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Phases of matter are sharply defined in the thermodynamic limit. One major challenge of accu-
rately simulating quantum phase diagrams of interacting quantum systems is due to the fact that
numerical simulations usually deal with the energy density, a local property of quantum wavefunc-
tions, while identifying different quantum phases generally relies on long-range physics. In this
paper we construct generic fully symmetric quantum wavefunctions under certain assumptions us-
ing a type of tensor networks: projected entangled pair states, and provide practical simulation
algorithms based on them. We find that quantum phases can be organized into crude classes distin-
guished by short-range physics, which is related to the fractionalization of both on-site symmetries
and space-group symmetries. Consequently, our simulation algorithms, which are useful to study
long-range physics as well, are expected to be able to sharply determine crude classes in interact-
ing quantum systems efficiently. Examples of these crude classes are demonstrated in half-integer
quantum spin systems on the kagome lattice. Limitations and generalizations of our results are
discussed.

I. INTRODUCTION

Reliably simulating quantum phase diagrams of realis-
tic interacting systems has been one of the central issues
in condensed matter physics. A number of numerical
methods have been developed in the past decades, in-
cluding exact diagonalization, quantum Monte Carlo(for
a review, see Ref.1), variational Monte Carlo1,2, the den-
sity matrix renormalization group method (DMRG)3,4,
and methods based on tensor network representations of
quantum wavefunctions5–9. Although with advantages
and disadvantages, these methods have been demon-
strated to be able to successfully simulate various inter-
acting quantum models. For instance, an exotic quantum
spin liquid phase have been recently identified in the spin-
1/2 Heisenberg model on the kagome lattice10–12 using
DMRG methods.

One major source of the challenges of accurately simu-
lating realistic quantum models is the following fact. The
full many-body quantum Hamiltonian cannot be exactly
diagonalized as long as the sample size is not very small.
Therefore even for intermediate sample size, except for
systems that do not suffer from the sign problem in quan-
tum Monte Carlo, one has to come up with variational
wavefunctions, using which to search for the true ground
states of quantum systems. The guiding principle of all
variational simulations is simply to minimize the energy
density, a local property of quantum states, of a given
sample. On the other hand, generally distinguishing dif-
ferent quantum phases relies on the long range physics.
Consequently in these variational methods we are trying
to determine long range physics based on local physics.
However, competing quantum phases could have similar
energy densities. In fact, it can be shown that differ-
ent quantum phases could give arbitrarily close energy
densities13,14.

To concretely demonstrate this challenge let’s consider
frustrated quantum spin systems, for instance, nearest

neighbor spin-1/2 Heisenberg models on the triangular
lattice and the kagome lattice. In the triangular lattice
case a good understanding of the ground state is known,
based on results from various numerical simulations15–18

which show that the system has a long range 120◦ copla-
nar magnetic order. To establish this long range mag-
netic order, a statement about the long-range physics,
it is important to perform finite-size scaling since most
numerical simulations study samples with small to inter-
mediate sizes. The successful identification of the long
range order in the triangular lattice model, to a large
extent, is a consequence of the fact that the magnetic
ordering in this system is quite strong19 Even the finite
size scalings performed quite some time ago16 on small
to intermediate sized samples give clear evidences of the
order.

The situation for the kagome lattice model is drasti-
cally different. In the past it was known that even if a
long range order does exist in this system, it is very weak.
Thus in order to identify the presence or absence of a
long range order, which represent two different quantum
phases: a symmetry-breaking phase and a quantum spin
liquid phase, one needs to perform finite size scaling in
samples with larger sizes. The simulations on these sam-
ples become possible only recently due to the progresses
in DMRG methods.

Generally speaking, in order to fully determine the
quantum phase diagrams of correlated systems in numer-
ical simulations, one cannot avoid studying samples with
large sizes, simply because general quantum phases are
sharply defined by the long range physics. But practi-
cally the larger the system size is, the more challenging
the simulation is.

But are all quantum phases only distinguished by
long-range physics? Before we provide an answer to
this question, it is better to elaborate the question in
a slightly sharper way. First we emphasize that the a
phase is defined only when the global symmetry of the
system is specified, which may or may not be sponta-
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neously broken20. When limited to finite size samples,
the ground state wavefunctions necessarily form (gener-
ally, irreducible) representations of the global symmetry
which is usually a combination of on-site symmetries like
spin rotations and space-group symmetries like transla-
tions. This statement is true even when the global sym-
metry is spontaneously broken in the long range physics.

We again demonstrate the above statement in the con-
text of frustrated spin-1/2 models. In this context, quan-
tum spin liquids (QSL) are states of matter that do not
break translation and spin rotation symmetries. In par-
ticular, evidences of a fully gapped Z2 QSL were reported
in the kagome lattice model mentioned above. Recent
theoretical work21 supports that this Z2 QSL has a topo-
logical order which can be described as a usual Z2 gauge
theory (i.e., the same topological order as in Kitaev’s
toric code model22). In such a Z2 QSL, quasiparticle
excitations include bosonic spin-1/2 spinon-e, bosonic
vison-m, and their fermionic bound state f = em. Sup-
pose that we can tune certain parameters in the spin
model, it is possible that either the spinon e boson con-
denses, which gives rise to certain long-range magneti-
cally ordered (MO) phase, or the vison m boson con-
denses, which gives rise to certain valence bond solid
(VBS) phase since visons transform nontrivially under
lattice symmetries.

However, in this context, the boson condensations of e
or m quasiparticles are only sharply defined in the long
range physics. For instance, imagine one does a numeri-
cal simulation for a phase transition between the Z2 QSL
and a nearby MO phase (VBS phase) via e (m) conden-
sation. To avoid possible subtlety due to open boundary
conditions, let’s consider a finite size torus sample. The
ground state wavefunctions on both sides of the phase
transition must share the same quantum number in the
vicinity of the phase transition. Basically the quantum
phase transition in the long-range physics is not visible
on a finite size sample unless a careful finite size scaling is
performed in large system sizes.23 For this reason, we say
that the Z2 QSL and the nearby MO phase (VBS phase)
share the same short-range physics but are distinguished
in the long-range physics.

On the other hand, there are lots of examples in which
ground states of different candidate quantum phases give
distinct symmetry representations on sequences of finite
size samples, which persist all the way to the thermo-
dynamic limit24–26. Trivial examples include ferromag-
netic phases and paramagnetic phases in spin systems.
As a somewhat nontrivial example, in a recent investi-
gation of correlated electronic models on the honeycomb
lattice, two candidate quantum phases: the chiral spin
density wave phase and the d+id superconductor phase,
are found to host distinct lattice quantum numbers on
4N × 4N × 2 symmetric samples26. In these cases, at
least on these sequences of samples, clearly these candi-
date phases really give completely different ground state
wavefunctions which cannot be smoothly tuned from one
to another. These quantum phases must be distinguished

by short range physics. Note that the energy density,
minimizing which is the guideline of all variational meth-
ods, is also a short-range property of the wavefunction.
One should have the hope of generically being able to
sharply identify candidate phases distinguishable by short
range physics even on small or intermediate sized sam-
ples, without worrying about finite size scalings in larger
system sizes.

Note that we have made statements on “short-range
physics” and “long-range physics” without sharply defin-
ing their meanings. Now it is a good moment to comment
on the sharp meanings of these terms used in this paper.
By “long-range physics”, we really mean the long-range
behavior of correlators measured in ground state wave-
functions. Such long-range correlators, e.g., spin-spin
correlation functions in a spin model, can be interpreted
as the conventional Ginzburg-Landau order parameters
of quantum phases.

The meaning of “short-range physics” in this paper
is more unconventional, by which we really mean how
global symmetries are implemented locally in a quantum
wavefunction. We will provide a sharper definition of
this term later since we firstly need to introduce some
tools to diagnose a local patch of the whole quantum
wavefunction. But it is important to mention that this
“short-range physics” is directly related to the quantum
numbers of ground state wavefunctions on finite size sam-
ples. In addition, both “short-range physics” and “long-
range physics” in this paper are referred to properties of
quantum wavefunctions, even in the absence of specific
quantum Hamiltonians.

As an interesting example, let’s consider candidate Z2

QSL that may be realized in the kagome lattice Heisen-
berg model. Previous studies showed that there exist
many time-reversal symmetric Z2 QSL phases respecting
the full space group symmetry of the kagome lattice27–29.
All these Z2 QSL phases, by definition, are featureless in
long-range correlators. So their distinctions completely
lie in the short-range physics.

The above discussions lead to the following intuitive
picture. Different quantum phases may be organized into
crude classes according to short range physics. In each
class, there may be multiple member phases that are dis-
tinguishable by long range physics. Although identifying
a particular quantum phase in a correlated model gen-
erally requires careful and challenging finite size scaling,
identifying a crude class should be easier, even without
finite-size scaling in large samples. In addition, doing
the latter is still very useful. First, it would give us
sharp, although incomplete, information about the quan-
tum phase diagram. Second, determining the crude class
allows us to focus only on the candidate member phases
within one class, which helps identifying the complete
phase diagram significantly.

This picture motivates the us to separate the task of
simulating the quantum phase diagrams into a short-
range part and a long range part, and brings up the fol-
lowing questions. How to systematically, and hopefully
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completely, characterize these crude classes distinguish-
able by short-range physics? Can one construct generic
variational wavefunctions for each given crude class and
provide simulation algorithms based on them? The an-
swers to these questions would lead to an efficient nu-
merical method to completely solve the short-range part
of the simulation task, which is very useful for the long-
range part of the task as well. We will comment fur-
ther on the sharp information on long-range physics (i.e.
spontaneous symmetry breaking) that can be obtained
from short-range physics in Sec.VI B.

This paper is an attempt to address these questions to
a certain level. Here we rely on a recently developed lan-
guage to construct quite generic and physically relevant
quantum wavefunctions: the projected entangled pair
states (PEPS)7,30,31 that is a version of tensor networks.
PEPS has been viewed as a powerful and efficient method
to represent generic quantum states whose entanglement
entropies do not violate the boundary law(see Ref.32 for
a recent review). In addition, in two spatial dimensions,
PEPS provides a set of concrete numerical algorithms
for practical simulations (for instance, Ref.33 discusses
details of many PEPS algorithms). In this work we con-
struct generic symmetric wavefunctions using PEPS un-
der certain assumptions. We find that there are classes
of symmetric PEPS which are sharply distinguished by
short range physics. More precisely, the symmetry re-
quirements on PEPS lead to discrete number of solutions.
Each solution corresponds to one crude class mentioned
above, and constrains a sub-Hilbert space that the ten-
sors in the PEPS must live within.

We find that these classes are related to, but not lim-
ited to, fractionalizations of both the on-site symmetries
and the space group symmetries of the system24,34–43.
These classes are generally characterized by three sets
of algebraic data, which are denoted as Θ’s, χ’s and η’s
in this paper. The first set of data (Θ’s) represents the
direct contribution to the symmetry quantum numbers
of quantum wavefunctions from each local tensor. The
second set of data (χ’s) is related to projective repre-
sentations of the global symmetry, or the second coho-
mology group H2(SG,U(1)) in mathematics, where SG
is the symmetry group of the system that is generally
a combination of on-site symmetries and lattice symme-
tries. The third set of data (η’s) is related to the so-
called projective symmetry group (PSG)34 characterizing
symmetry fractionalizations of topological quasiparticles.
Mathematically, η’s are related to the second cohomolgy
group H2(SG, IGG), where IGG is some invariant gauge
group. We will explain the origin and constraints on IGG
in detail later. Different possible IGG actually gives a hi-
erarchical structure of the crude classes. As an example,
half-integer spin systems on the square or kagome lattices
have IGG’s which at least contain a Z2 subgroup.

Moreover, we provide concrete simulation algorithms
based on these symmetric PEPS wavefunctions in two
spatial dimensions (2d) and comment on possible algo-
rithms in higher dimensions. We demonstrate the pro-

cedure of crude classifying and constructing symmetric
PEPS wavefunctions for the half-integer spin system on
the kagome lattice, in which case 32 distinct classes are
found under the assumption that IGG = Z2. Although
we mainly consider 2d systems in this paper, the major-
ity of our discussions can be easily generalized to other
spatial dimensions except for the algorithms specific for
2d.

Not surprisingly, the choice of the kagome lattice spin
system as the main example in this paper is motivated by
the recent reports of a Z2 QSL in the spin-1/2 Heisenberg
model10,11. It remains an open question that which one of
many candidate QSL may be realized in the kagome lat-
tice model44. And very recently there have been a num-
ber of works45,46 describing how to idenfify these distinct
Z2 QSL in numerical simulations, based on careful quan-
tum number analysis. In our work, when IGG = Z2 in a
half-integer spin system, every crude class contains a dis-
tinct Z2 QSL as a member phase. Therefore part of our
results can be viewed as a classification and construction
of Z2 QSL for half-integer spin systems on the kagome
lattice, which is somewhat finer than the previous classifi-
cations for the spin-1/2 case28,29(see Sec.VII for details),
and is generally applicable for other half-integer spins.
In addition, the simulation algorithms proposed here can
be used to identify the nature of the Z2 QSL realized in
the kagome lattice spin-1/2 Heisenberg model efficiently.

For each given crude class, the other member phases
can be viewed as ordered phases in the vicinity of the Z2

QSL member phase, but with a spontaneous symmetry
breaking only sharply defined in the long range physics,
e.g. MO phases (via e-condensations) or VBS phases (via
m-condensations). The nonvanishing symmetry breaking
long range order parameters in these phases are expected
to be captured in the present symmetric PEPS contruc-
tion after performing a scaling with repect to both the
virtual bond dimension D (see Sec.II for definition) and
system sizes.

Note that the concepts of invariant gauge groups and
projective symmetry groups(PSG) have been used to
study and classify symmetry fractionalizations in topo-
logically ordered phases. In this sense it is not surpris-
ing that we find many non-symmetry-breaking Z2 QSL
phases distinct by short-range physics. But in a conven-
tional symmetry breaking phase, such as the MO phases
or VBS phases mentioned above, there is no topologi-
cal order and the long-range gauge dynamics is confined.
However, due to the generality of the PEPS language,
this work suggests that the concepts of invariant gauge
groups and projective symmetry groups are useful even
in these conventional ordered phases.

This interesting question raised by the present work
can be rephrased in the following way. Do the neighor-
ing conventional symmetry-breaking phases still “remem-
ber” their parent non-symmetry-breaking liquid phase?
In many situations the answer to this question is known
to be positive. For example, consider the two parent
Z2 QSL, Sachdev’s Q1 = Q2 state and Q1 = −Q2
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state27,28,47. After the spinon-e condensation, they lead
distinct long-range MO phases, e.g. so-called q = 0
MO (for the Q1 = Q2 QSL) and

√
3 ×
√

3 MO (for the
Q1 = −Q2 QSL). However, in some other situations, the
answer to this question is expected to be negative. For
instance, the vison-m condensation in these two Z2 QSL
could lead to the same VBS phase48. This phenomenon
is related to following fact: for the Q1 = Q2 state and
Q1 = −Q2 state, the PSGs for the spinon-e are different,
but the PSGs for the visons are the same.

Therefore, within the framework proposed in this pa-
per, although one non-symmetry-breaking phase only ap-
pears in a single crude class, we cannot rule out the
situation that certain special symmetry-breaking phase
appears as member phases in multiple crude classes.
Namely, it seems possible that two distinct short-range
implementations of global symmetry lead to the same
symmetry breaking phase in the thermodynamic limit.
We will come back to this issue in Sec.VI B.

This work may be also useful regarding continuous
quantum phase transitions. We have mentioned the
phase transitions between member phases within one
crude class, e.g. the transition between a Z2 QSL and
a nearby MO (VBS) phase. One may wonder whether
it is possible to have a continuous phase transition be-
tween two phases belonging to distinct crude classes. We
believe that this is possible and is related to the hierar-
chical structure of crude classes due to different IGGs.
For instance, one may consider a parent crude class with
IGG = U(1) that has two distinct descendent IGG = Z2

crude classes. Two phases belonging to these two distinct
IGG = Z2 crude classes, as a matter of principle, may
be connected by a critical point described by the parent
IGG = U(1) crude class. We leave further discussions
on this topic in Sec.VII.

Before moving on to the main body of the paper, we
comment on the limitations of this work. First, due to the
fact that we use PEPS to construct ground state wave-
functions, the discussions in this paper is limited to those
quantum phases whose entanglement entropies do not vi-
olate the boundary law. For instance quantum phases
with Fermi surfaces are beyond the scope of the current
work. Even within the PEPS language our work makes a
nontrivial basic assumption: the on-site symmetries are
implemented as representations or projective representa-
tions on the virtual degrees of freedom in PEPS49. This
assumption, although appears natural on the superficial
level, is nontrivial and gives rise to limitations.

This problem is related to the recently developed un-
derstandings on symmetry protected topological (SPT)
phases50 as well as phases with chiral edge states. SPT
phases are gapped quantum phases without anyon ex-
citations and protected by various global symmetries.
They are generalizations of the topological insulators(see
Ref.51 and 52 for reviews) in non-interacting fermion sys-
tems. It is known that when attempting to represent
SPT phases or states with chiral edge states using PEPS
in two and higher spatial dimensions, the constraint that

the on-site symmetry transforms as representations or
projective representations on virtual degrees of freedoms
lead to problems, at least in the long range physics. For
example a fermion state with nonzero Chern number con-
structed using PEPS with a fixed bond dimension D un-
der the above constraint is found to have power-law cor-
relations in real space53–55.

This paper is organized as follows. In Sec.II, we in-
troduce some basics of PEPS. In particular, We discuss
gauge redundancy as well as the implementation of sym-
metries in PEPS. We introduce a special kind of gauge
transformation named as invariant gauge group (IGG).
In phases with no symmetry breaking, IGG leads to
low-energy gauge dynamics. Further, for fractional filled
systems, there are minimal required nontrivial IGGs for
any symmetric PEPS under our basic assumption. This
phenomenon is consistent with the Hastings-Oshikawa-
Lieb-Schultz-Mattis theorem56–58. In Sec.III, we classify
symmetric PEPS according to their distinct short-range
physics, which is characterized by algebraic data Θ’s, χ’s
and η’s. Relations of the data χ’s and η’s to second co-
homology are discussed. And an introduction of relevant
mathematics is given in Appendix C. As a main example,
we give the classification result for symmetric PEPS on
the kagome lattice with a half-integer spin per site and
IGG = Z2, and obtain the constraints on the sub-Hilbert
spaces for local tensors for each given class. The detailed
calculation is presented in Appendix B. A simpler and
pedagogical example on the square lattice can be found
in Appendix F. We also give efficient algorithms for min-
imization of energy density for a given class of PEPS,
which can be used to identify these crude classes in in-
teracting quantum systems. We give the physical inter-
pretation of the algebraic data in Sec.IV. Particularly, we
construct fractionalized symmetry operators to explicitly
show that η’s are describing the symmetry fractionaliza-
tion of spinons in the Z2 QSL member phase. Detectable
signatures of the data Θ’s, χ’s and η’s are discussed. In
Sec.V, we construct a decorated version for symmetric
PEPS, which serves as a more convenient tool to study
properties of visons in the Z2 QSL member phase and
the properties of the vison-condensed phases. Algebraic
methods to extract the information of the symmetry frac-
tionalization on visons are given. In Sec. VI we discuss
symmetry-breaking phases in the symmetric PEPS for-
mulation, and study the effects of the symmetry-breaking
orders in finite-size scaling on torus samples. In Sec.VII
we consider generalizations and limitations of our study,
comment on relations with previous works, and conclude.

II. SYMMETRY, GAUGE AND PEPS

In this section, we will give a brief introduction to
PEPS. As we will see later, even for the same many-
body wavefunction, the PEPS representations are not
unique, and different representations are connected by
gauge transformations. Further, we will study the im-
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plementation of symmetry on PEPS as well as the gauge
dynamics in the PEPS language. Particularly, for certain
systems, gauge structures will naturally emerge.

A. Introduction to PEPS

Projected Entangled Pair States (PEPS) is a type of
tensor networks (TN). The basic ingredients of TN are
“legs”, and every leg is associated with a Hilbert space, as
seen in Fig.(1a). In the following, we will use “leg” to de-
note the associated Hilbert space. As shown in Fig(1b),
tensors formed by several legs simply describe quantum
states living in the tensor product of these legs,

T abc... ∈ Va ⊗ Vb ⊗ Vc ⊗ . . . (1)

where Vi labels Hilbert space associated with leg i. If
two legs are the bra space and the ket space of the same
set of quantum states, they are named as dual space to
each other. New tensors can be obtained by contracting
states in dual spaces, or by tracing out states in dual
spaces, as shown in Fig.(1c).

A TN representation of many-body wavefunction can
be viewed as a large tensor, which is obtained by con-
tracting small building block tensors. Thus, a TN is
formed by uncontracted legs (physical legs) and con-
tracted legs (virtual legs). From another point of view,
we can also treat a TN as a combination of a linear map
from the virtual Hilbert space (the tensor product of all
virtual legs) to the physical Hilbert space, together with
an “input” virtual state.

Let us construct a PEPS on a two dimensional lattice.
We first put tensors at both sites and bonds, named as
site tensors (T s) and bond tensors (Bb) respectively, see
Fig.(1b). Every site tensor can be viewed as a linear
map from several virtual legs to one physical leg, while a
bond tensor, which is in fact a matrix, labels a quantum
state (bond state) in the tensor product space of two
virtual legs. Thus, as shown in Fig.(1d), by contracting
virtual legs of site tensors with bond tensors, we get a
PEPS as a combination of a linear map from the virtual
Hilbert space to the physical Hilbert space together with
an input virtual state, where the map is given by the
tensor product of all site tensors and the input state is
the tensor product of all bond states. We can express the
PEPS representation of the wavefunction as

|ψ〉 =
∑
{ks}

tTr
(
(T 1)k1 ...(TNs)kNsB1...BNb

)
|k1 . . . kNs〉,

(2)

where 1, 2, . . . Ns(Nb) label sites (bonds), while ks is the
physical index. tTr means tensor trace, namely, contrac-
tion of all virtual legs.

