aH+  in (d)) are somewhat different, delaying the development of a 

repeatable limit cycle state. 
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FIG. 8 (color). Snapshots of the simulated string configuration of artificial square spin ice arrays with parameters similar 

to those of our experimental data, with 1.03a cH H= . The configuration is shown after the first aH−  (a), the first aH+   

(b), the second  aH−  (c), and the second aH+   (d). Positively (negatively) charged Type III vertices  are represented by 

red (blue) dots, gray lines represent island moments aligned by the original polarizing field or aH+ , and black lines 

represent moments reversed by aH− .  As in Fig. 7, we see some similarities between the island moment configurations in 

(a) and (c) and in (b) and (d), but not as much as in Figs. 5 and 6. The stronger applied field produces a denser network of 

interacting magnetic charges, and these interactions (including annihilation of opposite charges as well as long-range 

Coulomb interactions [54,55]) inhibit the development of perfect memory.  
 