We define that a bond tensor (matrix) is a maximal en-
tangled state, iff singular values of this matrix all equal
some nonzero constant. By multiplying some constant,
we can simply set singular values of maximal entangled

(a) (b)

(c) (d)

FIG. 1. (a): The leg a is associated with the Hilbert space
Va. (b): The site tensor (left) and the bond tensor (right)
label quantum states on Hilbert spaces of tensor products of
corresponding legs. (c): A new tensor can be obtained by
contraction of the leg b on T s and the leg a′ on Bb, which can
be expressed as (T s)kabcd(Bb)a′b′δba′ . Note that we require
leg b and leg a′ to be dual spaces. (d): The whole PEPS
wavefunction is obtained by contracting all virtual legs of site
tensors and bond tensors.

states to be 1. When performing numerical simulations,
it is more convenient to use maximal entangled bond
states, or even set bond tensors to be identity matrices.
As we will see later, by using the gauge redundancy of
PEPS, it is always possible to do so.

In the following, we will assume that all virtual legs
label Hilbert spaces with the same dimension D, while a
physical leg is associated with a d−dimensional Hilbert
space.

B. Gauge transformation on PEPS

The representation of a many-body wavefunction on
PEPS is far from unique. Particularly, as shown in
Fig.(2), we are always allowed to multiply W and W−1

to two connected virtual legs respectively. This action
will change the connected small tensors while leaving the
contracted tensor invariant,

(T s)kabcdδba′(Bb)a′b′ = [(T s)kabcdWbl]δll′ [(W
−1)l′a′(Bb)a′b′ ]

(3)

Every contracted pair of virtual legs will contribute a
gauge redundancy GL(D,C). All such gauge transfor-
mations form a group [GL(D,C)]2Nb which we call the
gauge transformation group of the PEPS (Nb is the num-
ber of bond tensors in the TN). The meaning of the gauge
transformation can be understood as a change of basis on
virtual legs.

From another point of view, in general, for two PEPS
whose tensors differ at most by gauge transformations de-
fined above together with overall U(1) phase factors, as
shown in Fig.(2), the two PEPS must describe the same
physical state (up a U(1) phase). In principal, these over-
all U(1) phase factors can occur in gauge transformations
on both site tensors and bond tensors. But it is straight-
forward to redefine the gauge transformations such that
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FIG. 2. Two PEPS describe the same quantum state, iff they
are differ by gauge transformation together with U(1) phase
factor. The origin of the gauge transformation is that we
can multiply identity matrix I = W ·W−1 between connected
legs, which changes site tensors and bond tensors, but leave
the whole wavefunction invariant. We can also view TN on
the left as PEPS transformed by symmetry operation. Thus,
this figure also express the condition for PEPS wavefunction
to be symmetric.

the phase factors only appear on site tensors. Mathe-

matically, two PEPS denoted by {T̃ s, B̃b} and {T s, Bb}
respectively describe the same physical state if there exist
gauge transformations {W (s, i)} and U(1) phase factors
{eiθ(s)} (s labels a site and i labels a virtual leg on the
site.), such that

(T s)kαβ... = eiθ(s) · [W (s, 1)]αα′ [W (s, 2)]ββ′ . . . (T̃
s)kα′β′...

(Bb)αβ = [W (b, 1)]αα′ [W (b, 2)]ββ′(B̃b)α′β′ .

(4)

Here W (b, j) represents a gauge transformation on the
leg j of the bond tensor Bb, and if a site leg (s, i)
and a bond leg (b, j) are connected, then W (s, i) =
[W (b, j)−1]t. (The superscript-t stands for the matrix
transpose.)

C. Symmetric PEPS

The purpose of this section is to introduce a generic
way to implement both on-site symmetries59–65 and lat-
tice space group symmetries59 on PEPS. We firstly dis-
cuss the finite size symmetric quantum state that can be
represented by a single PEPS; i.e., such a state would
form a one-dimensional representation of the symmetry
group. Then we define the symmetric PEPS on an in-
finite lattice, which is the main object to be (partially)
classified in the current study.

1. On-site unitary symmetries

The action of a global on-site unitary symmetry S on
a finite size PEPS wavefunction is defined as

S|ψ〉 = |ψ̃〉 =
∑
{ks}

tTr
(
(T 1)k1 . . . (TNs)kNsB1 . . . BNb

)
US ⊗ US . . . |k1k2 . . . kNs

〉, (5)

US is the representation of S on Hilbert space of physical
leg. These local actions of an on-site symmetry give a new

TN, with site tensors T̃ s and bond tensors B̃b defined as,

T̃ s = S ◦ T s =
∑
l

(US)kl(T
s)l

B̃b = S ◦Bb = Bb (6)

We focus on those PEPS that are invariant under the
global symmetry up to an overall U(1) phase factor. Fol-
lowing the discussion in the previous section, we consider
the PEPS |ψ〉 that differs from the transformed PEPS

|ψ̃〉 only by gauge transformations together with overall
phase factors, as shown in Fig.(2):

T s = ΘSWSS ◦ T s

Bb = WSS ◦Bb (7)

Here, gauge transformation WS and phase factor ΘS as-
sociated with symmetry S is defined as

ΘS ◦ T s = eiθS(s)(T s)kαβγδ

WS ◦ T s = [WS(s, 1)]αα′ [WS(s, 2)]ββ′ . . . (T
s)kα′β′...

WS ◦Bb = [WS(b, 1)]αα′ [WS(b, 2)]ββ′(Bb)α′β′ .

(8)

According to the definition of a gauge transformation,
if site virtual leg (s, i) and bond leg (b, j) are connected,
then WS(s, i) = [WS(b, j)−1]t. Further, we always choose
WS such that only site tensors transform with extra U(1)
phase factors. Note that so far we do not require matrices
on the leg (s, i) WS(s, i) to form a representation of the
on-site symmetry group when S is tuned. We will come
back to this shortly.

2. Time reversal symmetry

The representation of the global time reversal symme-
try T on a many-body wavefunction is UT ⊗ UT . . .K,
where K denotes the complex conjugation and UT is a
unitary matrix acting on local physical Hilbert space. Its
action on PEPS is defined as

T |ψ〉 =
∑
{ks}

tTr
(
(T 1)k1 . . . (TNs)kNsB1 . . . BNb

)∗
UT ⊗ UT . . . |k1k2 . . . kNs

〉, (9)
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Namely, the local actions on a single site or a bond tensor
read

T̃ s = T ◦ T s =
∑
l

(UT )kl(T
s)∗l

B̃b = T ◦Bb = B∗b (10)

We consider the PEPS that is symmetric under T . Sim-
ilar to the previous discussion, we consider a PEPS sat-
isfying:

T s = ΘTWT T ◦ T s

Bb = WT T ◦Bb

(11)

where WT belongs to the gauge transformation group of
the PEPS.

3. Lattice symmetry

The definition of a lattice space group symmetry R on
PEPS is

T̃ s = R ◦ (T s)k ≡
∑
αβ...

(TR
−1(s))kR−1(αβ... )

B̃b = R ◦Bb ≡
∑
αβ

(BR−1(b))R−1(αβ) (12)

The action of R on site and bond tensor follows the nat-
ural definition of lattice symmetries. For instance, for a
square lattice, after a translation along the right direc-
tion by one lattice spacing, the transformed site tensor at
a given position equals the original site tensor on the left
neighboring site. Note that the symmetry R not only
acts on site and bond indices; it may also act nontriv-
ially on virtual legs. For example, the 90◦ rotation of a
site tensor on the square lattice permute the four virtual
legs. Again, we consider those PEPS symmetric under R
satisfying the following conditions:

T s = ΘRWRR ◦ T s

Bb = WRR ◦Bb

(13)

where WR belongs to the gauge transformation group of
the PEPS.

4. Symmetric PEPS on infinite lattices

Space groups of lattices are usually defined for infinite
lattices. This is because for a finite size sample, the lat-
tice symmetry group is a finite group whose group struc-
ture is non-generic. In this paper, we will focus on PEPS
on infinite lattices satisfying Eq.(7,11,13) under symme-
try transformations. And we define such PEPS as sym-
metric PEPS on infinite lattices, or simply as symmetric

PEPS. They form the main object to be (partially) clas-
sified in the current investigation.

A natural question that arises at this point is: are
symmetric PEPS defined above general enough to cap-
ture ground states of quantum phases? Let us limit our
discussion within those quantum phases whose entangle-
ment entropies do not violate the boundary law so that
in principle they may be represented as PEPS.

Basically, we expect that the symmetric PEPS on infi-
nite lattices defined above are capable to capture all non-
symmetry-breaking liquid phases. After putting on finite
lattices and performing a scaling with respect to both the
bond dimension D and lattice sizes, we expect the sym-
metric PEPS are also capable to capture the neighboring
ordered phases of the liquid phases. Here by “neighbor-
ing” (or “in the vicinity below), we mean that the sym-
metry breaking in these phases is only sharply defined
in the thermodynamic limit (namely, in the long-range
physics). Note that we do not have a proof support-
ing the statement above. Nevertheless we are not aware
of any counterexamples, so at least it is a reasonable
conjecture.66.

Sometimes one is forced to use more than one PEPS
to represent ground state quantum wavefunctions. For
instance, in a quantum spin system with SU(2) spin
rotation symmetry, this happens for the ferromagnetic
phase, whose ground states form a large spin representa-
tion. However, such ferromagnetic phases are not in the
vicinity of any non-symmetry-breaking liquid phases.

So far, we do not require the transformations matrices
W ’s on the virtual legs to form representations or even
projective representations for the on-site unitary symme-
tries and the time-reversal symmetry. As mentioned be-
fore, such a requirement leads to difficulties to represent
SPT phases in two and higher spatial dimensions. (And
SPT phases are non-symmetry-breaking liquid phases.)
Indeed, if one translates the ground states of the exact
solvable models of SPT phases with on-site symmetries
into the language of PEPS, one still finds PEPS satisfy-
ing Eq.(7)67. But the transformation matrices W ’s form
neither representations nor projective representations of
the on-site symmetry group.

Generally classifying symmetric PEPS defined here is
a difficult task and we currently do not know how to
solve. Next we will introduce the invariant gauge group
for PEPS and will make further assumptions so that we
could make progress on this difficult task.

D. Invariant gauge group and gauge structure

Among the gauge transformations, there is a special
subgroup which we call the invariant gauge group (IGG).
Note that generally a gauge transformation will leave the
physical wavefunction invariant while transforming the
site tensors and bond tensors nontrivially in a PEPS.
However, by definition, the action of IGG elements on
PEPS even leaves all site tensors invariant up to overall
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U(1) phases and all bond tensors completely invariant68.
So IGG can be viewed as the “symmetry” of the build-
ing block tensors with actions only on virtual legs69. In
the following, we will see that IGG is directly related to
gauge dynamics13,70–72. We will also give examples where
nontrivial IGG’s emerge naturally in fractional filled sys-
tems under a basic assumption.

Note that the collection of all gauge transformations
that leave all site tensors invariant up to overall U(1)
phases and bond tensors completely invariant forms an
infinite group, which we denote as IGG. These gauge

transformations satisfy Eq.(4) with T̃ s = T s, B̃b = Bb.
Namely, a gauge transformation {W (s, i)} is in the IGG
of a PEPS formed by {T s, Bb} iff it satisfies:

(T s)kαβ... = eiθ(s) · [W (s, 1)]αα′ [W (s, 2)]ββ′ . . . (T
s)kα′β′...

(Bb)αβ = [W (b, 1)]αα′ [W (b, 2)]ββ′(Bb)α′β′ ,

(14)

for certain U(1) phase factors {eiθ(s)}. Here W (b, j) rep-
resents a gauge transformation on the leg j of the bond
tensor Bb, and if a site leg (s, i) and a bond leg (b, j) are
connected, then W (s, i) = [W (b, j)−1]t.

Clearly, if certain gauge transformation {W (s, i)} be-
longs to IGG, then one can straightforwardly multiply
U(1) phases χ(s, i) to the W (s, i)-matrices: {W (s, i)} →
{W̃ (s, i) = χ(s, i)W (s, i)} and obtain another element in
IGG, if χ(s, i) = χ∗(s′, i′) when (s, i) and (s′, i′) are the
two virtual legs connected by one bond tensor. If we view
the U(1) phase factors {χ(s, i)} leaving the bond tensors
completely invariant as a special kind of gauge transfor-
mations, they form an infinite abelian subgroup in the
center of IGG, which we denote as the χ− group, since
they commute with any gauge transformations.

In general one should work with the infinite group
IGG. In this paper, for simplicity, we define IGG as
the quotient group:

IGG ≡ IGG

χ− group
. (15)

In addition, we will mainly focus on the cases in which
IGG is a simple finite abelian group Zn. In this situation,
it is straightforward to show that IGG = IGG × χ −
group, indicating IGG is just a simpler way to express
IGG. This also means that we could equally view IGG
as a Zn subgroup of IGG. In particular, there exist a
generator g ∈ IGG, but g 6∈ χ − group and g satisfies
gn = I where I is the identity gauge transformation —
the do-nothing gauge transformation.

Note that if IGG is a more complicated group, since
the center extension with respect to χ − group can be
nontrivial, it is possible that IGG 6= IGG × χ − group.
In this situation it is better to directly work with IGG.

1. IGG and gauge dynamics

Here we will discuss the physical meaning of IGG. We
use IGG = Z2 as an example. The following discussion
can be easily generalized to other IGG groups.

First, let us clarify the action of Z2 IGG on PEPS. Ev-
ery virtual leg accommodates a representation of Z2 =
{I, g}. Note that we do not require representations on
different legs to be the same. However, we require two
connected legs accommodate representations dual to each
other, so that applying the g actions on connected legs
is just a special gauge transformation. The nontrivial Z2

IGG element is an action of g on all virtual legs. Follow-
ing the definition of IGG, all site tensors are invariant
up to ±1 and all bond tensors are completely invariant
under this action, as shown in Fig.(3a). Further, it is
straightforward to derive that any patch cut from PEPS
is invariant up to ±1 under the g actions on boundary
virtual legs, as shown in Fig.(3b).

The physical meaning of IGG is related to the gauge
dynamics. To see this, let us first review the Z2 gauge
theory. There are two phases in the Z2 gauge theory:
the deconfined phase and the confined phase. In the de-
confined phase, the Z2 gauge theory describes Z2 topo-
logical order (toric code). The low-energy excitations
include four types of quasiparticles: the trivial particle
1, the chargon e, the fluxon m and the bound state of
chargon and fluxon f = em. e,m and f can only be
created in pairs. Each particle is its own anti-particle,
e2 = m2 = f2 = 1. e,m are bosons while f is a fermion.
The braiding statistics of the three nontrivial particles
are mutually fermionic. In the confined phase, topologi-
cally nontrivial quasiparticles are confined.

To see the connection between IGG and the gauge the-
ory, let us create nontrivial excitations on PEPS with Z2

IGG. We can define e particles living on sites while m
particles living on plaquettes. As shown in Fig.(3c), to
create two m particles in neighboring plaquettes, we sim-
ply multiply the nontrivial Z2 element g on one of two
contracted virtual legs shared by the two plaquettes. The
insertion of g only on one side of contracted legs is not
a gauge transformation, and in general will change the
wavefunction. One can also create a pair of m parti-
cles spatially separated from each other by applying the
single-sided g-actions over a string of bonds. The fluxons
are located at the end of the string. Note that although
the positions of fluxons are physical, the position of the
string connecting them are not physical since one can per-
form Z2 gauge transformations on site tensors to move
the string around while leaving the physical wavefunction
invariant.

Now, let us turn to e particles. Let us first define Z2

even/odd tensors. The action of g on boundary virtual
legs of a tensor generally gives a phase factor ±1. If the
phase factor is +1/−1, we call it Z2 even/odd. The Z2

parities of tensors depend on the representations of g on
virtual legs. If we do not worry about the lattice sym-
metry for the moment, for a Z2 even/odd tensor, we can
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simply redefine g on one virtual leg by −1, thus this ten-
sor becomes Z2 odd/even. So we can assume all tensors
are Z2 even for the remaining discussion in this subsec-
tion. Creating an e particle on a single site corresponds
to changing the site tensor from Z2 even to Z2 odd, as
seen in Fig.(3d). To detect the number of chargons on a
patch of PEPS, we simply apply g on all boundary vir-
tual legs; namely, we create an m loop on the boundary.
If there is an odd number of chargons on that patch, this
patch tensor should be Z2 odd and the g action on the
boundary picks up a −1, see Fig.(3e). This −1 can be
understood as the Berry phase from braiding e and m.
One can easily convince oneself that an odd number of
chargons cannot be created on a closed manifold.

If IGG = Z2 PEPS describe deconfined phases, then
separating topological quasiparticles is expected to cost
zero tension. Consequently one can insert m loops wrap-
ping around torus holes to construct the four-fold degen-
erate ground states on a torus. However if IGG = Z2

PEPS describe confined phases, which we expect to be
possible after a scaling with both bond dimension D and
system sizes, this is no longer true. We will comment
further on this in Sec.VI

As a final remark, there turns out to be two dis-
tinct types of Z2 gauge theories: the toric code theory
and the double-semion theory22,73,74. They have distinct
topological orders; e.g., the topological spins (the ex-
change statistics phases) of quasiparticles are [1, 1, 1,−1]
([1, 1, i,−i]) for the [1, e,m, em] particles in a toric code
(double-semion) topological order. We emphasize that
the IGG = Z2 PEPS discussed here, when describing
a deconfined phase, hosts the toric code topological or-
der. The simplest way to see this is to realize the self
braiding statistics phases of both the e and the m in the
IGG = Z2 PEPS are trivial, so they cannot be semions.

Indeed, when moving an e chargon around a loop by
a sequence of hoppings, one realizes the Berry’s phase
is independent of whether there are other e chargons
inside the loop. Similarly, when moving an m fluxon
around a loop (giving rise to an m loop), the topological
Berry’s phase is simply ±1 depending on the Z2 parity of
the PEPS patch inside the loop, independent of whether
there are other m fluxons inside the loop.

2. Natural emergence of nontrivial IGG

We will show that, under a basic assumption, the sym-
metric PEPS for certain quantum systems must have
nontrivial IGG’s. This basic assumption is that the W
matrices on every virtual leg form (generally reducible)
representations or projective representations for the on-
site symmetries (see Eq.7,11). Under this assumption,
the nontrivial IGG in certain systems is a natural con-
sequence of the global symmetry, even in the absence of
specific Hamiltonians.

Consider a spin- 12 system on a square lattice; i.e., the

physical leg on every site tensor is a 2-dimensional spin- 12

(a)

(e)

(b)

(c)
(d)

FIG. 3. (a): Site tensor and bond tensor are both invariant
under Z2 action on all virtual legs of tensors. (b): Tensors
obtained by contracting Z2 invariant tensors are also Z2 in-
variant. (c): Acting g on one virtual leg of single bond tensor
creates two fluxons (m) in plaquettes sharing the bond. (d):
Z2 odd tensor indicates there sitting a chargon. (e): By ap-
plying g (or creating fluxon loop) on the boundary of a region,
we are able to determine chargon number is even or odd inside
this region.

Hilbert space. For this system, we will show a symmet-
ric PEPS under the basic assumption must feature an
IGG containing a Z2 subgroup. Since SU(2) spin rota-
tion group has no projective representations, the basic
assumption ensures that every virtual leg must form a
representation of SU(2), which generally is a direct sum
of a number of half-integer spin representations and a
number of integer spin representations. Eq.(7) now has
the following simple interpretation: the site tensors are
spin singlets formed by the virtual spins and the physical
spin- 12 , and the bond tensors are spin singlets formed the
virtual spins only.

Now we can consider the particular 2π SU(2) rota-
tion, and denote the corresponding W (s, i) matrix on a
virtual leg (s, i) as J(s, i), which is simply a direct sum of
the minus identity transformation in the half-integer spin
subspace and the identity transformation in the integer
spin subspace. Next, consider the combination of trans-
formations {J(s, i)} acting on the virtual legs only — this
is a particular gauge transformation. Since the physical
spin- 12 only picks up an overall −1 in the 2π SU(2) ro-
tation, and the bond tensors are spin singlets, we know
that the gauge transformation {J(s, i)} is an element in
IGG.

To see this system featuring a nontrivial IGG, we only
need to show IGG 6= χ − group. We will demonstrate
that the gauge transformation {J(s, i)} /∈ χ− group. To
do this, we impose the C4 rotational symmetry and the
translation symmetry of the square lattice. Note that
{J(s, i)} ∈ χ− group if and only if for every virtual leg,
the dimension of either the half-integer spin subspace or
the integer spin subspace vanishes. However, this cannot
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be true. The site tensor is a spin singlet, which requires
the virtual legs to combine into a spin- 12 so that it can fur-

ther combine with the physical spin- 12 to form a singlet.
Therefore, if {J(s, i)} ∈ χ−group, on a single site tensor,
we must have an odd number of virtual legs which con-
tain purely half-integer spins while the remaining virtual
legs contain purely integer spins. This explicitly breaks
the C4 rotational symmetry.

Consequently, there is at least one element J ≡
{J(s, i)} in IGG but not in χ− group, and J2 = e. This
tells us that IGG at least contains a Z2 subgroup {I, J}.

The above argument can be easily generalized to other
symmetries, such as the time reversal symmetry. For
the time reversal symmetry, consider a system with
one Kramer doublet on every physical leg. To form a
Kramer singlet PEPS, one must combine an odd number
of Kramer doublets on virtual legs of every site tensor.
However, for site tensors on a square lattice, there are
even number (four) of virtual legs per site, and the C4

symmetry dictates that the transformation T 2 on virtual
legs only gives a nontrivial element of the IGG which is
at least Z2.

We point out that translational symmetry itself is
enough for the above argument and one does not nec-
essarily consider C4. This is because translational sym-
metry relates the left (down) virtual leg with the right
(up) virtual leg connected to the same site tensor via the
fact that the virtual legs connected by a bond need to
form a spin singlet (or a Kramer singlet). What is really
important for the above argument is the existence of a
half-integer spin (or a Kramer doublet) per unit cell. One
way to see this is to consider a honeycomb lattice with
spin- 12 per site, i.e., two spin- 12 ’s per unit cell. In this
case, every site has three virtual legs and it is possible
to construct symmetric PEPS wavefunctions with purely
half-integer spins on virtual legs, in which case the 2π
spin rotation on the virtual legs only becomes an element
in the χ− group.

Next, let us consider a system with fractional filled
hard core bosons and see how a nontrivial IGG naturally
emerges. As an exercise, we can simply translate the
previous discussions on spin- 12 systems into 1

2 -filled hard-
core boson systems on the square lattice. The physical leg
for the hard-core bosons is two dimensional Hilbert space
with basis labeled as |0〉 and |1〉. When mapped to a spin-
1
2 system, |0〉(|1〉) is identified as the down spin (up spin).
The U(1) charge transformation for the hard-core boson
system can be written as exp[iθ(Siz + 1

2 )] using the spin
operator on the leg-i. Note that spin-0 is identified as
charge- 12 , a projective representation of the charge U(1).
Since a bond tensor is a spin singlet formed by two virtual
spins in the spin language, the representation of U(1)
group in the hard-core boson language on a bond tensor
is

[eiθ(S
a
z+

1
2 ) · eiθ(S

b
z+

1
2 )]∗ = e−iθ (16)

where the complex conjugation comes from the fact that
bond virtual legs transform as conjugate representation

of site virtual legs, and we have used Saz +Sbz = 0 for the
two virtual legs a and b. So, every bond tensor carries
charge −1.

Further, since the site tensor is also a spin singlet, we
require

∑5
i=0 S

i
z = 0, where i = 0 labels the physical

leg and other i 6= 0 label virtual legs. Therefore the
representation of U(1) symmetry on a site tensor reads

4∏
i=0

eiθ(S
i
z+

1
2 ) = ei

5
2 θ (17)

Namely, every site tensor carries charge- 52 . Consequently

each unit cell carries charge- 12 .
Note that in this exercise, the bond tensor transform

nontrivially under U(1), so the virtual leg transformation

W = eiθ(Sz+
1
2 ) does not satisfy Eq.(7) in our definition

of symmetric PEPS. But one could easily redefine the
virtual leg transformation W ’s so that the charge carried
by the bond is absorbed to a neighboring site, and Eq.(7)
is satisfied using the redefined W ’s.

The essential results from previous discussions on the
spin- 12 systems can now be translated as following state-
ment: the virtual leg hosts both integer charges and half
integer charges of U(1), so 2π rotation of U(1) symmetry
on all virtual legs gives the nontrivial Z2 IGG.

In the following, on the square lattice, we provide
a general argument that a nontrivial minimal required
IGG emerges for a symmetric PEPS with fractional-filled
bosons under our basic assumption. Further, this mini-
mal required IGG is given by the 2π rotation of the U(1)
symmetry on the virtual legs only.

Firstly, we have the physical legs carrying integer
charges. And if the tensor network is symmetric under
the U(1) symmetry, for site tensors and bond tensors, we
can rewrite Eq.(7) as

WSS ◦ T s = ΘST
s

WSS ◦Bb = ΘSBb (18)

where symmetry operation S can be any U(1) group ele-
ment. Note that we put ΘS operation on bond tensors as
well to pick up the possible phase factors. As mentioned
before, this phase factor on the bond can always be tuned
away by redefining WS . But for the moment, let us keep
it since we want to include the previous exercise.

We can view the left side as the U(1) action on a
site/bond tensor. Under the basic assumption, the above
equation indicates every site/bond tensor carries a fixed
U(1) charge, which can be a fractional charge. In the
presence of the lattice symmetry, we expect all virtual
legs of site tensors share the same U(1) reducible projec-
tive representation. (Virtual legs of bond tensors have
the conjugate representation). Our plan is to assume the
2π rotation of U(1) symmetry is trivial (only a phase
factor) on the virtual leg, and then demonstrate a con-
tradiction. This assumption dictates that the irreducible
charges carried by a virtual leg can only differ by integer



11

numbers. Namely, the basis for virtual legs of site tensors
can be written as

{|x〉, |x+ n1〉, |x+ n2〉, . . . } (19)

where x can be any fractional number and ni are integers.
Under symmetry operation Uθ, state |x+ i〉 transform as

Uθ|x+ ni〉 = eiθ(x+ni)|x+ ni〉 (20)

So, 2π rotation on any state of the above Hilbert space
will give the same phase factor eixθ. Similarly, the basis
for bond legs are

{| − x〉, | − x− n1〉, | − x− n2〉, . . . } (21)

Recall that a single tensor should carry a fixed charge.
Consequently a bond tensor should carry charge −2x −
nb, where nb is some integer. And a site tensor should
carry charge 4x+ ns. Since the physical leg only carries
integer charges, ns should also be an integer. We then
conclude that, for a single unit cell, the charge should
be ns − nb, which must be an integer. This contradicts
with the fact that the system is at a fractional filling.
Therefore to construct a symmetric PEPS at a fractional
filling under our basic assumption, the 2π rotation of
U(1) symmetry must be nontrivial on all virtual legs,
and the nontrivial IGG naturally emerges.

We discussed the naturally emerged IGG in certain
quantum systems. It is possible for the ground state
symmetric PEPS to have a larger IGG which contains
the naturally emerged IGG as a subgroup. We call the
naturally emerged IGG as the minimal required IGG. A
larger IGG than the minimal required IGG has impor-
tant implications in both conceptual understandings and
numerical simulations. We will come back to this point
in Sec.(III) and Sec.(VII).

The minimal required IGG’s in systems at fractional
fillings are consistent with the Hastings-Oshikawa-Lieb-
Schultz-Mattis (HOLSM) theorem. Consider a 2+1D
system with an odd number of spin- 12 per unit cell, the
HOLSM theorem states that it is impossible to have a
featureless trivial insulator. In other words, the ground
state must either be gapless, break the spin rotation or
the lattice translation symmetry, or be topological or-
dered with a ground state degeneracy.

In our formalism, a half-integer spin per site on the
square lattice (and similarly on the kagome lattice) en-
forces a minimal Z2 IGG, consistent with the HOLSM
theorem. For instance, if IGG = Z2, the system could be
in either a deconfined phase with a toric code topological
order, or a confined phase. But the confined phase cor-
responds to either e or m condensation, which leads to
spin rotation or lattice translation symmetry breaking.

For a honeycomb lattice spin- 12 system, there are two

spin- 12 per unit cell and the HOLSM theorem does not
apply. As mentioned above, we expect that symmet-
ric PEPS on the honeycomb with a trivial IGG can be
constructed, which is consistent with the possible trivial
symmetric insulator phase in this system as pointed out
in Ref.75].

E. An example

Here, we will give a simple PEPS with IGG = Z2 de-
fined on the kagome lattice. In particular, we will write
the PEPS description for a nearest neighboring (NN)
resonating valence bond (RVB) state that preserves all
lattice symmetry. The lattice symmetry generators for
kagome lattice are shown in Fig.(4).

As shown in Ref.76, there are four different kinds of
symmetric NN RVB states defined on kagome lattice with
spin- 12 per site. Also, by solving projective symmetry
group (PSG) equations for the Schwinger-boson mean
field ansatz on the kagome lattice, one finds eight distinct
PSG classes. And four of them can be realized by NN
pairing terms28. One can check that the four NN RVB
states are exactly representative states for these four PSG
classes. Here, we will focus on one particular PSG class,
named as Q1 = Q2 state in Ref.27,28. This particular
PSG class is a promising candidate phase47,77,78 for the
Z2 spin liquid reported in recent DMRG simulations10–12.
Here, we will explicitly write down this NN RVB state in
the PEPS language.

In fact, this state has already been studied extensively
in PEPS79,80. Here, we will slightly modify the con-
struction. Every physical leg is a spin- 12 and virtual

leg accommodates spin representation 0 ⊕ 1
2 , with ba-

sis {|0〉, | ↑〉, | ↓〉}. Bond tensors are spin singlets, which
can be written as a matrix in this basis,

Bb =

1 0 0
0 0 −i
0 i 0

 (22)

where the direction of bond tensor is shown in Fig.(4c).
A bond tensor with the inverse direction is transpose of
the above matrix. Tensors for different sites are equal to
each other, and can be written as,

T s =| ↑〉 ⊗ (| ↓ 000〉+ |0 ↓ 00〉 − i|00 ↓ 0〉 − i|000 ↓〉)−
| ↓〉 ⊗ (| ↑ 000〉+ |0 ↑ 00〉 − i|00 ↑ 0〉 − i|000 ↑〉)

(23)

where the order of site virtual legs is given in Fig.(4b).
We can view site tensors as superposition of singlets
formed by one physical leg and one of the four virtual
legs, while the coefficient of singlets need to be carefully
chosen to make PEPS symmetric under lattice symme-
tries. One can verify the state defined above is consistent
with the PEPS representation of NN RVB given in Ref.80

up to a gauge transformation.
As discussed before, the Z2 IGG here is generated by

the 2π spin rotation of all virtual legs. Since all tensors
are spin-singlet, they are invariant under this operation
up to −1 factors on the site tensors. This NN RVB PEPS
belongs to one of the crude classes proposed in this paper.
Roughly speaking, according to global symmetry, we can
find the generic sub-Hilbert space that the building block
tensors must live within for each given crude class, which
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(a) (b)

(c)

FIG. 4. (a): kagome lattice and the elements of its symmetry
group. ~a1,2 are the translation unit vectors, C6 denotes π/3
rotation around honeycomb center and σ represents mirror
reflection along the dashed red line. (b): Site tensor and
bond tensor for kagome lattice in one unit cell. Virtual legs
of site tensors are labeled as (x, y, s, i), where (x, y) denotes
the position of unit cell, s = u, v, w is the sublattice index
and i = a, b, c, d specifies one of four legs. (c): One possible
orientation of kagome lattice. Particularly, for NN RVB state,
the orientation of bonds denotes the direction of spin singlets.

vastly generalize the one-dimensional sub-Hilbert space
defined as in Eq.(23).

III. ALGORITHM FOR SYMMETRIC PEPS

For a given quantum model with certain given symme-
try groups, we propose a general simulation scheme to
study its phase diagram as follows:

1. One classifies symmetric PEPS according to their
short-range physics. More precisely, crude classes
are distinguished by ways of implementing symme-
tries on virtual legs.

2. For each class, by enforcing symmetry transforma-
tion rules, one finds constraint Hilbert spaces for
the building block tensors in the PEPS representa-
tion.

3. One performs the energy density minimization for
every class in the constrained Hilbert space, and
determines the class which gives the lowest energy
density. The quantum phase of the model will be a
member phase of this crude class. This finishes the
short-range part of the simulation task.

4. At last, one could try to completely determine the
quantum phase diagram by studying the long-range
physics, e.g., by measuring correlation functions for
the symmetric PEPS with the minimal energy den-
sity. With a careful scaling analysis, together with
the sharp information on the long-range physics ob-
tained from the short-range physics (see Sec.VI for
details), possible long range symmetry breaking or-
ders may be identified.

As the main example, we will demonstrate this simula-
tion scheme for a half-integer spin system on the kagome
lattice. We will start with classifying and constructing
generic symmetric PEPS with IGG = Z2 that preserve
the full lattice symmetry as well as the spin rotation and
the time reversal symmetries. As we will show shortly,
the condition IGG = Z2 actually dictates that the virtual
legs form (projective) representations of on-site symme-
tries. Therefore when we consider IGG = Z2 symmetric
PEPS, we already made our basic assumption in an im-
plicit way. In addition, although we focus on the minimal
required IGG under our basic assumption, the discus-
sions can also be easily generalized to symmetric PEPS
with a larger IGG.

A. General framework for classification

From now on we assume IGG = IGG × χ − group,
which is always true if IGG is a simple finite abelian
group Zn.

Consider the gauge transformation associated with a
symmetry R: WR, and the corresponding phase on site
tensors: ΘR. We have T s = ΘRWRR◦T s and Bb = WR◦
Bb, as shown in Sec.II C. However, since both site tensors
and bond tensors are invariant under the IGG action (up
to phases for site tensors), we conclude that tensors are
also invariant under a new symmetry operation defined
as W ′R ≡ ηRWR and Θ′R ≡ µRΘR,

T s = Θ′RW
′
RR ◦ T s

Bb = W ′RR ◦Bb, (24)

where ηR ∈ IGG and µR ≡ {µR(s)} is a set of phase
factors on site tensors associated with ηR, such that
µRηR ◦ T s = T s. For instance, for a half-integer spin
system described by PEPS with IGG = {I, J}, if ηR = J
corresponds to the 2π SU(2) rotation on the virtual legs,
then µR(s) = −1 for all sites.

Similarly one could modify WR and ΘR with any ele-
ment in the χ−group, i.e., bond dependent phase factors
{εR(s, i)} as:

WR(s/b, i)→ εR(s/b, i)WR(s/b, i)

ΘR(s)→
∏
i

ε∗R(s, i)ΘR(s), (25)

where we have εR(s, i) = εR(b, j)∗ if (s, i) and (b, j) are
connected. Further, εR(b, 1) = εR(b, 2)∗ for the two legs
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of the same bond tensor, as required in the definition of
the χ− group.

Basically, the symmetry transformation on the virtual
legs WR is ambiguous since it can be combined with
any element in IGG. Mathematically, the representation
of R on the Hilbert space of PEPS (including both the
virtual and physical Hilbert spaces) form a new group,
which is the original symmetry group SG extended by
the IGG. This extension is related to the 2-cohomology
H2(SG, IGG) and H2(SG,U(1)). (For details about
projective representations and the 2-cohomology, see Ap-
pendix C.) Particularly, we can view those IGG elements
as “representations” of the identity element in the sym-
metry group on virtual legs.

Keeping these discussions in mind, let us consider a dis-
crete symmetry group SG as an example. SG is always
defined by a collection of group identities. For instance,
elements R1, R2, . . . , Rn ∈ SG satisfy the following rela-
tion:

R1R2 . . . Rn = e (26)

Then, acting R1R2 . . . Rn on a symmetric PEPS, one ob-
tains a combined transformation sending every tensor
back to the same tensor:

T s = ΘR1
WR1

R1ΘR2
WR2

R2 . . .ΘRnWRnRn ◦ T s

Bb = WR1
R1WR2

R2 . . .WRnRn ◦Bb (27)

By definition, the transformation leaving all tensors in-
variant (up to phases on site tensors) can only be an ele-
ment in IGG. Explicitly writing down Eq.(27) on virtual
legs of site tensors, we conclude that

WR1
(s, i)WR2

(R−11 (s, i)) . . .

WRn(R−1n−1 . . . R
−1
1 (s, i)) = η(s, i)χ(s, i) (28)

where η(s, i) is the action of η ∈ IGG on the virtual
leg (s, i). Further, {χ(s, i)} is an element in the χ −
group. We point out that since WR(s, i) = [W−1R (b, j)]t

if (s, i) and (b, j) are connected, WR on virtual legs of
bond tensor gives us no extra equation. However, phase
factors on site tensors will give an extra condition, which
reads

ΘR1
(s)ΘR2

(R−11 (s)) . . .ΘRn(R−1n−1 . . . R
−1
1 (s))

= µ(s)
∏
i

χ∗(s, i) (29)

Here µ∗(s) is the phase factor obtained after applying η
on the s-site tensor.

Our goal is to solve Eq.(28) and Eq.(29) for all group
identities and obtain the representations of symmetry op-
eration on virtual legs (WR) as well as phase factors on
site tensors (ΘR). Recall that the same physical wave-
function can be represented by many PEPS which dif-
fer from each other by gauge transformations (note that
these are general gauge transformations which may not

be in IGG.). One should really solve Eq.(28) and Eq.(29)
up to gauge equivalence.

Under a gauge transformation V ≡ {V (s, i)} on virtual
legs, (T s)′ ≡ V ◦T s and B′b ≡ V ◦Bb satisfy the following
conditions:

(T s)′ = VΘRWRR ◦ T s

= (VΘRV
−1)(VWRRV

−1R−1)RV ◦ T s

= ΘRW
′
RR ◦ (T s)′,

(30)

and

B′b = VWRR ◦Bb

= (VWRRV
−1R−1)RV ◦Bb

= W ′RRB
′
b. (31)

Here we use the fact that V commutes with ΘR in the last
step of Eq.(30). Here, W ′R ≡ VWRRV

−1R−1. Writing
the above expression explicitly on virtual leg (s, i), we get

WR(s, i)→ V (s, i) ·WR(s, i)V −1(R−1(s, i)) (32)

while ΘR is invariant. Particularly, η ∈ IGG changes as

η(s, i)→ V (s, i) · η(s, i)V −1(s, i) (33)

And phase factors µ and χ in Eq.(29) are invariant.
Apart from the above gauge transformation, one can

change site tensors by phase factors, which do not affect
physical observables. Note that one could also change
bond tensors by phase factors, but such a modification
is always equivalent to a gauge transformation together
with a changing of phase factors on site tensors. Unlike
gauge transformations, a modification of phase factors
on site tensors may change the physical wavefunction up
to an overall phase. When site tensors change as T s →
Φ ◦ T s = Φ(s) · T s = eiϕ(s)T s, WR associated with the
symmetry R is invariant, but ΘR goes to ΦΘRRΦ−1R−1.
Namely, the phase factor ΘR ≡ {eiθR(s)} will change as

ΘR(s)→ ΘR(s)Φ(s)Φ∗(R−1(s)) (34)

Basically, we should solve for the WR and ΘR in
Eq.(28) and Eq.(29) up to two kinds of equivalences.
First, if two sets of WR and ΘR are related by Eq.(32)
and Eq.(34), they are equivalent and we denote this sit-
uation as the gauge equivalence. The gauge equivalence
contains the V -ambiguity in Eq.(32) and the Φ-ambiguity
in Eq.(34).

Second, if two sets of WR and ΘR are different by an
IGG element, they are also equivalent and we denote
this situation as the group extension equivalence. Sum-
marizing our discussion in Eq.(24,25), it means that one
could modify WR and ΘR as WR → W ′R = ηRεRWR

and ΘR → Θ′R = µRεRΘR, where ηR ∈ IGG and
εR ∈ χ− group and

W ′R(s, i) = ηR(s, i)εR(s, i)WR(s, i)

Θ′R(s) = µR(s)
∏
i

ε∗R(s, i)Θ(s). (35)
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Note that to save notation, we define εRΘR as multiply-
ing

∏
i ε
∗
R(s, i) on Θ(s). The group extension equivalence

contains an η-ambiguity and an ε-ambiguity in Eq.(35).
Note that different from the gauge equivalence, we have
an η-ambiguity and an ε-ambiguity for each symmetry
element R.

We will solve Eq.(28) and Eq.(29) for the whole sym-
metry group up to both the gauge equivalence and the
group extension equivalence. Eventually we will obtain
many classes of PEPS satisfying inequivalent WR and ΘR

transformation rules. Among all combinations of WR and
ΘR within the same equivalence class, we can choose a
particular representative, and construct explicit forms of
WR and ΘR by fixing the η-ambiguity, the ε-ambiguity,
the V -ambiguity and the Φ-ambiguity. These WR and
ΘR specify the sub-Hilbert spaces for the building block
tensors in each class. We sometimes call the whole pro-
cedure of fixing the four ambiguities as gauge fixing.

Practically, we often firstly use the group extension
equivalence to simplify Eq.(28) and Eq.(29). For in-
stance, one can use the ε-ambiguity to simplify {χ(s, i)}
in Eq.(28) and Eq.(29): under a transformation WRi →
εRiWRi , according to Eq.(28), we find

χ(s, i)→ εR1(s, i) . . . εRn(R−1n−1 . . . R
−1
1 (s, i))χ(s, i).

(36)

Moreover, one can use the η-ambiguity to simplify the
{η(s, i)} and {µ(s)} in Eq.(28) and Eq.(29). For example,
if some symmetry operation R appears only once in the
group identity R1R2 . . . Rn = e, one could use the η-
ambiguity for R to make sure {η(s, i) = I} and {µ(s) = 1}
for this group condition.

After the group extension equivalence is used, we will
use the gauge equivalence (the V -ambiguity and the Φ-
ambiguity) to solve for explicit forms of WR and ΘR.
Note that the group extension equivalence and the gauge
equivalence are not completely independent. For exam-
ple, after fixing the V -ambiguity and the Φ-ambiguity,
it is possible some part of the ε-ambiguity and the η-
ambiguity are also fixed. In the following we demonstrate
this procedure in an example: the half-integer spin sys-
tems on the kagome lattice.

B. Classification of kagome PEPS

Here, we will classify symmetric kagome PEPS wave-
function with a half-integer spin-S per site, which pre-
serves all lattice symmetries, the time reversal symmetry
as well as the spin rotation symmetry. We will only as-
sume IGG = Z2 = {I, J} without specifying the physical
meaning of J. Later we will prove that J can always be
chosen to be the 2π spin rotation on the virtual legs. Let
us begin with setting up some useful facts.

First, we can use the V -ambiguity to diagonalize
J(x, y, s, i) for every virtual leg (x, y, s, i), where (x, y, s)
labels a site on the lattice by the coordinates of the
unit cell x, y and the sublattice index s = u, v, w, and

i = a, b, c, d labels one of the four virtual legs coming
out of the site tensor. (see Fig.4 for illustrations) In this
gauge, ∀(x, y, s, i), the matrix J(x, y, s, i) is a direct sum
of an identity matrix and a minus identity matrix. Let
us denote J(x0, y0, s0, i0) = ID1

⊕ (−ID2
) for some given

virtual leg (x0, y0, s0, i0), where D1 + D2 = D. We will
consider the generic case in which D1 6= D2.

Using the lattice symmetry, it is straightforward to
prove that one can always redefine {J(x, y, s, i)} by mul-
tiplying with an element ε in the χ−group: ε(x, y, s, i) =
±1 so that J(x, y, s, i) = ID1

⊕ (−ID2
), ∀(x, y, s, i). (Such

a modification is allowed in our definition of IGG.) For
example, consider a particular lattice symmetry opera-
tion R, which could be the 60◦ degree rotation C6 or the
lattice translation T1 or T2 of the kagome lattice (see Ap-
pendix A for precise definitions), we always have a group
relation R−1 · e · R = e. Using Eq.(28) for this group
relation and choosing J to replace the e on the LHS:

W−1R (R(x, y, s, i))J(R(x, y, s, i))WR(R(x, y, s, i))

=η(x, y, s, i)χ(x, y, s, i). (37)

The η on the RHS must be J, otherwise we would find J
to be an element in the χ− group, violating IGG = Z2.
Therefore we know that J(R(x, y, s, i)) and J(x, y, s, i),
which are generally on two different virtual legs, are
related by a similarity transformation WR(R(x, y, s, i))
and an overall phase factor χ(x, y, s, i). But we are al-
ready in a gauge such that J(x, y, s, i) are all diagonal.
We then conclude that J(R(x, y, s, i)) = ±J(x, y, s, i).
Since all virtual legs are related by lattice symmetries,
we know J(x, y, s, i) = ε(x, y, s, i)J(x0, y0, s0, i0), where
ε(x, y, s, i) = ±1 ∀(x, y, s, i).

Next, we show {ε(x, y, s, i)} ∈ χ − group. Namely, if
(x, y, s, i) and (x′, y′, s′, i′) are connected by a bond ten-
sor Bb, then ε(x, y, s, i) = ε(x′, y′, s′, i′). This is because
if ε(x, y, s, i) = −ε(x′, y′, s′, i′), then the matrix (Bb)αβ
satisfying Eq.(14) for W = J would not have a full rank,
since D1 6= D2. This means that some singular value of
(Bb) vanishes, dictating an IGG larger than Z2. For in-
stance, one can multiply an arbitrary U(1) phase on the
zero singular value eigenstate on one of the two virtual
legs, leaving the bond tensor Bb invariant.

Therefore {ε(x, y, s, i)} ∈ χ − group and we can al-
ways redefine J such that J(x, y, s, i) = ID1 ⊕ (−ID2),
∀(x, y, s, i). From now on we will work within this gauge
and denote the matrix ID1 ⊕ (−ID2) simply as J.

This allows us to denote the η(x, y, s, i) transforma-
tion in Eq.(28) simply as η since it is site and virtual
leg independent. In addition, according to Eq.(33), the
remaining V -ambiguity: V (x, y, s, i) must commute with
J. In other words, V (x, y, s, i) are block diagonal with
two blocks, and the sizes of blocks are D1 and D2 respec-
tively.

Now we can consider an arbitrary symmetry transfor-
mation R, which could be either a lattice symmetry or
an on-site symmetry. Eq.(37) still holds for R and the η
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on the RHS must be J . Consequently we have:

W−1R (R(x, y, s, i)) · J ·WR(R(x, y, s, i))

=χ(x, y, s, i)J. (38)

Squaring this equation leads to χ(x, y, s, i) = ±1. How-
ever only the + sign is possible since otherwise the ma-
trix WR(R(x, y, s, i)) will not have a full rank, again due
to D1 6= D2. Thus we have proved that WR(x, y, s, i)
commutes with J, ∀(x, y, s, i) and ∀R. Mathematically,
this means that when we extend the symmetry group by
IGG = IGG × χ − group, IGG is in the center of the
extended group.

Let us consider the phase factors µJ(x, y, s) on site
tensors obtained when applying the nontrivial element
J on the virtual legs. This determines whether the
site tensor is Z2 even or Z2 odd. Now we are ready
to show that µJ(x, y, s) is site independent in the cur-
rent gauge. Namely if one site tensor is Z2 even (odd),
the same is true for all site tensors. Consider a lat-
tice symmetry R which send a site (x, y, s) to the site
(x′, y′, s′), Eq.(13) states that the two site tensors are re-
lated by a possible permutation of virtual indices (e.g.
induced by a lattice rotation) together with multiplica-
tions of WR matrices on the virtual legs as well as a
overall phase factor ΘR(x, y, s). Because WR matrices
all commute with J, it is straightforward to see that the
µJ(x, y, s) = µJ(x′, y′, s′). Because all sites are related to
each other by lattice symmetries, µJ(x, y, s) are identical
for all sites. Thus in the discussion below we will simply
denote the η ∈ IGG associated phase factors µ(x, y, s) in
Eq.(29) as µ, since it does not depend on the site.

By applying the condition IGG = Z2 to the kagome
lattice with the symmetry group described in Appendix
A, we are able to solve the equations for symmetry oper-
ations, i.e. Eq.(28,29), by gauge fixing. For the purpose
of presentation, here we only demonstrate the calculation
for the translation symmetry, and list the full results of
the classification. The calculation for other symmetries
is in Appendix B. (We encourage interested readers to
follow a simpler and pedagogical example on the square
lattice in Appendix F before reading this more technical
Appendix for the kagome lattice.)

Let us consider the translation symmetry group. This
group is isomorphic to Z×Z: the group is defined by its
generators T1, T2 as well as the relation between genera-
tors,

T−12 T−11 T2T1 = e (39)

As shown in Eq.(13), for PEPS symmetric under Ti (i =
1, 2), we have

T (x,y,s) = ΘTiWTiTi ◦ T (x,y,s)

B(xysi|x′y′s′i′) = WTiTi ◦B(xysi|x′y′s′i′) (40)

From the group relation T−12 T−11 T2T1 = e, we have

W−1T2
(T2(x, y, s, i))W−1T1

(T1T2(x, y, s, i))WT2
(T1T2(x, y, s, i))

WT1
(T1(x, y, s, i)) = η12χ12(x, y, s, i) (41)

as well as

Θ∗T2
(T2(x, y, s))Θ∗T1

(T1T2(x, y, s))ΘT2
(T1T2(x, y, s))

ΘT1
(T1(x, y, s)) = µ12

∏
i

χ∗12(x, y, s, i) (42)

where η12 ∈ {I, J}, and {χ12(x, y, s, i)} ∈ χ− group.
Under transformations WTi → εTiWTi and ΘTi →

εTiΘTi , we have

χ12 → ε∗T2
(x, y + 1, s, i)ε∗T1

(x+ 1, y + 1, s, i)·
εT2

(x+ 1, y + 1, s, i)εT1
(x+ 1, y, s, i)χ12(x, y, s, i) (43)

Thus, we are able to set all χ12(x, y, s, i) = 1 via the
εTi -ambiguity.

According to Eq.(32) and Eq.(34), by doing a gauge
transformation V (x, y, s, i) and multiply phase factors
Φ(x, y, s):

WT2
(x, y, s, i)→ V (x, y, s, i)WT2

(x, y, s, i)V −1(x, y − 1, s, i)

ΘT2(x, y, s)→ ΘT2(x, y, s)Φ(x, y, s)Φ∗(x, y − 1, s)
(44)

We are able to set WT2
(x, y, s, i) = I as well as

ΘT2
(x, y, s, i) = 1. Thus we obtain T (x,y,s) = T (0,y,s).

The remaining V -ambiguity preserving the form of WT2

should satisfy V (x, y, s, i) = V (x, 0, s, i), and the remain-
ing Φ-ambiguity preserving the form of ΘT2

should sat-
isfy Φ(x, y, s) = Φ(x, 0, s). In addition, any nontrivial
εT2

transformation will change the form of WT2
= I,

so εT2
is fixed to be 1. Together with the condition

χ12(x, y, s, i) = 1, the remaining εT1
-ambiguity satisfies

εT1
(x, y, s, i) = εT1

(x, 0, s, i).
Similarly, for T1 transformation, using the remaining

V -ambiguity and Φ-ambiguity, we have

WT1
(x, y, s, i)→ V (x, 0, s, i)WT1

(x, y, s, i)V −1(x− 1, 0, s, i)

ΘT1
(x, y, s)→ ΘT1

(x, y, s)Φ(x, 0, s)Φ∗(x− 1, 0, s)
(45)

Thus we can set WT1
(x, 0, s, i) = I and ΘT1

(x, 0, s) = 1.
To maintain this form of WT1 , we find that there is no re-
maining εT1-ambiguity: εT1 is fixed to be 1. The remain-
ing V -ambiguity and Φ-ambiguity satisfy V (x, y, s, i) =
V (s, i) and Φ(x, y, s) = Φ(s); namely they are only de-
pendent on the sublattice index and the virtual leg index
from a site, but are independent of the unit cell coor-
dinates. Further, in this gauge, site tensors are transla-
tional invariant (but could be sublattice dependent),

T (x,y,s) = T (x,0,s) = T s
.
= T (0,0,s), s = u, v, w (46)

Thus, in the gauge that we choose so far, we can solve
Eq.(41), and get the implementation of translation sym-
metry on PEPS as

WT1
(x, y, s, i) = ηy12

WT2
(x, y, s, i) = I

ΘT1
(x, y, s) = µy12

ΘT2(x, y, s) = 1 (47)
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So for systems with translational symmetries and
IGG = Z2, there are at least two distinct classes of wave-
function. In the context of quantum spin liquids, these
two classes are known as zero flux state and π flux state,
corresponding to η12 = I and η12 = J respectively. Con-
densations of spinons in these two spin liquids lead to
different types of magnetic orders28. In the above gauge,
although all site tensors related by the translation sym-
metry share the same form, bond states related by the
translation symmetry are in general different if η12 is
nontrivial.

The calculation for other symmetries is similar as the
above procedure. The basic idea is to keep fixing gauge
by the four ambiguities. And when we find certain alge-
braic data, such as the η12 introduced above, that cannot
be removed by the ambiguities, they describe different
symmetric PEPS classes. We only list the result here,
and put details in Appendix B.

This classification scheme will always lead to three fi-
nite sets of algebraic indices η’s, χ’s and Θ’s and we will
discuss their physical meanings in Sec.IV. Although in
general systems every set of indices is nonempty, for a
half-integer spin system on the kagome lattice described
by PEPS with IGG = Z2, we have:

• η12, ηC6 and ησ, where η ∈ {I, J}. The correspond-
ing µ12, µC6 , µσ are determined by η’s.

• χσ and χT , where χ = ±1.

• There turns out to be no tunable Θ indices in this
example.

So the number of classes equals to 25 = 32. By choosing
a gauge, the symmetry operations on PEPS can be solved
as

WT1
(x, y, s, i) = ηy12,

WT2(x, y, s, i) = I,

WC6
(x, y, u, i) = η

xy+ 1
2x(x+1)+x+y

12 wC6
(u, i),

WC6
(x, y, v, i) = η

xy+ 1
2x(x+1)+x+y

12 ,

WC6(x, y, w, i) = η
xy+ 1

2x(x+1)
12 ,

Wσ(x, y, s, i) = ηx+y+xy12 wσ(s, i),

WT (x, y, s, i) = wT (s, i),

Wθ~n(x, y, s, i) =
⊕
i

(Ini ⊗ eiθ~n·
~Si). (48)

In this gauge all WR matrices are unitary. The last
equation is for the SU(2) spin rotation along ~n direc-
tion by an angle θ. In addition, in this gauge we choose

J = W2π(x, y, s, i) =
⊕

i(Ini ⊗ ei2π~n·
~Si); namely J is the

direct sum of ID1
for the integer spin subspace and −ID2

for the half-integer spin subspace and D1 +D2 = D.
For the rotation transformation wC6

(u, i), we have

wC6
(u, a) = wC6

(u, c) = I,

wC6
(u, b) = wC6

(u, d) = η12ηC6
, (49)

For the reflection transformation wσ(s, i), we have

wσ(u, a) = I, wσ(u, b) = χση12ηC6 ,

wσ(u, c) = χση12ηC6
ησ, wσ(u, d) = ησ;

wσ(v, a) = η12, wσ(v, b) = χση12,

wσ(v, c) = ηC6
ησ, wσ(v, d) = χσηC6

ησ;

wσ(w, a) = χσηC6 , wσ(w, b) = ηC6 ,

wσ(w, c) = η12ησ, wσ(w, d) = χση12ησ; (50)

And for the time reversal transformation wT , we have

wT (u, a) = wT , wT (u, b) = η12ηC6
wT ,

wT (u, c) = η12ηC6
ησwT , wT (u, d) = ησwT ;

wT (v, a) = η12ηC6wT , wT (v, b) = wT ,

wT (v, c) = ησwT , wT (v, d) = η12ηC6ησwT ;

wT (w, a) = wT , wT (w, b) = η12ηC6
wT ,

wT (w, c) = η12ηC6
ησwT , wT (w, d) = ησwT ; (51)

where

wT =

{ ⊕
i(Ini ⊗ eiπS

y
i ) if χT = 1⊕

i(Ωni ⊗ eiπS
y
i ) if χT = −1

(52)

Here ni is dimension of the extra degeneracy associated
with spin-Si. Namely, the total degeneracy for spin-Si
living on one virtual leg equals ni × (2Si + 1). We have
the virtual bond dimension

D =
∑
i

ni(2Si + 1) (53)

And, Ωni = iσy⊗ Ini/2 is a ni dimensional antisymmetric
matrix.

For ΘR’s, we have

ΘT1
(x, y, s) = µy12,

ΘT2
(x, y, s) = 1,

ΘC6(x, y, u) = µ
xy+ 1

2x(x+1)+x+y
12 ΘC6(u),

ΘC6
(x, y, v) = µ

xy+ 1
2x(x+1)+x+y

12 ,

ΘC6
(x, y, w) = µ

xy+ 1
2x(x+1)

12 ,

Θσ(x, y, s) = µx+y+xy12 Θσ(s),

ΘT (x, y, u/w) = 1,

ΘT (x, y, v) = µ12µC6 ,

Θθ~n = 1, (54)

where

ΘC6
(u) = (µ12µC6

)
1
2 ;

Θσ(u) = (µσ)
1
2 ;

Θσ(v) = µC6
ΘC6

(u)Θσ(u);

Θσ(w) = µσµC6
(ΘC6

(u)Θσ(u))−1. (55)

Note that in Eq.(55) ΘC6
(u) and Θσ(u) contain square

roots so there appear to be two possible values of each of
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them differing by a minus sign, giving rise to Θ-indices.
However, these minus signs can be tuned away using the
η-ambiguities in the definition of WC6

and Wσ since ev-
ery site tensor is Z2 odd. So one could simply fix an
arbitrary choice for the square roots here. This is the
reason why there turns out to be no tunable Θ indices in
this example.

Even after all these transformation rules are deter-
mined by gauge fixing, we still have some remaining V -
ambiguity for each class. (Note that there is no remain-
ing nontrivial η,ε and Φ ambiguities.) To preserve the
lattice symmetry, the remaining V -ambiguity is indepen-
dent of sites and legs. To preserve the form of Wθ~n, the
remaining V -ambiguity must have the following form:

V =
⊕
i

(ṼSi ⊗ I2Si+1), (56)

where ṼSi is a ni dimensional matrix. In addition, the
time-reversal transformation WT further constrains the
form of component matrices ṼSi . When χT = 1, one can

show that ṼSi must be a real matrix. For the purpose of
presentation we only consider χT = 1 classes here. The
χT = −1 cases involve quaternion matrices and we leave
the general and detailed discussions in Appendix B.

Next, we are at the stage to construct the con-
strained sub-Hilbert spaces for building block tensors for
all classes, according to the WR transformation rules.
The basic idea is to determine the generic form of a
single site/bond tensor using the WR’s with R leav-
ing the site/bond invariant, and then generate all other
site/bond tensors using all WR’s. The generic forms of
site tensors are straightforwardly determined in this fash-
ion, with a set of real continuous variational parame-
ters whose number basically equals the dimension of the
constrained site sub-Hilbert space. However, for bond
tensors, we will use the remaining V -ambiguity to bring
them into canonical forms which are maximal entangled
bond states containing no continuous variational param-
eters.

To make sure a bond tensor Bb to be invariant under
the SU(2) spin rotation, it must have the following form:

Bb =

M⊕
i=1

(
B̃Sib ⊗KSi

)
, (57)

where B̃Sib is ni dimensional matrix, and KSi is the fixed
(2Si+1) dimensional matrix representing the spin singlet
formed by two spin-Si on the two virtual legs shared by
Bb. For example, we get KS=0 = 1, KS= 1

2
= iσy.

As shown in Appendix B, when χT = 1 and a given Si,
depending on the four possible values of ησ and χσ, the

component matrix B̃Sib must be a purely real/imaginary
symmetric/antisymmetric matrix. Then we can use the

remaining V -ambiguity in Eq.(56) to simplify B̃Sib , be-

cause under a ṼSi transformation, B̃Sib transforms as:

B̃Sib → ṼSi · B̃
Si
b · Ṽ

t
Si (58)

Clearly we can use a real orthogonal ṼSi to diagonalize

(block diagonalize) B̃Sib if B̃Sib is a symmetric (antisym-

metric) matrix. After this, the eigenvalues of B̃Sib could
have arbitrary norms. But then we can use another real

diagonal ṼSi matrix to normalize the eigenvalues so that

they are only ±1 (if B̃Sib is purely real) or ±i (if B̃Sib is
purely imaginary).

This procedure fixes Bb to be maximal entangled states
with no continuous variational parameters. However, the
relative number of +1(+i) eigenvalues and −1(−i) eigen-
values cannot be further tuned away by gauge fixing and
will serve as discrete variational parameters on the bond
tensors.

The previous discussions in the subsection are general
for any half-integer spin-S. Below we focus on the case
with S = 1

2 . For simplicity, we demonstrate the results
for with D = 3. The basis of virtual legs of site tensors
are {|0〉, | ↑〉, | ↓〉}. Namely, virtual legs are formed by
one spin singlet and one spin doublet. Note that virtual
legs of bond tensors are dual to those of site tensors, so
the basis are 〈0|, 〈↑ |, 〈↓ |. Symmetric PEPS with larger
D are also conceptually straightforward but technically
involved to obtain, and we leave the general construction
in Appendix B

As discussed in Appendix B, only classes satisfying
ησ = J, χσ = 1 and χT = 1 can be realized with D = 3.
So the realizable classes reduce to 22 = 4 with D = 3.
At such a small D, it turns out that each class has only
two continuous variational parameters. (Note that for
D = 6, i.e. two spin singlet and two spin doublet on the
virtual leg, we find that all the 32 classes can be realized.
And each class has 47 continuous variational parame-
ters.) Following the above procedure we can bring the
bond tensor on a given bond b0 into the canonical form:

Bb0 =

±1 0 0
0 0 −i
0 i 0

 (59)

All other bond tensors are generated by combination of
translation and rotation symmetries as:

BR(b) = R−1WRR ◦Bb0 (60)

where R = Tn1
1 Tn2

2 C
nC6
6 with n1, n2, nC6

∈ Z.
One can view a bond tensor as a quantum state living

in the Hilbert space formed by the tensor product of two
virtual legs. Namely, we have

B̂b0 = ±〈0, 0| − i 〈↑, ↓ |+ i 〈↓, ↑ | (61)

Here we use notation B̂b0 as the quantum state represen-
tation while Bb0 as the matrix (tensor) representation.

At a given site s0, the generic form of the site tensor
for all classes can be summarized as:

T̂ s0 ={K̂0 + K̂12(p1, p2)}+ Θ−1C6
(u){a↔ b, c↔ d}+ Θ−1σ (u)·

{a↔ d, b↔ c}+ µ12µC6
(ΘC6

(u)Θσ(u))−1{a↔ c, b↔ d}
(62)
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with real continuous parameters p1, p2. Here a, b, c, d de-
note virtual leg of sites, as shown in Fig.(4). K̂0 and K̂12

denote linear independent spin singlet states, which can
be expressed as

K̂0 =| ↑〉 ⊗ | ↓ 000〉 − | ↓〉 ⊗ | ↑ 000〉
K̂12 =p1 · (| ↑〉 ⊗ |0 ↓↑↓〉+ | ↓〉 ⊗ |0 ↑↓↑〉)+

p2 · (| ↑〉 ⊗ |0 ↓↓↑〉+ | ↓〉 ⊗ |0 ↑↑↓〉)−
(p1 + p2) · (| ↑〉 ⊗ |0 ↑↓↓〉+ | ↓〉 ⊗ |0 ↓↑↑〉), (63)

where the first spin lives on the physical leg, while the
following four spins live on virtual legs a, b, c, d respec-
tively. Note that we have chosen a particular gauge such
that all site tensors share the same form.

By direct comparison, the NN RVB state (Q1 = Q2

state) given in Sec.(II E) is represented as the PEPS de-
fined in Eq.(59) and Eq.(62), with p1 = p2 = 0 and:

η12 = ηC6
= I, ησ = J;

χσ = χT = 1;

(64)

C. Algorithm for minimization

As demonstrated above, after the symmetry trans-
formation rules are determined for each class, for a
fixed bond dimension D together with the specified on-
site symmetry (projective) representation on this virtual
Hilbert space, we can construct the generic symmetric
PEPS. The strategy is to firstly construct one site ten-
sor and one bond tensor, and to use spatial symmetries
to generate all site tensors and bond tensors. For each
class, in general, the maximal entangled bond tensor will
be completely fixed up to a finite number of ±1 signs.
These signs are physical (they could modify the energy
density) and should be treated as discrete variational pa-
rameters. The site tensor, however, will be fixed in a
sub-Hilbert space for each give class, whose dimension
(minus one if one considers normalized PEPS) represents
the number of continuous variational parameters. Differ-
ent classes give different sub-Hilbert spaces for the site
tensors.

For efficient PEPS simulations, one generally chooses
an open-boundary sample and introduces certain bound-
ary conditions. In order to determine which symmetric
PEPS class that the ground state of a model Hamiltonian
belongs to, one needs to minimize the energy density near
the center of the sample by tuning all the variational pa-
rameters of each given class. And the ground state crude
class is identified as the class which gives the lowest en-
ergy density. The effect of boundary conditions should
decay quickly into the bulk of sample and the optimal en-
ergy density near sample center is expected to converge
to a boundary condition independent value for interme-
diate sample sizes.

By construction, PEPS belonging to different classes
has distinct short-range physics (the site tensors and

bond tensors transform according to inequivalent alge-
braic equations), therefore we expect that quite generi-
cally these optimal energy densities for different classes
are significantly different. But, there are three scenar-
ios that the optimal energy densities for distinct classes
can be identical, at least in the thermodynamic limit.
The first scenario is that the quantum Hamiltonian un-
der investigation is right at a phase transition point, so
that the optimal energy densities for the two symmetric
PEPS on the two sides of the phase transition are the
same. This scenario, however, is expect to occur only at
phase transition points.

The second scenario has a deeper physical origin — it
is possible that the invariant gauge group of the PEPS
representation of a quantum phase is larger than the as-
sumed IGG for the symmetric PEPS classification. We
will comment more on this scenario at the end of the
paper. For instance, in the example of kagome spin-
1/2 systems, we classify all the symmetric PEPS whose
IGG = Z2 in the previous section. But it is possible that
a given quantum phase actually require IGG larger than
Z2. A PEPS with a larger IGG indicates more invari-
ance of the tensor network, and therefore it could be well
approximated (with arbitrarily small wavefunction dif-
ferences) by PEPS with the minimal required Z2 IGG.
Physically this is related to the Higgs mechanism break-
ing the large IGG down to Z2. In particular, it is possible
that the same PEPS with a larger IGG can be well ap-
proximated by two or more distinct IGG = Z2 PEPS
classes. This picture can actually be used as a feature of
the algorithm proposed here. Namely, if numerically one
finds that two distinct classes of IGG = Z2 PEPS give
the same optimal energy densities over a finite region in
the phase diagram, it could be due to the fact that the
true IGG of the quantum phase is larger than Z2.

The third scenario is the one that we currently do not
fully understand. It seems possible that certain symme-
try breaking conventional phases such as a valence bond
solid phase that can be represented by distinct classes
even with the minimal required IGG. It would be very
interesting to perform numerically simulations on quan-
tum models to understand whether this really occurs or
not, and if this scenario occurs, how does it occur. We
will comment further on this issue later in Sec.VI.

Note that although the bond tensors are position de-
pendent in our construction, it is straightforward to ab-
sorb each bond tensor to a neighboring site tensor so
that all the bond tensors become identity matrices. After
this transformation the PEPS is in the conventional form
used in numerical simulations. As a result, for a PEPS
with given variational parameters, the measurement of
the energy density near the sample center, which is one
or few terms in the translational symmetric Hamiltonian,
can be carried out in the same way as in the original
PEPS algorithms5,81. The only new ingredient of the
current minimization scheme is an algorithm to perform
the energy density minimization by tuning the continu-
ous variational parameters within each class. Below we
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FIG. 5. Illustration of truncating an infinite PEPS to a finite
size PEPS with a choice of boundary condition.

propose such an algorithm based on the conjugate gradi-
ent method. Similar minimization algorithm was investi-
gated in the context of one-dimensional matrix product
states with translational symmetry82.

Before moving towards the minimization algorithm,
we introduce the well-established numerical methods in
PEPS to perform energy density measurements5,81. As
a demonstration of principles, let us consider a spin-
1/2 symmetric PEPS on the square lattice; namely, for
any site (bond) on the infinite square lattice, we have a
well-defined site (bond) tensor. We firstly cut the infi-
nite square lattice to a Lx × Ly finite sample. And the
open boundary condition around the edge of the sample
is specified by a certain choice of the virtual quantum
states living on the dangling bonds. For instance, one
can choose a simple boundary condition by requiring all
the virtual states on the dangling bonds to be the spin
singlet |0〉 in virtual Hilbert space (see Fig.5 for illustra-
tion).

With a well-defined finite size PEPS, the computa-
tion of wavefunction norm and the energy density near
the center of the sample is illustrated in Fig.6. Note
that the total Hamiltonian H is a summation of many
terms which are related to each other by lattice symme-

try. For instance one can consider H =
∑
<~x~x′> J

~S~x ·
~S~x′ =

∑
<~x~x′> h~x~x′ , where < ~x~x′ > represents the near-

est neighbors and each energy density term is given by

h~x~x′ = J ~S~x · ~S~x′ . Because by construction the PEPS is
lattice space group symmetric, indicating that as system
size increases, expectation values of all the energy den-
sity terms near the center of the sample would quickly
converge to the same value. Therefore it is legitimate to
optimize only a single energy density term as shown in
Fig.6.

These measurements become the standard problem in
PEPS — contracting a finite-size two-dimensional tensor
network with the bond dimension D2. Here the bond di-
mension is squared because we view a pair of a site tensor
with its conjugate as a single tensor as shown in Fig.6. In
general there is no way to exactly contract such a tensor
network as long as the system size is not very small. How-
ever PEPS5 and other tensor network methods83–85 pro-
vide efficient algorithms to approximately contract such
tensor networks to high accuracies. The basic idea of the
PEPS contraction algorithm is to view the first row of the

FIG. 6. Illustration of measuring wavefunction norm and en-
ergy density of a PEPS.

2d tensor network as a matrix product state (MPS), and
view the other rows as matrix product operators acting
on the MPS. Consequently the existing algorithm of com-
pressing a MPS allows one to approximately contract the
whole 2d tensor network in a row-by-row fashion. The
details of the PEPS contraction algorithm can be found
in review articles such as Ref.81 and 86.

Now we present an algorithm to perform the energy
density minimization, based on the well-established con-
jugate gradient minimization algorithm. Namely, the
quantity we need to minimize is:

E({pi}) =
〈ψ|h~x~x′ |ψ〉
〈ψ|ψ〉

, (65)

where {pi} represents the finite collection of continuous
variational parameters in a given symmetric PEPS class
with a bond dimension D. When {pi} are tuned, every
site tensor in the PEPS wavefunction |ψ〉 is modified. In
order to apply the conjugate gradient minimization algo-
rithm, one needs to compute the following derivatives:

∂E

∂pi
=

1

〈ψ|ψ〉
∂〈ψ|h~x~x′ |ψ〉

∂pi
− 〈ψ|h~x~x

′ |ψ〉
〈ψ|ψ〉2

∂〈ψ|ψ〉
∂pi

. (66)

The only new quantities that we need to compute are



20

FIG. 7. Each site tensor in a symmetric PEPS is a linear
superposition of the states in a sub-Hilbert space.

FIG. 8. The linear order variations of ∂〈ψ|ψ〉 and 〈ψ|h~x~x′ |ψ〉.

∂〈ψ|ψ〉
∂pi

and ∂〈ψ|h~x~x′ |ψ〉
∂pi

. But these quantities can also be

efficiently computed using PEPS algorithms.
Due to the symmetric PEPS construction, we know

that each site tensor is a linear superposition of the states
in the symmetry constrained sub-Hilbert space (see Fig.7
for illustration):

T (~x) =
∑
i

piTi(~x), (67)

where ~x labels the real space position of the site tensor.
(Because the overall factor of all pi’s does not change
the normalized wavefunction, it may be convenient to
set one of the pi’s, say p0 to be unity and only study
the variation of other pi’s.) Note that for different site
~x, the form of Ti(~x) are generally different due to the
nontrivial symmetry transformation rules of tensors and
the fact that we absorb the bond tensors into neighboring
site tensors.

It is then straightforward to see that to the linear or-
der, the variation of 〈ψ|ψ〉 (〈ψ|h~x~x′ |ψ〉) is a summation
of Lx × Ly × 2 terms, as illustrated in Fig.8, where the
factor of two is due to the fact that both the variation of

|ψ〉 and the variation of 〈ψ| contribute. Each term can be
computed by the standard PEPS contraction algorithm.

Basically one needs to compute the derivatives ∂〈ψ|ψ〉
∂pi

and ∂〈ψ|h~x~x′ |ψ〉
∂pi

for each variational parameter pi. For

each derivative one needs to compute ∼ Lx × Ly terms.
(This number can be reduced by a factor if one chooses an
open boundary sample respecting the point group sym-
metry.) However, one notes that every derivative term
only involves one modified site tensor. So one could pro-
gram the contraction sequence so that all the other ten-
sors are contracted first, leaving an “environment tensor”
E(~x) for the only remaining site tensor at ~x, which is ex-
actly the modified site tensor. Then, different pi deriva-
tives on the given site ~x can be efficiently computed by
contracting the different Ti(~x) with the same E(~x). We
then end up with a factor of∼ Lx×Ly in the computation
complexity due to the choices of modified sites. However
this factor ∼ Lx × Ly in the computation cost can be
straightforwardly parallelized on ∼ Lx × Ly computer
nodes, simply because no communication is needed be-
tween different contractions. Consequently with a com-
puting cluster, the minimization algorithm proposed here
can be efficiently implemented.

Finally we comment on possible algorithms in spatial
dimensions higher than two. Although our scheme of con-
structing symmetric PEPS classes still works in higher
dimensions, the PEPS algorithm to contract the tensor
no longer applies. However, it is still possible to approx-
imately contract tensor networks in higher dimensions
while giving up certain accuracy, efficiency and larger sys-
tem sizes. For example, the tensor renormalization group
techniques (TRG)83–85 could be used to contract ten-
sors in higher dimensions. It would be interesting to see
whether the TRG algorithms, when combined with the
symmetric PEPS construction studied here, can be used
to efficiently study quantum phase diagrams in higher di-
mensional systems. We leave this as a subject of future
investigations.

IV. PHYSICAL INTERPRETATION OF
CLASSES

We will discuss the physical meanings of different
classes, which are labeled by ΘR, χR as well as ηR. In
this section, we will focus on the non-symmetry-breaking
liquid member phase in each crude class. We will com-
ment on the meaning of these indices in the long-range
ordered member phases in Sec.VI.

A. Interpretation of ΘR and χR

Although it happens to be true that the kagome half-
integer spin example has no tunable ΘR indices, ΘR in-
dices do appear in general quantum systems. In Ap-
pendix F we perform the crude classification for the half-
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integer spin systems on the square lattice with a space
group generated by translation symmetries and the C4

rotation symmetry only. Assuming IGG being the min-
imal required Z2, we find a tunable ΘC4

index.

In fact, the ΘR indices and the χR indices generally
appear even when the IGG is trivial. For instance, we
could consider a system on the kagome lattice with no
on-site symmetry (i.e., remove the spin SU(2) rotation
and the time-reversal symmetry in our main example),
and consequently the minimal required IGG is trivial.
Assuming IGG being trivial in this system, we will not
have the η indices but still have the χ indices. The calcu-
lation procedure of transformation rules almost remains
the same as before if we simply limit all the η’s to be
identity. Eventually we will arrive at Eq.(55) replacing
all the µR by +1. Note that there is no η-ambiguities
to tune away the signs for the square roots as in the
half-integer spin case. In this system, apart from the χ
indices, we do have two tunable Θ indices in the PEPS
classification: ΘC6(u) = ±1 and Θσ(u) = ±1.

Different ΘR indices can be viewed as different sym-
metry quantum numbers (for either on-site symmetries
or space group symmetries) carried by each site tensor.
These quantum numbers of the site tensors, generally
speaking, directly contribute to the quantum numbers
of a finite size sample. The physics of ΘR indices is
similar to the physics of the so-called “fragile Mott in-
sulator” discussed by Yao and Kivelson25. And similar
indices in one-dimensional matrix product states have
been investigated recently87. For instance, in the fragile
Mott insulator example25, a Mott insulator wavefunction
is constructed on the checkerboard lattice which carries
nontrivial point group quantum numbers on the odd-
by-odd unit cell lattices. This distinguishes the fragile
Mott insulator from trivial insulators which carries triv-
ial quantum numbers on the same lattices. And such
nontrivial quantum numbers can be traced back to the
quantum numbers carried by the wavefunction on every
square cluster on the checkerboard lattice. If one tries to
use a site tensor in PEPS to represent the square clus-
ter wavefunction, it is clear that this site tensor forms a
nontrivial representation of the point group symmetry.

The physical meaning of χR may be more well-known.
These are generalizations of the symmetry fractionaliza-
tions in the 2d AKLT model88. Let’s firstly briefly de-
scribe the PEPS construction of the SO(3) symmetric
spin-2 AKLT state on the square lattice. In this con-
struction, each virtual leg forms a spin-1/2 projective
representation of the SO(3) symmetry group of the spin-
2 system. Each site tensor is given by the only singlet
state formed by the physical spin-2 and the four vir-
tual spin-1/2’s, and each bond tensor is formed by the
only spin singlet formed by the two spin-1/2’s on the
two ends of the bond. Such an AKLT wavefunction can
be shown to be the unique gapped ground state of the
AKLT Hamiltonian on the square lattice with periodic
boundary conditions89.

However, when the system has an open boundary, one

needs to specify a symmetric boundary condition. But
one encounters the following problem: each site tensor on
the boundary has only three virtual spin-1/2’s and it is
impossible for form a spin-singlet with the physical spin-
2. Basically each site on the boundary can be viewed as a
half-integer spin — which is a projective representation
of the original SO(3) group. One sometimes calls this
phenomena as the symmetry fractionalization in 2d in
the absence of topological orders. When coupled together
along a translational symmetric edge, the low energy dy-
namics of the edge states can be effectively described by
a translational symmetric half-integer spin chain, which
would give a gapless excitation spectrum assuming no
spontaneous translational symmetry breaking. Clearly,
in the PEPS construction, the origin of such symmetry
fractionalization behavior is due to the fact that projec-
tive representations appear in the virtual legs.

For an on-site symmetry R, this is exactly the physics
that χR captures. For instance, the χT index appear-
ing in the kagome example is really about the projective
representations of the symmetry group SU(2) × T on
the virtual legs. As mentioned before, when χT = 1,
the half-integer (integer) spins on the virtual legs form
Kramer doublet (singlet) under the time-reversal trans-
formation. This is the usual representation of SU(2)×T .
However when χT = −1, the half-integer (integer) spins
on the virtual legs form Kramer singlet (doublet) un-
der the time-reversal transformation. This is a nontriv-
ial projective representation of SU(2) × T . We expect
that χT = −1 would give rise to nontrivial signatures in
entanglement spectra and physical edge states.

For a spatial symmetry R, the physical meaning of χR
is less obvious. But it’s one-dimensional analog has been
investigated in the context of matrix product states90–93.
In our example, the χσ is capturing similar physics in 2d
kagome lattice, which basically describes how the tensor
network forms possible projective representations of the
spatial reflection. We speculate that nontrivial χσ would
give rise to signatures in entanglement spectra when the
partition of the system respects the σ reflection.

In summary, ΘR is capturing local contributions to
symmetry group quantum numbers, and χR is capturing
the symmetry fractionalizations not due to topological
orders.

B. ηR and symmetry fractionalization

Here, we will show that η’s are directly related to the
symmetry fractionalization of spinon excitations (char-
gons). To see this, let us firstly introduce the concept of
symmetry fractionalization in the presence of topological
orders. We will use the unitary on-site symmetry as an
example. Related discussions can be found in Ref.41 and
Ref.38.

Starting from a topologically ordered ground state
with a global symmetry group SG, consider an ex-
cited state, having n−quasiparticles (which do not have
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to be of the same type) spatially located at position
r1, r2, . . . , rn, far apart from one another. Let’s denote
this state by |ψ(r1, r2, . . . , rn)〉. For any symmetry trans-
formation U(g) by a group element g ∈ SG, U(g) will
generally transform this state to another state:

U(g) ◦ |ψ(r1, r2, . . . , rn)〉 → |ψ̃(r1, r2, . . . , rn)〉 (68)

One way to describe the symmetry fractionalization on
quasiparticles is the following condition: there exist lo-
cal operators U1(g), U2(g), . . . , Un(g), such that Ui(g) is
a local operator acting only in a finite region around the
spatial position ri, and does not touch the other quasi-
particles; in addition, U1(g), U2(g), . . . , Un(g) satisfy:

U1(g) · U2(g) · · ·Un(g)|ψ(r1, r2, . . . , rn)〉

=U(g)|ψ(r1, r2, . . . , rn)〉 = |ψ̃(r1, r2, . . . , rn)〉 (69)

Pictorially, this condition is shown in Fig.(9).
Note that technically Eq.(69) is not a general condi-

tion for symmetry fractionalization phenomena. For ex-
ample, let us consider SG to be an on-site U(1) symme-
try, and assume that Eq.(69) holds for a wavefunction
|ψ(r1, r2, . . . , rn)〉. We can then just add one extra U(1)
charge outside the regions that Ui(g) (i = 1, .., n) act
and obtains a new wavefunction |ψ(r1, r2, . . . , rn)〉. It is
perfectly fine to imagine the extra charge as if it already
exists in the ground state. Physically the local operators
that transform quasiparticles: Ui(g) for |ψ〉 should be
exactly the same as before, since |ψ〉 and |ψ〉 are locally
identical around r1, r2, . . . , rn. However, clearly Eq.(69)
is no longer true for |ψ〉, because the global symmetry
U(g) picks up an extra U(1) phase from the added U(1)
charge.

In fact, Eq.(69) implicitly assumes that, under a global
symmetry transformation, there is no phase “locally ac-
cumulated” in the ground state wavefunction. But,
as demonstrated above, generally there could be such
“locally accumulated” phases in the ground state, and
Eq.(69) should be modified up to the “locally accumu-
lated” phases outside the blue regions in Fig.9.

How to sharply define such “locally accumulated”
phases in general? The answer to this question is impor-
tant to provide a general sharp definition of Ui(g). But
to answer this question, one needs a tool capable to di-
agnose wavefunctions locally, which is exactly the power
of PEPS. For the moment, let us postpone answering
this question in the framework of PEPS, and have some
further discussion on symmetry fractionalizations.

First, fractionalized symmetry transformations are
local operators and cannot change the quasiparticle’s
species (or more precisely, the superselection sector of
a quasiparticle). Thus, we can investigate the transfor-
mation rules of each anyon species individually. However,
anyons do not need to form a representation of SG due
to the nontrivial fusion rule. For example, in a Z2 topo-
logical ordered phase, two chargons fuse to one trivial
particle. We can multiply each chargon in the system by
a fixed element in an IGG′ = Z2 = {1,−1}. Clearly, the

FIG. 9. Illustration of symmetry fractionalization phenom-
ena: Under a symmetry transformation U(g) with ∀g ∈ SG,
an excited state is transformed by the product of local trans-
formation operators Ui(g), with each operator only acting on
one quasiparticle locally.

total phase becomes unity, and physical wavefunction is
invariant. Here IGG′ is the subgroup of U(1) describ-
ing the fusion rule of chargons. Quite generally for a Zn
topological order, IGG′ = Zn.

A PEPS with IGG = Zn can describe a deconfined
phase with a Zn topological order. We will only con-
sider this case and we do have IGG′ = IGG. So IGG
tells us that when we implement the global symmetry
transformation on chargons, it is perfect fine to have a
phase ambiguity, if this phase ambiguity is an element in
IGG. Consequently, a single quasiparticle could form a
projective representation of SG with coefficient in IGG,
which is classified by second cohomology H2(SG, IGG)
(see Appendix C for details).

Now, let us translate the above discussion into the
PEPS language. The main task is to construct the lo-
cal symmetry transformation operators for a small patch
of PEPS with a nontrivial IGG. Here we focus on
IGG = Z2 case. Without loss of generality, we assume
that tensors of the PEPS are all Z2 even. Then we cut
a small patch A from the PEPS. We can view the tensor
associated with patch A as a linear map from boundary
virtual legs to physical legs living in the bulk of the patch,
which is labeled as T̂ 0

A. Here 0 denotes that there is no
quasiparticles inside A. Namely,

T̂ 0
A =

∑
I,V

(T 0
A)IV |I〉〈V | (70)

where |I〉 labels ket states of all physical legs inside A,
while 〈V | labels bra states of all boundary virtual legs.

Before studying excitations inside A, we firstly discuss
properties of T̂ 0

A. As a tensor, T̂ 0
A is Z2 even. Namely,

action of the nontrivial Z2 element g on the boundary legs
of T̂ 0

A leaves the tensor invariant. This property implies

that T̂ 0
A, as a linear map, can never be injective. To see

this, consider an arbitrary boundary state |V 〉, we have

T̂ 0
A|V 〉 = T̂ 0

A|g ◦ V 〉 (71)
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So, the inverse map of T̂ 0
A is not well defined. To have

a reasonable definition of the inverse map, one observes
that an arbitrary boundary state |V 〉 can be rewritten as

|V 〉 =
1

2
(|V 〉+ |g ◦ V 〉) +

1

2
(|V 〉 − |g ◦ V 〉)

= ΠU |V 〉+ (1−ΠU )|V 〉 (72)

where U is the Z2 even sector of boundary legs. Namely,
∀|V 〉 ∈ U , we have |g ◦ V 〉 = |V 〉. ΠU is a projection
operator which projects a boundary state into U . Under
T̂ 0
A, the second term in the above equation is mapped to

zero. For a generic PEPS with IGG = Z2, we can further
assume that T̂ 0

A is injective on the subspace U when the
patchA is not too small. This is because the dimension of
the physical Hilbert space increases parametrically faster
than the dimension of the boundary virtual Hilbert space
as the patch size increases. Such a PEPS is named as a
Z2 injective PEPS in Ref.71. Namely, generically one
can find a linear map (T̂ 0

A)−1 from bulk physical legs to
boundary virtual legs, such that

(T̂ 0
A)−1 · T̂ 0

A = ΠU (73)

Next, let us study the case with topological excitations
inside patchA. One could create odd number of chargons
near the center of the patch A by modifying T̂ 0

A to some

Z2 odd tensor T̂ eA. Opposite to the previous case, we
have

T̂ eA|V 〉 = 0, ∀|V 〉 ∈ U (74)

Generically we can further assume T̂ eA is injective on the
Z2 odd sector of boundary legs. Namely, one can con-
struct (T̂ eA)−1 as linear map from bulk legs to Z2 odd
sector of boundary legs, such that

(T̂ eA)−1 · T̂ eA = ΠU (75)

where ΠU ≡ 1−ΠU .
Similarly, one can construct patch tensors with even

number chargons inside the patch by modifying T̂ 0
A to

any other Z2 even and Z2 injective tensors. For example,
let us assume T̂ 1

A to be such a tensor. Then, one can find

it inverse (T̂ 1
A)−1 on the subspace U , such that (T̂ 1

A)−1 ·
T̂ 1
A = ΠU .
In the following, we will study the local physical oper-

ator acting on small patches for a symmetry R. Starting
with a PEPS wavefunction |Ψ〉 with topological excita-
tions inside small patches A,B, . . . , while the region out-
side these patches share the same tensors as the ground
state wavefunction |Ψ0〉. The action of the symmetry R
on |Ψ〉 is obtained by acting R on all tensors, which is de-
fined in Eq.(6,10,12). Since we try to construct local sym-
metry operators only on patches A,B, . . . , we can apply
gauge transformations WR on all virtual legs in the re-
gion outside all small patches as well as on the boundaries
of all small patches, but leave virtual legs inside small
patches untouched. Note that this gauge transformation

does not modify the R-transformed physical wavefunc-
tion at all. Because tensors outside small patches are the
same as tensors of ground state, the following relations
still hold for them:

T s = ΘRWRR ◦ T s

Bb = WRR ◦Bb (76)

Thus, under the symmetry R together with the gauge
transformation WR defined above, tensors outside
patches will be invariant up to an “locally accumulated”
phase

∏
s∈outside ΘR(s). We emphasize that this actu-

ally provides the sharp definition of the “locally accumu-
lated” phases mentioned earlier in this section. As dis-
cussed in the previous subsection, ΘR(s)’s exactly cap-
ture the local phases picked up after applying a global
symmetry transformation. Without the tool of PEPS, it
is actually difficult to sharply define this object.

For tensors inside patches, we have

T̂RA = WRR ◦ T̂A (77)

Here, T̂A is the linear map associated with patch A,
which is obtained by contraction of all tensors inside A
patch. And WR in Eq.77 is defined to only act on bound-
ary virtual legs of T̂A. Note that T̂A is either Z2 even
or Z2 odd, which corresponds to even number chargons
or odd number chargons inside A. Note that we should
always choose the patch that is large enough so that all
quasiparticles exist in the patch before the transforma-
tion keep staying in the patch after the transformation.
The above equation can be viewed as the definition of
T̂RA .

In fact, Eq.(77) is a very general result which is ap-
plicable even when the condition of symmetry fraction-
alizations breaks down. For example, it is possible that
certain symmetry transformation interchanges quasipar-
ticle superselection sectors. In the PEPS formulation this
happens when T̂RA and T̂A describes distinct quasiparti-
cle species, and consequently there is no way to use a
local physical operator in A to send T̂A to T̂RA . For the
kagome example this would never happen. For example,
we showed that WR matrices all commute with the non-
trivial IGG element g = J, and therefore the parity of
the number of chargons would be the same in T̂RA and

T̂A. But in a symmetric PEPS with a larger IGG (e.g.
IGG = Z2 × Z2), we expect that it is possible that WR

does not commute with a g ∈ IGG. In this case the R
may interchange quasiparticle species.

Below we only consider the situation that T̂RA and T̂A
support the same superselection sector and consequently
share the same Z2 parity. This allows us to construct the
fractionalized local physical operator L̂AR for the symme-
try R acting on patch A that realizes Eq.(77); namely:

L̂AR ◦ T̂A = WRR ◦ T̂A, (78)

at least for those T̂A describing the relevant low energy
states. One should keep in mind that LAR only acts on
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physical legs, without touching boundary legs; i.e.,

L̂AR =
∑
I,I′

(LAR)I,I′ |I〉〈I ′|. (79)

To obtain the explicit form of this local operator, let us
consider a particular tensor T̂ eA, which supports an odd
number of chargons in A. We have

T̂ e,RA = [T̂ e,RA · (T̂ eA)−1] · T̂ eA (80)

where T̂ e,RA ≡ WRR ◦ T̂ eA, and (T̂ eA)−1 is defined in
Eq.(75). In the above equation we assume that both

T̂ eA and T̂ e,RA is Z2 odd as well as injective in the Z2 odd
subspace of boundary legs, which is expected to be gener-

ically true. Note that [T̂ e,RA · (T̂ eA)−1] can be viewed as
an operator acting only on physical legs.

To study the transformation rules for a number of char-
gon excitations, let us consider a finite set Λ of tensors:

Λ ≡ {T̂ (i)
A , i = 0, 1, . . . } in the patch A. These ten-

sors may describe states with chargon number equal to
zero, one, two, etc, and are injective in the correspond-
ing boundary Z2 sectors respectively. But tensors in Λ
contain no fluxon excitations in A. (we will study the
symmetry fractionalization of fluxons later in this paper.)
We assume that any symmetry transformation as shown
in Eq.(77) transform within the linear space spanned by
Λ.

In addition, we assume the tensors in Λ to satisfy

(T̂
(j)
A )−1 · T̂ (i)

A = 0, ∀i 6= j. Physically, this can be
achieved by choosing Λ so that all tensor states in it can
be sharply distinguished from each other by a set of mu-
tually commuting local physical measurements. Mathe-
matically these local physical measurements are Hermi-
tian operators acting near the center of the patch where
quasiparticles live. For instance, these measurements
could include a measurement of the locations of chargons

by inserting small fluxon loops. Then {T̂ (i)
A } are chosen

to be the eigenstates of these measurements with dis-
tinct eigenvalues. Since these measurements are locally
near the center of the patch, the boundary condition (i.e.,
the virtual boundary state) will not affect the measure-
ment when the patch is large enough, and the condition

(T̂
(j)
A )−1 · T̂ (i)

A = 0, ∀i 6= j is expected to hold.
We then can construct a local operator to transform

states in Λ under a symmetry R:

L̂AR =
∑
i

[T̂
(i),R
A · (T̂ (i)

A )−1] (81)

as shown in Fig.(10b). One can easily verify, L̂AR de-
fined above indeed satisfies Eq.(78) for all states in Λ.
Moreover, such local operators in patches A,B... satisfy
the symmetry fractionalization condition Eq.(69) up to
the “locally accumulated” phase outside these patches∏

s∈outside ΘR(s).
After the local symmetry operator is defined, we are

able to study the symmetry fractionalization of chargons.

(a) (b)

(c)

FIG. 10. (a): Tensor T̂A and its “generalized inverse” T̂−1
A

associated with patch A. T̂A is obtained by contracting all
bond tensors and site tensors inside patch A. As a linear
map from boundary legs to bulk legs, T̂A is either Z2 even
or Z2 odd. (b): The local R-symmetry operator on patch

A. {T̂ (i)
A } is an orthonormal basis, where every state in the

basis is either Z2 even or Z2 odd. (c): The local symmetry
operator for a series symmetry operations R1 . . . Rn, where
R1 . . . Rn = I. If ηR is nontrivial, action of this operator on
Z2 even or Z2 odd tensor gives different phase factor. This
indicates symmetry fractionalization of chargons.

Consider a relation between symmetry group elements
R1R2 . . . Rn = e, we can construct a local symmetry op-
erators L̂AR1...Rn

as

L̂AR1...Rn ≡ L̂
A
R1
· · · L̂ARn (82)

By inserting Eq.(81) into the above equation, we get

L̂AR1...Rn =
∑
i

[(T̂
(i),R1...Rn
A ) · (T̂ (i)

A )−1] (83)

where

T̂
(i),R1...Rn
A ≡WR1

R1 . . .WRnRn ◦ T̂
(i)
A

= χRηR ◦ T̂ (i)
A (84)

Here, the Z2 element ηR and the phase factor χR act on
boundary virtual legs, as shown in Fig.(10c). The second
line of the above equation is obtained by the following
fact:

ηR(s, i)χR(s, i) = WR1
(s, i) . . .WRn(R−1n−1 . . . R

−1
1 (s, i))

(85)

When ηR = I, the action of L̂AR1...Rn
on an arbitrary

tensor T̂A ∈ Λ gives the same phase. When ηR is the non-
trivial Z2 element, a Z2 odd tensor T̂ eA picks up an extra

−1 comparing to a Z2 even tensor T̂ 1
A under the action

of L̂AR1...Rn
. This is exactly the phenomena for symme-

try fractionalization of chargons: for nontrivial ηR, under
symmetry R1 . . . Rn, a single chargon picks up an extra
−1 comparing to a topologically trivial excitations.

Note that χR only serves as a global phase, thus does
not contribute to the symmetry fractionalization of char-
gons. It appears in Eq.(84) even for the ground state
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tensor patch. In fact, this result is expected and is con-
sistent with the physical interpretation of χ discussed in
the previous subsection. One way to see this is to repeat
the above analysis only for the ground states of the 1d
spin-1 AKLT model on an open chain, with the patch A
covering one end of the chain. Here one should instead
consider an injective matrix project state since the IGG
here is trivial. The appearance of χ in this example can
be simply interpreted as the projective representation of
the edge states in the AKLT model.

V. FLUXONS AND THE DECORATED PEPS

In this section, we will construct the decorated PEPS
from the original symmetric PEPS with IGG = Z2. The
decorated PEPS explicitly captures all Z2 gauge fluctu-
ations, and is a good tool to study properties of fluxons.
In particular, we can extract fractional lattice quantum
numbers of fluxons by constructing local symmetry op-
erators on a small patch of the decorated PEPS. The
result shows that lattice quantum numbers of fluxons is
completely determined by the chargon distribution.

A. The decorated PEPS

Given a symmetric PEPS with IGG = Z2, we can cre-
ate topological excitations such as chargons and fluxons.
As shown in Sec.II D, creation of chargons is by locally
changing site tensors from Z2 even(odd) to Z2 odd(even)
and the wavefunction would vanishes if we modify odd
number of tensors on a closed manifold. Fluxons are al-
ways created in pairs as ends of strings of the nontrivial
Z2 action on virtual legs.

Note that there is a major difference between chargons
and fluxons in this symmetric PEPS language: chargon
strings are always “hidden” while fluxon strings are ex-
plicitly present. Fluxon strings, which are extended ob-
jects, will cause inconvenience as one tries to define local
lattice symmetry operations on small patches with flux-
ons.

To overcome this inconvenience, we define a decorated
PEPS, on which we can create fluxons by changing ten-
sors “locally” without creating strings. The decorated
PEPS can be viewed as a dual description of the original
symmetric PEPS, and they represent the same physical
state if one does not consider the boundary effects. In
particular, we will show that fluxon strings are always
“hidden” while the chargon strings are explicitly present
in the decorated PEPS. For simplicity, we consider the
decorated PEPS on the square lattice first, and develop
the decoration method. Then we apply the method to
the kagome PEPS with Z2 odd site tensors.

Now, let us discuss the method to obtain the decorated
PEPS defined on the square lattice, as shown in Fig.(11).
We will first discuss the case where all tensors are Z2

(a)

(b)

(c)

(- )

FIG. 11. (a): We decorate the PEPS by changing bond ten-
sors, adding plaquette tensors, while leaving site tensors in-
variant. New legs connecting plaquette tensors and bond ten-
sors are depicted by green dashed dotted line. These tensors
is invariant under action of g on old virtual legs and g̃ on new
legs. (b): Any patch of PEPS are invariant under action of g
and g̃ on boundary of this patch. The whole PEPS is invariant

under IGG× ĨGG. (c): By changing a plaquette tensor from

Z̃2 even to Z̃2 odd (blue tensor), one creates a fluxon at the
plaquette center. Odd number of fluxons inside a patch can
be detected by acting g̃ loop around the boundary new legs,
where one gets an extra minus sign. The physical meaning of
g̃ loop is the Wilson loop of chargons, and the extra minus
sign encodes the braiding statistics of chargons and fluxons.

even. The procedure to construct the decorated PEPS is
as follows:

1. One adds two new virtual legs pointing to plaque-
tte centers for every bond tensor. A new leg has

dimension D̃ = 2. And we change the bond tensor

Bb to B̃b as

B̃b = Bb ⊗ |1̃, 1̃〉+ g ·Bb ⊗ | − 1̃,−1̃〉,
(86)

where | ± 1̃〉 labels the basis for the new virtual
leg, and g is the nontrivial Z2 element. Here in
Eq.(86), g is defined to act only on one end of the
bond tensor Bb. This is shown in the second figure
of Fig.11(a).

2. All site tensors T s are the same as those in the
undecorated PEPS, as shown in the first figure of
Fig.11(a).

3. One adds plaquette tensors at all plaquette cen-
ters as shown in the third figure of Fig.11(a). Pla-
quette tensors connect the modified bond tensors
nearby with four new virtual legs. Plaquette ten-
sors are simply superpositions of all (new) virtual

states with even numbers of −1̃’s:

Pc = |1̃, 1̃, 1̃, 1̃〉+ |1̃, 1̃,−1̃,−1̃〉+ . . . (87)

where Pc labels the tensor at a plaquette center c.
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Let us visualize the decorated PEPS. Since only configu-
rations with even number of |−1̃〉 contribute to plaquette

tensors and bond tensors, we conclude that | − 1̃〉 always
form loops. Further, every loop configuration contributes
equally to the wavefunction. To see this, consider an ar-
bitrary loop configuration L. Then, we can transform
the configuration to a PEPS wavefunction defined on the
undecorated lattice. The PEPS wavefunction |ΨL〉 asso-
ciated with this loop configuration is obtained by mod-
ifying the undecorated PEPS |Ψ〉. For bond tensors in-
tersecting with loops, according to Eq.(86), we have

Bb → g ·Bb (88)

While all other tensors are unchanged. Namely, the ac-
tion of g forms the same loop configuration L. In fact, L
can be viewed as a fluxon loop in the original PEPS be-
fore decoration. Since the tensor obtained by contracting
site tensors and bond tensors inside any region is also Z2

even, the action of g on any loops gives the same quan-
tum state. We then conclude that every loop configura-
tion |ΨL〉 contributes the same wavefunction as |Ψ〉. The
decorated PEPS, which is the linear superposition of all
|ΨL〉, describes the same quantum state as the undeco-
rated one up to normalization (for the moment, let us
postpone the discussion on boundary conditions).

The decorated PEPS still has a Z2 = {I, g} invariance
with g acting on the old virtual legs only. In addition,
the single-sided g-action along a loop of old virtual legs is
equivalent to flipping all the new Ising variables |± 1̃〉 →
∓1̃〉 along the corresponding loop L of the new virtual
legs.

In the following, we will study fluxon excitations in
the decorated PEPS. First, let us point out that for the

decorated PEPS, there is an additional Z̃2 gauge trans-

formation ĨGG leaving all tensors invariant. We define
the action g̃ as

g̃ ◦ | ± 1̃〉 = ±| ± 1̃〉, (89)

while g̃ acts trivially on the original virtual legs. The

nontrivial element in ĨGG = Z̃2 is the action of g̃ on all
new virtual legs only. Then, if the action of g̃ on all new
virtual legs of a tensor leaves the tensor invariant, we call

this tensor a Z̃2 even tensor. Similarly, we can define the

Z̃2 odd tensor. To create a fluxon living on plaquette
center c, one can simply change the plaquette tensor Pc
from Z̃2 even to Z̃2 odd. For instance, a plaquette ten-
sor Pmc which supports one fluxon projects out quantum

states with even numbers of | − 1̃〉:

Pmc = | − 1̃, 1̃, 1̃, 1̃〉+ | − 1̃,−1̃,−1̃, 1̃〉+ . . . (90)

In order to see that Pmc indeed supports a fluxon, we
translate back to the undecorated PEPS. Pc only has con-
figurations with odd numbers of | − 1̃〉, Thus, in the un-
decorated lattice, there are always odd numbers of mod-
ified bond tensors g ·Bb around the plaquette c. In other
words, a single fluxon lives at the plaquette c.

Fluxons inside a small patch can be detected by acting
g̃ on boundary of that patch, see Fig.(11c). An odd num-
ber of fluxons contributes an additional (−1) due to the

Z̃2 oddness of the patch tensor. It is natural to interpret
the loop of g̃ (acting only on one end of an involved bond)
as the chargon loop which detects fluxons. One can eas-
ily show that this is exactly true and the end points of
an open g̃-string are chargons. In the decorated PEPS,
the chargon strings are explicit while the fluxon strings
are “hidden”.

Before we discuss the symmetry fractionalization of
fluxons, let us study the case with site tensors being Z2

odd. In this case, if one exactly follows the above decora-
tion procedure, one finds that the similarly constructed
|ΨL〉 wavefunction satisfies:

|ΨL〉 = (−1)ns |Ψ〉 (91)

where ns is the number of sites enclosed by the loop L.
To construct a decorated PEPS with in-phase contribu-
tions from all |ΨL〉, we require an additional −1 for loops
enclosing odd numbers of sites, and need to modify the
decoration procedure. As shown in Fig.(12), we simply
modify some bond tensors by the action of g̃ only on one
of the two new virtual legs. More precisely, we can choose
bond tensors in x direction to be modified for every other
column in the following way:

B̃′b = g̃ · B̃b
= Bb ⊗ |1̃, 1̃〉 − g ·Bb ⊗ | − 1̃,−1̃〉 (92)

Note that the g̃ action here is defined to only act on one
of the two new virtual legs, and picks up the (−1) for
the second term in the second line. One can easily verify
that for the modified decorated PEPS, loop configura-
tions enclosing odd numbers of sites contribute the same
wavefunction as the undecorated PEPS.

As we pointed out before, g̃ strings can be interpreted
as chargon strings. Further, the Z2 oddness of site ten-
sors can be interpreted as one chargon per site. The
action of g̃ on modified bond tensors in fact creates short
“chargon strings” connecting background chargons. A
loop of | − 1̃〉 enclosing an odd number of sites intersects
with chargon strings for an odd number of times, and
contributes an extra −1. Keeping this in mind, one can
easily construct other possible decorated PEPS, once en-
suring that every background chargon (Z2 odd tensor)
is an end of a g̃ string, as shown in Fig.(12). We point
out that all different decorated PEPS obtained for the
same quantum state are gauge equivalent, in the sense
that they can be transformed to each other by acting g̃
on both ends of a collection of virtual legs.

The above point of view is very useful for us to con-
struct the decorated PEPS in more complicated lattices
such as the kagome lattice. In the kagome lattice, pla-
quette centers form a dice lattice, as shown in Fig.(13).
Following the similar procedure as in the square lattice
case, we decorate the PEPS by adding plaquette tensors
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(a) (b)

FIG. 12. (a),(b):The decorated PEPS on square lattice with
every site tensor to be Z2 odd. Bond tensors with blue dot

and blue line should be modified as B̃′b = g̃ · B̃b to ensure
that every site is the end of some chargon string. One can
verify (a) and (b) are gauge equivalent, thus represent the
same state.

FIG. 13. The decorated PEPS for the kagome lattice with
Z2 odd site tensors. Fluxons live on the dual lattice, which
is the dice lattice in this case. There are three plaquette
centers in one unit cell, labeled as p, q and r. Green/blue

legs are two dimensional Hilbert space with basis as | ± 1̃〉.
Plaquette tensors project out configurations with odd number
of | − 1̃〉. Bond tensors need to be modified in two different
ways according to their color.

and changing bond tensors. The new virtual legs are 2-
dimensional Hilbert space, with basis | ± 1̃〉 . Note that
unlike the previous case, there are three kinds of plaque-
tte tensors. Two lie at centers of triangles while one lies
at the honeycomb center. These tensors project out con-
figurations with odd numbers of | − 1̃〉. Further, due to
the Z2 oddness of site tensors, we should ensure that ev-
ery site tensor in the decorated PEPS is connected with
a chargon string. Thus, we can modify bond tensors as

B̃b = Bb ⊗ |1̃, 1̃〉+ g ·Bb ⊗ (| − 1̃,−1̃〉)

B̃′b = Bb ⊗ |1̃, 1̃〉+ g ·Bb ⊗ g̃ · (| − 1̃,−1̃〉)
= Bb ⊗ |1̃, 1̃〉 − g ·Bb ⊗ (| − 1̃,−1̃〉), (93)

where the pattern of bond tensors is shown in Fig.(13).

B. Symmetry fractionalization of fluxons

In this part, we will develop a general method to ex-
tract (fractional) quantum numbers carried by fluxons.

Comparing with the undecorated PEPS, there are
more gauge freedoms associated with new virtual legs for
the decorated PEPS. We call these new gauge freedoms

as Ṽ . For the purpose of the discussion in this section,

we only need to consider Ṽ gauge transformations such
as acting g̃ on both ends of a number of new virtual legs,
which leave the physical wavefunction intact. If the quan-
tum state is invariant under a symmetry R, tensors of the
decorated PEPS should satisfy the following conditions:

T s = ΘRWRR ◦ T s

B̃b = W̃RWRR ◦ B̃b
Pc = W̃RR ◦ Pc (94)

where WR labels the gauge transformation associated

with symmetry R on old virtual legs while W̃R labels
that on new legs. Here WR takes the same value as in

the undecorated PEPS. And we will solve W̃R in the fol-
lowing.

Let us firstly consider a simple example: the transla-
tion symmetry group generated by T1, T2 for the deco-
rated PEPS defined on the square lattice. For the case

where site tensors are Z2 even, we have W̃T1 and W̃T2 to
be identity. While for the case with site tensors being Z2

odd, W̃Ti is nontrivial. If we decorate the PEPS as in
Fig.(12a), we get

W̃T1
(x, y, i) = J̃y, W̃T2

(x, y, i) = I (95)

where i labels the four new virtual legs coming out of

the plaquette tensor at (x, y), and J̃ =
(
1 0
0 −1

)
is the

representation of g̃ on new virtual legs. If the decoration
has the form as in Fig.(12b), we get

W̃T1
(x, y, i) = I, W̃T2

(x, y, i) = J̃x (96)

As we can see, values of W̃Ti depend on the way to deco-
rate the PEPS. However, similar to the undecorated case,
we have

W̃−1T2
(T2(x, y, i))W̃−1T1

(T1T2(x, y, i))W̃T2(T1T2(x, y, i))

W̃T1
(T−12 T1T2(x, y, i)) = η̃12 (97)

as a gauge invariant quantity. Inserting W̃Ti into the
above equation, we conclude that η̃12 = I for the case
with site tensors of undecorated PEPS being Z2 even,

while η̃12 = J̃ for the case with site tensors being Z2 odd.
Next, we will show that η̃12 is directly related to the

translation symmetry fractionalization of fluxons. To see
this, let us consider the decorated PEPS with only fluxon
excitations inside some small patches. (Note that the
decorated PEPS is inconvenient to study chargon exci-
tations since chargon-strings are explicit.) Following the
similar procedure in Sec.(IV B), one can construct local

translation operators for a single patch Ã of the deco-

rated PEPS, labeled as L̂ÃTi , i = 1, 2. Labeling the state

associated with Ã as T̂Ã, we get

L̂ÃTi · T̂Ã = W̃TiWTiTi ◦ T̂Ã (98)
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By series connecting local symmetry operators, we can
define

L̂Ã
T−1
2 T−1

1 T2T1
≡ (L̂ÃT2

)−1 · (L̂ÃT1
)−1 · L̂ÃT2

· L̂ÃT1
(99)

as the local operator associated with T−12 T−11 T2T1. Act-

ing this operator on T̂Ã, we have

L̂Ã
T−1
2 T−1

1 T2T1
· T̂Ã = χ12η12η̃12 ◦ T̂Ã (100)

For the case with nontrivial η̃12, if there are odd num-

bers of fluxons inside the patch Ã, L̂Ã
T−1
2 T−1

1 T2T1
will pick

up an extra −1. This indicates the nontrivial transla-
tional symmetry fractionalization of fluxons. Since η̃12
only depends on the Z2 parity of site tensors, we con-
clude that the translation symmetry fractionalization of
fluxons is fully determined by the background chargon
distribution. The above argument can be easily general-
ized to arbitrary lattice symmetry operations.

In the following, we will figure out W̃R of the decorated
PEPS for the kagome lattice example. As we discussed
above, this directly implies the symmetry fractionaliza-
tion pattern for fluxons. One can easily work out sym-
metry transformation rules directly from the decorated
PEPS shown in Fig13. The result is listed as follows.

W̃T1
(x, y, s̃, i) = J̃y,

W̃T2(x, y, s̃, i) = I,

W̃C6(x, y, p/q, i) = J̃xy+
1
2x(x+1)+1,

W̃C6(x, y, r, i) = J̃xy+
1
2x(x+1)+x+y,

W̃σ(x, y, p, i) = J̃xy+1,

W̃σ(x, y, q/r, i) = J̃xy, (101)

where s̃ can be any one of the plaquette sublattices la-
beled by p/q/r as shown in Fig.13, and i labels the new
virtual legs coming out of the plaquette tensor. These
symmetry transformation rules are not gauge invariant.
The symmetry fractionalization of fluxons is determined
by gauge invariant quantities η̃’s. By replacing WR in

Eq.(B2), (B11), (B17), (B31), (B35) and (B41) with W̃R

obtained above, we find

η̃12 = η̃T1σ = η̃T2σ = J̃,

η̃T1C6
= η̃T2C6

= η̃C6
= η̃σ = η̃σC6

= I. (102)

For on-site symmetries such as the spin rotation and
the time reversal symmetry, symmetry transformation
rules on new virtual legs are trivial. In other words, we
expect fluxons constructed here to be spin 0 as well as
Kramer singlet. Our result for symmetry fractionaliza-
tion of fluxons is consistent with eariler results in Ref.48
and 78.

VI. SYMMETRIC PEPS ON TORUS AND
LONG-RANGE ORDER

In the above discussion, we mainly focus on symmetric
PEPS on infinite lattices. In this section, we will consider
the symmetric PEPS on a finite torus. Namely, site ten-
sors on the left (up) boundary are connected to sites on
the right (down) boundary by bond tensors. Further, we
will provide some of our partial understandings on how
long-range ordered phases fit into the current symmetric
PEPS formulation.

To make the discussion concrete, we will focus on spin-
1
2 systems to demonstrate the principle. We firstly con-
sider the PEPS description of a Z2 spin liquid phase on
finite tori in subsection VI A, and construct the topo-
logical degenerate ground state sector. Then we study
the finite size effects due to the spinon (vison) condensa-
tion in subsection VI B, which gives rise to the MO (VBS
order) in the long range. One result here is that the un-
decorated PEPS provides the natural basis to represent
a MO state, while the decorated PEPS is the natural
language to represent a VBS state.

A. Topological degeneracy in the PEPS
formulation

It is well known that for the toric code topological or-
dered phase, the ground state degeneracy (GSD) equals
four on torus in the thermodynamic limit. As mentioned
in subsection II D 1, in the Z2 invariant PEPS, one can
construct these four states on a finite torus by acting the
nontrivial Z2 element g on the non-contractible loops of
torus, as shown in Fig.(14a).94 We label these four states
as |Ψ0,0〉, |Ψπ,0〉, |Ψ0,π〉 and |Ψπ,π〉. Recall that g strings
can be interpreted as flux loop. So these four ground
state basis can be visualized as different ways of insert-
ing non-contractible flux loops. We call this set of basis
for the ground state manifold as the m-basis. Note that
in general, these four states have different energies on
any finite torus. However, if the system is in the de-
confined phase, the energy difference between these four
states goes to zero in the thermodynamic limit.

Now, let us consider decorated PEPS defined in Sec.V.
The decorated PEPS describes the same wavefunction as
the undecorated one on the infinite plane. However, this
is not true if we consider finite samples on tori. Using the
method developed in the last section, we can easily con-
struct the decorated PEPS on a torus based on an undec-
orated PEPS state |Ψ0,0〉. Similar to the infinite PEPS

case, any configurations with all | − 1̃〉 forming loops will
contribute to the wavefunction of the decorated PEPS.
For a torus sample, we should consider both contractible
loops and non-contractible loops of |− 1̃〉. First, any con-
figurations with only contractible loops contribute |Ψ0,0〉
to the decorated wavefunction. Note that for configura-
tions with an even number of non-contractible loops, one
can always decompose them to only contractible loops.
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(a)

(b)

FIG. 14. Topological degenerate ground states on finite torus.
Site tensors at left(up) boundary are connected with those at
right(down) boundary . (a) labels m-basis while (b) labels
e-basis.

For configurations containing an odd number of non-
contractible loops in the x/y/both direction, one gets
±|Ψπ,0〉/±|Ψ0,π〉/±|Ψπ,π〉. Here, the ± signs depend on
the way of decoration: as pointed out in Sec.(V), to cap-
ture the background chargons of original PEPS, some

bonds are modified to B̃′b = g̃ · B̃b. When loops of | − 1̃〉
intersect with bond B̃′b, we will get an extra −1. Thus,

it is always possible to choose the distribution of B̃′b such
that the ± signs are +1. The obtained decorated wave-

function |Ψ̃0,0〉 is then

|Ψ̃0,0〉 = |Ψ0,0〉+ |Ψπ,0〉+ |Ψ0,π〉+ |Ψπ,π〉 (103)

up to a normalization factor.

Other three states in the decorated language can be

generated from |Ψ̃0,0〉 by threading chargon strings on
non-contractible loops of torus, or in other words, by act-

ing nontrivial Z̃2 element g̃ on new virtual legs along non-

contractible loops. We label them as |Ψ̃π,0〉, |Ψ̃0,π〉 and

|Ψ̃π,π〉 respectively, as shown in Fig.(14b). It is straight-
forward to see that

|Ψ̃π,0〉 = |Ψ0,0〉+ |Ψπ,0〉 − |Ψ0,π〉 − |Ψπ,π〉

|Ψ̃0,π〉 = |Ψ0,0〉 − |Ψπ,0〉+ |Ψ0,π〉 − |Ψπ,π〉

|Ψ̃0,π〉 = |Ψ0,0〉 − |Ψπ,0〉 − |Ψ0,π〉+ |Ψπ,π〉 (104)

Here, the basis formed by four |Ψ̃〉 states is named as the
e-basis.

As concrete examples, in Appendix D we explicitly
constructed the four-fold ground state sectors of the
Q1 = Q2 QSL and Q1 = −Q2 QSL on an even by odd
(4n + 2)-unit-cell torus sample. Interestingly, on such
samples, we find that the ground state sectors of the two
QSL share no identical lattice symmetry irreducible rep-
resentations(irreps); namely, any irrep in the Q1 = Q2

QSL ground state sector is different from any irrep in the
Q1 = −Q2 QSL ground state sector. This result is consis-
tent with a recent study based on parton constructions46.

B. Long-range ordered phases represented by
symmetric PEPS

We claimed that each crude class contains many pos-
sible member phases, and these phases are distinguished
by long-range physics. Here we mention some concrete
examples. In the 32 crude classes on the kagome lattice,
we know that each crude class contains one Z2 QSL mem-
ber phase which has no spontaneous symmetry breaking.
Let’s consider the crude class which contains theQ1 = Q2

Z2 QSL, firstly constructed using the Schwinger-boson
approach27. There are a few known neighboring phases
of this QSL in which symmetry is spontaneously broken
in different fashions. These symmetry breaking phases
and the Q1 = Q2 Z2 QSL are in the same crude class
proposed in this work.

For example, the 120◦ Q = 0 long-range magnetic or-
dered (MO) state can be obtained if the spinons in the
Q1 = Q2 QSL condense in the long range27,28. And
a valence bond solid(VBS) state with 12-site per unit
cell, which breaks the translational symmetry, can be
obtained if the visons in the Q1 = Q2 QSL condense in
the long range48. To capture the long-range physics of
these symmetry breaking phases, we expect that scaling
of bond dimension D and scaling with system sizes need
to be performed in our symmetric PEPS methods. For
instance, it was shown that generically the entanglement
entropy in symmetric states which breaks a continuous
symmetry in the long-range contains additive logarith-
mic corrections95. To our knowledge, there is no known
PEPS construction with a finite D that can be proven to
host this behavior.

Next, let us try to understand the effects of the
spinon/boson condensations in the PEPS formulation on
finite tori. Note that practical PEPS simulations on a
torus sample can be computationally very expensive, so
the discussion here is mainly for conceptual purposes.
Before the condensation, the system is in a Z2 spin liq-
uid phase with a four-fold ground state sector HGS . Af-
ter the vison-m condensation, the system is expected to
have a multi-fold ground state sector due to the lattice
symmetry breaking, and the number of ground states de-
pend on the geometry of the sample and the VBS order
pattern. On the other hand, after the spinon-e condensa-
tion, there will be gapless Goldstone excitations assuming
spin-rotational symmetry. Exactly how the ground state
sector on a torus evolves as the spinon/vison condenses?

Below we provide our partial answer to this interest-
ing question. Note that, in the ordered phases, for the
system to “know” the spinon/vison condensation, we al-
ways consider torus samples whose sizes are larger than
the vison/spinon confinement length scale. For simplic-
ity, we will focus on samples whose geometries are com-
mensurate with the spatial patterns of the long-range
orders. We can consider a Ginzburg-Landau theory de-
scribing the boson condensation phase transition. In
the Ginzburg-Landau language, this commensuration is
achieved by choosing the finite lattices together with
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a proper boundary condition such that the momentum
space minima of the condensed bosons are available.

Here one immediately sees that the undeco-
rated(decorated) m-basis (e-basis) is exactly suitable
to describe the spinon(vison) condensation. For in-
stance, the existence of m-loops trapped in the torus
holes is explicit in the undecorated m-basis. Con-
sequently the boundary conditions for the spinon
condensation Ginzburg-Landau theory are sharply
defined. We conclude that only one of the four states
in the m-basis is representing the true ground state in
the MO phase. The spinon condensation minima in the
momentum space are clearly not available for the other
three states due to the π

L momentum shift. Physically,
we know that the other three states trap MO vortices
in the torus holes. Therefore they have finite excitation
energies (but zero excitation energy density) in the MO
phase based on simple nonlinear sigma model analysis.

Similarly, the decorated e-basis is suitable to describe
the VBS order, since the boundary condition for the con-
densed visons is explicit. Only one of the four states
in the e-basis corresponds to a true ground state in the
VBS phase, while the other three states host VBS do-
main walls wrapping around the torus holes. Note that
the confined spinon-e corresponds to a VBS vortex96 and
the e-string corresponds to a VBS domain wall in the
VBS phase. These three states are separated from the
true ground state by excitation energies proportional to
the linear sample size due to the energy cost of the do-
main wall.

Note that the decorated PEPS only captures one state
in the true ground state sector in the VBS phase. The
other “cat states” in this symmetry breaking phase are
still missing in the current construction. In fact on a
torus sample with even by even unit cells, our construc-
tion leads to physical states with the center of mass mo-
mentum at Γ = (0, 0) only. We expect that, in order to
capture the other cat states at different center of mass
momentum, one needs to perform the symmetric PEPS
classification on finite tori instead of on the infinite plane.

Next, we discuss some general guiding principles about
these symmetry breaking member phases. It is crucial
to note that these symmetry breaking patterns in the
vicinity of the Q1 = Q2 QSL are not arbitrary. In fact,
the sharp way to understand how the symmetry breaking
patterns arise is exactly to use the Ginzburg-Landau the-
ory — the golden tool to investigate symmetry breaking.
In order to write down a Ginzburg-Landau theory for the
spinon-e (vison-m) condensation, the only information
that we need to know is how these particles transform
under the global symmetry group, which is nothing but
the projective symmetry group transformation rules for
spinons and visons investigated in Sec.IV and Sec.V. In
the past, this is exactly how the 120◦ Q = 0 MO state
and the VBS state with a 12-site unit cell were identified
to be the neighboring phases of the Q1 = Q2 Z2 QSL.

Therefore, even though we emphasize that our algo-
rithm can be used to efficiently determine the crude

class of the quantum ground states based on short range
physics, we still learn sharp constraints on candidate
symmetry breaking patterns in the long range physics:
these orders must be consistent with the Ginzburg-
Landau theory of the given crude class. With a careful
scaling with larger system sizes and bond dimension D,
our algorithm could be practical useful to pin down the
possible long range orders in quantum phase diagrams.

Note that the spinon condensation and vison conden-
sation in the 32 Z2 QSL studied here are quite differ-
ent: The η indices are really the symmetry transforma-
tion rules for spinons, while the symmetry transformation
rules for visons are completely fixed. Consequently, two
QSL with different η indices are expected to connect to
different MO orders after spinon condensations, since the
Ginzburg-Landau theories are different. For instance, the
Q1 = −Q2 Z2 QSL is connected to the

√
3 ×
√

3 MO27,
fundamentally different from the 120◦ Q = 0 order in the
vicinity of the Q1 = Q2 QSL.

However, the same Ginzburg-Landau analysis indi-
cates that all the 32 Z2 QSL could give rise to the same
long-range VBS order pattern after vison condensation.
There are two possible explanations for this phenomenon:
(1) it is possible that the long range VBS orders emerg-
ing from different QSL, although sharing the same real
space pattern, are still in different quantum phases. (2)
it is possible that certain VBS phase could appear in dis-
tinct crude classes.97

We tend to believe that either scenario could be correct
under certain conditions, although we do not have rigor-
ous understandings. It would be very helpful to perform
numerical simulations based on the algorithms proposed
here in models supporting relevant symmetry breaking
phases and see exactly what happens. But we have to
leave this as a subject of future investigations. At this
moment we only can provide some physical speculations.

First, the Ginzburg-Landau theory for vison or spinon
condensations completely misses χ indices in the classifi-
cation, and the long-range real space VBS pattern does
not capture the physics described by these indices. Con-
sequently we expect that scenario-(1) is correct if differ-
ent classes have different χ indices. In fact, we could
compare two classes with χT = +1 and χT = −1 respec-
tively. The Z2 QSL member phase in the second class is
expected to host nontrivial projective representations of
SU(2) × T on the physical boundary. These boundary
degrees of freedom are expected to lead to measurable
effects even if the bulk VBS order is established, which
is absent in the first class.

Second, we speculate that scenario-(2) could be correct
when different classes share the same χ indices but have
different η indices, e.g., the Q1 = Q2 QSL and the Q1 =
−Q2 QSL. Note that this speculation is not as naive as
it appears. In particular, in Appendix D we demonstrate
that the 4-fold ground state sectors of these two QSL have
completely different lattice symmetry irreps on (4n+ 2)-
unit-cell samples. Therefore the symmetric PEPS of the
two classes in the VBS ordered phase must be describing
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distinct ground state wavefunctions on such samples. In
Appendix E we trace the origin of the lattice quantum
number discrepancy of the two PEPS classes in the 12-
site VBS phase, and show that it is related to the phase
factor due to the quantum fluctuation of valence bonds
along a VBS domain wall. However, we expect that this
particular phase factor is not a universal feature, and the
VBS orders in the two classes correspond to the same
quantum phase.

VII. DISCUSSION AND CONCLUSIONS

In this paper we attempt to construct generic sym-
metric ground state wavefunctions for integer or fraction-
ally filled correlated systems using PEPS, under certain
assumptions. Here we review the assumptions that we
made and discuss the limitations and generalizations of
our results.

We firstly highlight an assumption that is, to our
knowledge, due to a more fundamental difficulty. And
we currently do not know how to solve this difficulty gen-
erally. This assumption is that the on-site symmetry is
implemented as the simple tensor product of local rep-
resentations or projective representations on the virtual
legs in PEPS. For instance, this is the origin of the mini-
mal required Z2 IGG in the half-integer spin systems on
the kagome lattice.

This assumption is known to have problems at least
in the long range physics when attempting to describe
SPT phases as well as phases with chiral edge states.
For instance, let’s attempt to construct a U(1) charge-
conserving Chern insulator using the fermionic version
of PEPS (fPEPS)9,98–100. Here the exact constructions
of free fermion states with a nonzero Chern number us-
ing Gaussian fPEPS53,54, in which the virtual legs trans-
form as U(1) representations, are shown to host power
law correlation functions in the real space. It has been
pointed by Hastings55 that for a general U(1) symmet-
ric PEPS with a bounded bond dimension D which is
a fully gapped ground state of a local Hamiltonian, the
assumption that the virtual legs transform as U(1) rep-
resentations and the assumption that the PEPS carries
nonzero Chern number generically lead to contradictions.

Another important piece of information can be ob-
tained by understanding the exact PEPS constructions of
available short-range correlated SPT ground state wave-
functions of exact solvable models67. In particular, for a
finite on-site symmetry group, it is shown that the virtual
legs do not form representation (or projective represen-
tations) of the symmetry. Instead the virtual degrees of
freedom transform in a “non-on-site” fashion, which can
be described by matrix product operators67,101.

We currently do not know how to generically represent
SPT states and chiral states in two and higher dimensions
with correct long-range physics using PEPS. However,
it is possible that our assumption about symmetry rep-
resentations on virtual legs does not cause problems in

capturing the short-range physics of SPT/chiral phases
under certain conditions. For instance, given an finite
size sample, it is possible that the Chern insulator can
be accurately approximated with a PEPS after a scal-
ing with respect to bond dimension D is performed. As
demonstrated in an example using Gaussian fPEPS in
Ref.54, the required bond dimension D in practical sim-
ulations on intermediate sized sample may not be very
large.

Moreover, we speculate that even the short-range
physics of a SPT/chiral phase may not be captured us-
ing the current symmetric PEPS construction. For ex-
ample, it is known that for inversion symmetric system,
the ground state wavefunction of a Chern insulator with
an odd Chern number is inversion odd.102 And the inver-
sion quantum number should be completely short-range
physics.

We made a second assumption: we study only those
symmetric quantum ground states that can be repre-
sented by a single tensor network on the infinite lat-
tice. This assumption is made here mainly for technical
simplicity rather than fundamental difficulty. Note that
this assumption is weaker than the assumption that the
ground state sector is composed of one-dimensional rep-
resentations of the symmetry group on any finite size
samples. For instance consider a Z2 QSL studied in
this paper with a four-fold ground state sector on tori.
When considering a finite size torus, some of them could
form multi-dimensional irreducible representations of the
space group.

This assumption could be violated in general model
simulations. As a trivial example we could consider a
ferromagnetic state in an SU(2) symmetric model. In
this case the number of degenerate ground states scale
linearly as the number of sites, which certainly cannot
be represented by one or few PEPS.

As a slightly nontrivial example, we refer to the chiral-
spin-charge-Chern liquid (SCCL) in Ref.26. The spin
dynamics in SCCL is described by a chiral Z2 QSL,
which is a Z2 QSL breaking the time reversal symme-
try and has nonzero spin-chirality order parameter (e.g.,

< ~Si · ~Sj × ~Sk > 6= 0 for three nearby spins i, j, k.).
This state breaks both time-reversal and mirror reflec-
tion symmetries, but leaves the combination of the two
respected. In this situation, we found 8 = 4 × 2 ground
states on symmetric torus samples (compatible with the
PSG transformations). The factor of 4 is related to the
topological degeneracy of Z2 gauge theory. And the extra
factor of 2 is due to the fact that the time reversal, the
mirror reflection and the lattice rotation form nontrivial
2-dimensional irreducible representations. The latter fact
dictates that it is impossible to represent such chiral liq-
uids by a single symmetric PEPS, in which case the extra
factor of 2 degeneracy cannot be captured. The simple
way to proceed is to instead only consider the combina-
tion of the time reversal and the mirror reflection as a
symmetry, which allows a description of one of the two
time-reversal images using PEPS. The PEPS description
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of the other state can be obtained by the time-reversal
transformation.

We now comment on another fact in our construction.
In the half-integer spin systems on the kagome lattice, we
show that a spin-singlet symmetric PEPS has an IGG
that at least contains a Z2 subgroup. If IGG = Z2 for
a PEPS, and if the PEPS is describing a fully gapped
QSL, we showed that the topological order is toric-code-
like in Sec.II D 1. This remains to be true if we con-
struct some Z2 QSL in the absence of the time-reversal
symmetry, using our formulation. However, there are
known constructions103–105 of gapped Z2 QSL on the
kagome lattice in the absence of the time-reversal sym-
metry whose topological order is the same as the one in
the double-semion model, fundamentally different from
toric-code.

Interestingly, in a PEPS construction of the double
semion QSL105, in which spin rotation is still imple-
mented as representations on the virtual legs, the con-
structed tensors are actually Z4 invariant. Naively, such
a state should have a 16-fold degenerate ground state sec-
tor on torus, but it was shown that only 4 of them are
linearly independent.

Next we comment on the connection between our work
with previous works. For readers that are familiar with
the parton constructions and projective symmetry group
analysis of parton wavefunctions28,29,34, clearly part of
our results can be viewed as generalizations of these
analyses into PEPS wavefunctions. In particular, in the
kagome half-integer spin S example presented here, ev-
ery crude class contains a distinct Z2 QSL as a member
phase. Part of our results can be viewed as a classification
of Z2 QSL on the kagome lattice. Comparing with previ-
ous investigations on this topic specifically for S = 1/2,
based on parton constructions28,29, we find that our re-
sult captures every phase present in the Schwinger-boson
construction28, and finer than that. Basically the previ-
ous PSG analysis of the Schwinger boson construction is
related to the η-indices and Θ-indices in our formulation,
while in this work χ-indices are revealed.

However, comparing with the classification based on
the Abrikosov-fermion construction of Z2 QSL on the
kagome lattice29, we find that some of them cannot be
described in our result. Similar observation was made
by Ref.78 when directly comparing Schwinger-boson and
Abrikosov-fermion constructions. We currently do not
have a full understanding of the physics behind this phe-
nomenon. But it is worth pointing out that the missing
Abrikosov-fermion Z2 QSL are all found to be gapless (at
least perturbatively) on the mean-field level29.

Finally we comment on the hierarchical structure of
the crude classes. Sometimes there are physical reasons
to believe that the IGG needs to be larger than the min-
imal required one in order to correctly capture certain
quantum phases. The double semion PEPS mentioned
above may be viewed as such an example.

A more conventional example in which this is ex-
pected to happen is the collinear Neel ordered phase on

the square lattice, for which we expect IGG = U(1)
in our PEPS construction. In fact, the non-compact
CP1 (NCCP1) description106 for the Neel state signals
that the natural gauge dynamics in this state, although
Higgs’ed out in the long-range, should be U(1).

One can ask the following question: for instance, sup-
pose we have one parent crude class of symmetric PEPS
with a large IGG1, what are the possible descendant
crude classes with a smaller IGG2 ⊂ IGG1? Simi-
lar questions were investigated in the context of par-
ton constructions29,107. Generally one expects that there
could exist multiple descendant crude classes with IGG2,
which eventually gives a hierarchical structure of the
crude classes with different IGG’s. This hierarchical
structure may be useful to understand certain exotic
quantum criticalities. For example, two member phases
belong to distinct crude classes could be smoothly con-
nected via a critical point described by their parent crude
class108.

As one can see from the above discussions, the cur-
rent work, which is based on the point of view of di-
agnosing ground state wavefunctions using symmetric
PEPS, brings up many open questions and needs fu-
ture investigations to clarify. In addition, the algorithms
proposed here for simulating strongly interacting mod-
els need benchmark tests to have a understanding of its
practical performance. Nevertheless we believe that sep-
arating the short-range part of the physics from the long-
range part is a useful idea in investigating quantum phase
diagrams of strongly correlated systems. While generally
the long-range part is still a difficult task, we expect that
the method introduced here can be used to provide sharp
information for the short-range physics efficiently.
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Appendix A: Symmetry group of the kagome lattice

As shown in Fig.(4), we label the three lattice sites in
each unit cell with sublattice index {s = u, v, w}. Fur-
ther, we specify the virtual index {i = a, b, c, d} of a
given site. We choose Bravais unit vector as ~a1 = x̂ and
~a2 = 1

2 (x̂+
√

3ŷ). Thus, we are able to specify the virtual
degrees of freedom of site tensors as (x, y, s, i). The sym-
metry group of such a two-dimensional kagome lattice is
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generated by the following operations

T1 : (x, y, s, i)→ (x+ 1, y, s, i),

T2 : (x, y, s, i)→ (x, y + 1, s, i),

σ : (x, y, u, i)→ (y, x, u, iσ1),

(x, y, v, i)→ (y, x, w, iσ2),

(x, y, w, i)→ (y, x, v, iσ2),

C6 : (x, y, u, i)→ (−y + 1, x+ y − 1, v, i),

(x, y, v, i)→ (−y, x+ y, w, i).

(x, y, w, i)→ (−y + 1, x+ y, u, iC6).

(A1)

together with time reversal T . Here,

{aσ1, bσ1, cσ1, dσ1} = {d, c, b, a}
{aσ2, bσ2, cσ2, dσ2} = {c, d, a, b}
{aC6 , bC6 , cC6 , dC6} = {b, a, d, c}

(A2)

The symmetry group of a kagome lattice is defined by
the following algebraic relations between its generators:

T−12 T−11 T2T1 = e,

σ−1T−11 σT2 = e,

σ−1T−12 σT1 = e,

C−16 T−12 C6T1 = e,

C−16 T−12 T1C6T2 = e,

σ−1C6σC6 = e,

C6
6 = σ2 = T 2 = e,

g−1T −1gT = e, ∀g = T1,2, σ, C6

(A3)

where e stands for the identity element in the symmetry
group.

Further, consider system with spin rotation symmetry
operator Rθ~n, which means spin rotation about axis ~n
through angle θ. We mainly consider half-integer spins
(SU(2) symmetry) in this paper. The spin rotation sym-
metry commutes with all lattice symmetries as well as
time reversal symmetry:

g−1R−1θ~n gRθ~n = e, ∀g = T1,2, σ, C6, T
(A4)

Appendix B: Classification of PEPS wavefunction
with Z2 IGG on kagome lattice

In this Appendix, we will classify symmetric PEPS
wavefunctions defined on kagome lattice with a half-
integer spin per site. We first obtain the symmetry trans-
formation rules for all different classes. Then using the
symmetry transformation rules, we can solve the con-
straint Hilbert space for all classes.

1. Solving symmetry operation on PEPS

In this part, we will work out symmetry transformation
rules for PEPS defined on a infinite kagome lattice with
a half-integer spin per site. We will focus on the case
with minimal required IGG, which equals Z2, as shown
in the main text. Further, every site tensor is a Z2 odd
tensor as we will see later.

As shown in Sec.(III B), the representation of Z2 IGG
on virtual legs can be set as the same form {I, J}, where
J ≡ ID1

⊕ (−ID2
) with a ±1 ambiguity. The remain-

ing V -ambiguity V (x, y, s, i) commute with J. Namely,
V (x, y, s, i) is block diagonal with two blocks with blocks’
size to be D1 and D2 respectively. Further, for any sym-
metry R, we have proved the associated WR transforma-
tion should also commute with J.

a. Implementation of lattice symmetry on PEPS

For completeness, we copy the calculation for transla-
tion symmetry transformation rules done in Sec.(III B).
According to the definition of symmetric PEPS, for Ti
(i = 1, 2) transformation, site tensors and bond tensors
satisfy the following condition:

T (x,y,s) = ΘTiWTiTi ◦ T (x,y,s)

B(xysi|x′y′s′i′) = WTiTi ◦B(xysi|x′y′s′i′)

(B1)

From group relation T−12 T−11 T2T1 = e, we have

W−1T2
(T2(x, y, s, i))W−1T1

(T1T2(x, y, s, i))WT2(T1T2(x, y, s, i))

WT1
(T−12 T1T2(x, y, s, i)) = η12χ12(x, y, s, i)

(B2)

as well as

Θ∗T2
(T2(x, y, s))Θ∗T1

(T1T2(x, y, s))ΘT2
(T1T2(x, y, s))

ΘT1
(T−12 T1T2(x, y, s)) = µ12

∏
i

χ∗12(x, y, s, i) (B3)

where η12 ∈ {I, J}, and χ12(x, y, s, i) is a bond de-
pendent phase. Under εTi ambiguity WTi → εTiWTi ,
ΘTi → εTiΘTi , we get

χ12 → εT2
(x, y + 1, s, i)ε∗T1

(x+ 1, y + 1, s, i)·
εT2

(x+ 1, y + 1, s, i)εT1
(x+ 1, y, s, i)χ12(x, y, s, i) (B4)

Thus, we are able to set χ12(x, y, s, i) = 1, ∀(x, y, s, i).
According to Eq.(32) and Eq.(34), using gauge

transformation V (x, y, s, i) and phase factor ambiguity
Φ(x, y, s), we get

WT2(x, y, s, i)→ V (x, y, s, i)WT2(x, y, s, i)V −1(x, y − 1, s, i)

ΘT2
(x, y, s)→ ΘT2

(x, y, s)Φ(x, y, s)Φ∗(x, y − 1, s)
(B5)
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Then, we are able to set WT2
(x, y, s, i) = I as well as

ΘT2
(x, y, s, i) = 1. And we get T (x,y,s) = T (0,y,s). The

remaining ambiguity which leaves WT2
and ΘT2

invariant
should satisfy the condition: V (x, y, s, i) = V (x, 0, s, i)
and Φ(x, y, s) = Φ(x, 0, s). Any εT2

transformation will
change WT2

, so εT2
is fixed to 1.

Similarly, for T1 transformation, using remaining
gauge transformation, we have

WT1
(x, y, s, i)→ V (x, 0, s, i)WT1

(x, y, s, i)V −1(x− 1, 0, s, i)

ΘT1
(x, y, s)→ ΘT1

(x, y, s)Φ(x, 0, s)Φ∗(x− 1, 0, s)
(B6)

Thus we can set WT1(x, 0, s, i) = I and ΘT1(x, 0, s) = 0.
Then εT1(x, y, s, i) = εT1(x, 0, s, i) = 1. Further, accord-
ing to Eq.(B1), site tensors are translational invariant
under this gauge:

T (x,y,s) = T (x,0,s) = T s
.
= T (0,0,s) (B7)

To keep this property, the allowed transformations are
only sublattice dependent: V (x, y, s, i) = V (s, i) and
Φ(x, y, s) = Φ(s).

In the gauge we choose above, we can solve Eq.(B2) as

WT1(x, y, s, i) = ηy12
WT2(x, y, s, i) = I

ΘT1
(x, y, s) = µy12

ΘT2
(x, y, s) = 1 (B8)

Now, let us add C6 rotation symmetry. Under C6 sym-
metry, tensors will transform as

T (x,y,s) = ΘC6
WC6

C6 ◦ T (x,y,s)

B(xysi|x′y′s′i′) = WC6
C6 ◦B(xysi|x′y′s′i′) (B9)

where

C6 ◦ (T (x,y,u))iαβγδ = (T (x+y−1,−x+1,w))iβαδγ

C6 ◦ (T (x,y,v))iαβγδ = (T (x+y,−x+1,u))iαβγδ

C6 ◦ (T (x,y,w))iαβγδ = (T (x+y,−x,v))iαβγδ

(B10)

From group relation C−16 T−12 C6T1 =
C−16 T−12 T1C6T2 = e, we get

W−1C6
(C6(x, y, s, i))W−1T2

(T2C6(x, y, s, i))WC6
(T2C6(x, y, s, i))

WT1
(C−16 T2C6(x, y, s, i)) = ηT1C6

χT1C6
(x, y, s, i)

W−1C6
(C6(x, y, s, i))W−1T2

(T2C6(x, y, s, i))WT1(T2C6(x, y, s, i))

WC6(C6T2(x, y, s, i))WT2(T2(x, y, s, i)) = ηT2C6χT2C6(x, y, s, i)

(B11)

as well as

Θ∗C6
(C6(x, y, s))Θ∗T2

(T2C6(x, y, s))ΘC6
(T2C6(x, y, s))

ΘT1
(C−16 T2C6(x, y, s)) = µT1C6

∏
i

χ∗T1C6
(x, y, s, i)

Θ∗C6
(C6(x, y, s))Θ∗T2

(T2C6(x, y, s))ΘT1(T2C6(x, y, s))

ΘC6
(C6T2(x, y, s))ΘT2

(T2(x, y, s)) = µT2C6

∏
i

χ∗T2C6
(x, y, s, i)

(B12)

Due to the η-ambiguity, we can always redefine WR →
ηWR and ΘR → µΘR, which has no physics consequence.
Thus, by redefining

WT1
→ ηT2C6

WT1
, WT2

→ ηT1C6
ηT2C6

WT2
,

ΘT1
→ µT2C6

ΘT1
, ΘT2

→ µT1C6
µT2C6

, (B13)

we set the right side of Eq.(B11) and Eq.(B12) to be I
and 1. Then, by performing transformation

V (x, y, s, i) = ηyT1C6
η
(x+y)
T2C6

Φ(x, y, s) = µyT1C6
µ
(x+y)
T2C6

(B14)

WTi and ΘTi are changed back to its original value in
Eq.(B8).

Using εC6 ambiguity, we are able to set
χT1C6(x, y, s, i) = 1 and χT2C6(0, y, s, a/b) = 1. The
remaining εC6 is independent of unit cell coordinate,
namely εC6(x, y, s, i) = εC6(s, i). Then, by solving
Eq.(B11) and Eq.(B12), we get

WC6(x, y, u, i) = [η12(i)]xy+
1
2x(x+1)+x+ywC6

(u, i)

WC6
(x, y, v, i) = [η12(i)]xy+

1
2x(x+1)+x+ywC6

(v, i)

WC6
(x, y, w, i) = [η12(i)]xy+

1
2x(x+1)wC6

(w, i)

(B15)

as well as

ΘC6
(x, y, u) = µ

xy+ 1
2x(x+1)+x+y

12 ΘC6
(u)

ΘC6
(x, y, u) = µ

xy+ 1
2x(x+1)+x+y

12 ΘC6(v)

ΘC6(x, y, u) = µ
xy+ 1

2x(x+1)
12 ΘC6(w)

(B16)

where we define wR(s, i) ≡ WR(0, 0, s, i) and ΘR(s) ≡
ΘR(0, 0, s). Inserting the above result back to Eq.(B11)
and Eq.(B12), we conclude that all χT2C6 = 1.

Further, since C6
6 = e, we get

WC6
(x, y, s, i)WC6

(C−16 (x, y, s, i))WC6
(C−26 (x, y, s, i))

WC6
(C−36 (x, y, s, i))WC6

(C−46 (x, y, s, i))WC6
(C−56 (x, y, s, i))

= ηC6
χC6

(x, y, s, i) (B17)
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Using Eq.(B15) and Eq.(B17), we can simplify the above
equation as

wC6
(w, i)wC6

(v, i)wC6
(u, i)wC6

(w, iC6
)·

wC6
(v, iC6

)wC6
(u, iC6

) = η12ηC6
χC6

(x, y, s, i) (B18)

So, we conclude that χC6
(i) ≡ χC6

(0, 0, u, i) =
χC6

(x, y, s, i) and χC6
(i) = χC6

(iC6
). Under remaining

εC6
(s, i), χC6

(i) changes as

χC6(i)→ χC6(i)
∏
s

εC6
(s, i)εC6

(s, iC6
) (B19)

By choosing proper εC6
, we can set χC6

= 1.
Then, by performing unit cell independent gauge trans-

formation V (s, i), WC6
transforms as

WC6
(x, y, u, i)→ V (u, i)WC6

(x, y, u, i)V −1(w, iC6
)

WC6
(x, y, v, i)→ V (v, i)WC6

(x, y, v, i)V −1(u, i)

WC6
(x, y, w, i)→ V (w, i)WC6

(x, y, w, i)V −1(v, i)

(B20)

Thus, we can set wC6(v, i) = wC6(w, i) = wC6(u, a) =
wC6(u, c) = I by choosing proper gauge. Now, εC6 is fixed
to 1. And the remaining V -ambiguity satisfies V (s, i) =
V (i) = V (iC6). We solve Eq.(B18) under this gauge as

wC6(u, b) = wC6(u, d) = η12ηC6 (B21)

Similarly, for phase factor, the corresponding equation
reads

ΘC6(x, y, s)ΘC6(C−16 (x, y, s))ΘC6(C−26 (x, y, s))

ΘC6(C−36 (x, y, s))ΘC6(C−46 (x, y, s))ΘC6(C−56 (x, y, s))

= µC6 (B22)

From Eq.(B16), we conclude

ΘC6
(u)ΘC6

(v)ΘC6
(w) = ±(µ12µC6

)
1
2 (B23)

Due to η-ambiguity for C6, we can always redefine sym-
metry transformation rules as

WC6
→ J ·WC6

, ΘC6
→ −ΘC6

(B24)

to absorb the minus sign in Eq.(B23). Further, WC6
can

be transformed back to the original form by performing
gauge transformation

V (u/w, a/c) = V (v, b/d) = I,

V (u/w, b/d) = V (v, a/c) = η. (B25)

The remaining V -ambiguity satisfies V (x, y, s, i) =
V (i) = V (iC6

).
Under phase transformation Φ(s), we get

Θ(s)→ Θ(s)Φ(s)Φ(C−16 (s)) (B26)

So, we can set Θ(v) = Θ(w) = 1. Now, Φ-ambiguity is
only left with an overall phase factor. Further, according
to Eq.(B23) (without minus sign), we have

ΘC6
(u) = (µ12µC6

)
1
2 (B27)

Notice that in the above gauge, according to Eq.(B9),
all site tensor are equal, namely,

Tu = T v = Tw (B28)

Now, let us add reflection. For reflection symmetry σ,
we have

T (x,y,s) = ΘσWσσ ◦ T (x,y,s)

B(xysi|x′y′s′i′) = Wσσ ◦B(xysi|x′y′s′i′) (B29)

where

σ ◦ (T (x,y,u))iαβγδ = (T (y,x,u))iδγβα

σ ◦ (T (x,y,v))iαβγδ = (T (y,x,w))iγδαβ

σ ◦ (T (x,y,w))iαβγδ = (T (y,x,v))iγδαβ

(B30)

From group relation σ−1T−11 σT2 = e and
σ−1T−12 σT1 = e, we can list the corresponding equations
as

W−1σ (σ(x, y, s, i))W−1T2
(T2σ(x, y, s, i))Wσ(T2σ(x, y, s, i))

WT1(σ−1T2σ(x, y, s, i)) = ησT1χσT1(x, y, s, i)

W−1σ (σ(x, y, s, i))W−1T1
(T1σ(x, y, s, i))Wσ(T1σ(x, y, s, i))

WT2
(σ−1T1σ(x, y, s, i)) = ησT2

χσT2
(x, y, s, i)

(B31)

Using εσ ambiguity, we are able to set χσT1(x, y, s, i) = 1
and χσT2(0, y, s, c/d) = 1, with remaining εσ(x, y, s, i) =
εσ(s, i).

Then, we can solve the above equation as

Wσ(x, y, s, i) = ηyσT1
ηxσT2

ηxy12wσ(s, i) (B32)

Inserting the solution back to Eq.(B31), we get all
χσT2

(x, y, s, i) = 1.
Similarly, the equations for phase factor reads

Θ∗σ(σ(x, y, s))Θ∗T2
(T2σ(x, y, s))Θσ(T2σ(x, y, s))

ΘT1
(σ−1T2σ(x, y, s)) = µσT1

Θ∗σ(σ(x, y, s))Θ∗T1
(T1σ(x, y, s))Θσ(T1σ(x, y, s))

ΘT2(σ−1T1σ(x, y, s)) = µσT2

(B33)

By solving the above equations, we get

Θσ(x, y, s) = µyσT1
µxσT2

µxy12Θσ(s) (B34)

The equation corresponding to σ2 = e reads

Wσ(x, y, s, i)Wσ(σ(x, y, s, i)) = ησχσ(x, y, s, i) (B35)
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Combine Eq.(B32) and Eq.(B35), we have

(ησT1ησT2)x+ywσ(s, i)wσ(σ(s, i)) = ησχσ(x, y, s, i)
(B36)

So, we conclude that ησT1
= ησT2

, and χσ(x, y, s, i) =
χσ(s, i). By applying σ on both sides of Eq.(B36), we
get

wσ(σ(s, i))wσ(s, i) = ησχσ(σ(s, i)) (B37)

Since the left side of Eq.(B36) and Eq.(B37) are equal,
we have χσ(s, i) = χσ(σ(s, i)). In particular, we have

χσ(w, a/b) = χσ(v, c/d) = χ∗σ(w, a/b)

(B38)

which means

χσ(w, a/b) = ±1 (B39)

Using the remaining εσ(s, i), we can set χσ(u, a/b) =
χσ(v, a/b) = 1. Then, we are left with εσ(s, i) satisfying
the following relations:

εσ(u, a) = εσ(v, b), εσ(u, b) = εσ(v, a) (B40)

For group relation σ−1C6σC6 = e, the corresponding
equation is

W−1σ (σ(x, y, s, i))WC6(σ(x, y, s, i))Wσ(C−16 σ(x, y, s, i))

WC6
(C6(x, y, s, i)) = ησC6

χσC6
(x, y, s, i) (B41)

By simplifying the above equation, we have ησT1 = η12,
and χσC6(x, y, s, i) = χσC6(s, i), with

wσ(v, i)wσ(v, iσ2) = ησησC6
χσ(v, i)χσC6

(v, i)

wσ(u, i)wC6(u, iσ1)wσ(w, iσ2) = ησησC6η12χσC6(u, i)

= ησησC6η12χσ(w, iσ2)χσC6(w, iσ2) (B42)

Using remaining εσ transformation, we are able to set

χσC6
(u/v, a/b) = 1

χσC6
(w, a) = χσ(w, a) = ±1

χσC6(w, b) = χσ(w, b) = ±1 (B43)

Further, by performing the remaining gauge transfor-
mation V (x, y, s, i) = V (i) = V (iC6

), Wσ transforms as

Wσ(x, y, u, i)→ V (i)Wσ(x, y, u, i)V −1(iσ1)

Wσ(x, y, v/w, i)→ V (i)Wσ(x, y, v/w, i)V −1(iσ2)

(B44)

Then, we can set w(u, a) = I. The only V -ambiguity left
is a block diagonal independent of sites and legs matrix
V (x, y, s, i) = V .

According to Eq.(B36) and Eq.(B42), we can solve the
transformation rules for reflection as

wσ(u, a) = I, wσ(u, b) = χσησC6
,

wσ(u, c) = χσησησC6 , wσ(u, d) = ησ;

wσ(v, a) = ηC6ησC6 , wσ(v, b) = χση12,

wσ(v, c) = ησηC6
, wσ(v, d) = χση12ησησC6

;

wσ(w, a) = χσηC6
, wσ(w, b) = η12ησC6

,

wσ(w, c) = ησηC6
ησC6

, wσ(w, d) = χση12ησ; (B45)

where χσ ≡ χσ(w, a) = χσ(w, b).
For the phase factor, the equations read

[Θσ(u)]2 = Θσ(v)Θσ(w) = µσ (B46)

as well as

[Θσ(v)]2 = µσµσC6

Θσ(u)Θσ(w)ΘC6(u) = µ12µσµσC6 (B47)

where we have used the fact
∏
i χσ(s, i) =

∏
i χσC6

= 1.
According to Eq.(B27), Eq.(B46) and Eq.(B47), we

have

[Θσ(u)Θσ(w)ΘC6
(u)]2 = (µ12µσµσC6

)2 = 1

= µσ · µσµσC6
· µ12µC6

= µ12µC6
µσC6

(B48)

So, we get µσC6 = µ12µC6 . In our case, site tensors are Z2

odd, then the relation for µ causes additional constraint
for η:

ησC6
= η12ηC6

(B49)

From Eq.(B46), we get

Θσ(u) = ±(µσ)
1
2 (B50)

However, using the η-ambiguity for σ, we can absorb the
minus sign in above equations by redefining Wσ → ηWσ

and Θσ → µΘσ. Further, by performing gauge transfor-
mation V (a/b) = I, V (c/d) = J, we can transform Wσ to
their original forms.

Then, we get solutions for Θσ(s) as

Θσ(u) = (µσ)
1
2 ;

Θσ(v) = µC6ΘC6(u)Θσ(u);

Θσ(w) = µσµC6(ΘC6(u)Θσ(u))−1. (B51)

Let us summarize the result for lattice symmetry:

WT1
(x, y, s, i) = ηy12,

WT2
(x, y, s, i) = I

WC6
(x, y, u, i) = η

xy+ 1
2x(x+1)+x+y

12 wC6(u, i),

WC6(x, y, v, i) = η
xy+ 1

2x(x+1)+x+y
12

WC6
(x, y, w, i) = η

xy+ 1
2x(x+1)

12

Wσ(x, y, s, i) = ηx+y+xy12 wσ(s, i)

(B52)
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where

wC6
(u, a) = wC6

(u, c) = I,

wC6
(u, b) = wC6

(u, d) = η12ηC6
,

(B53)

and wσ(s, i) are given in Eq.(B45) with additional con-
dition ησC6

= η12ηC6
.

For phase factor ΘR, we get

ΘT1
(x, y, s) = µy12,

ΘT2
(x, y, s) = 1

ΘC6
(x, y, u) = µ

xy+ 1
2x(x+1)+x+y

12 ΘC6
(u),

ΘC6(x, y, v) = µ
xy+ 1

2x(x+1)+x+y
12

ΘC6
(x, y, w) = µ

xy+ 1
2x(x+1)

12

Θσ(x, y, s) = µx+y+xy12 Θσ(s)

(B54)

where ΘC6
(u) and Θσ(s) are given in Eq.(B27) and

Eq.(B51).

b. Adding time reversal symmetry

Now, let us consider time reversal symmetry T . The
transformation rule for time reversal symmetry is defined
on Eq.(10). We should keep in mind that time reversal
is antiunitary, so for symmetry operation WR, we have
TWRT −1 = W ∗R.

From group relation T−11 T −1T1T = T−12 T −1T2T = e,
we get

WT1
(x, y, s, i)[W−1T (x, y, s, i)]∗W ∗T1

(x, y, s, i)

W ∗T (T−11 (x, y, s, i)) = ηT1T χT1T (T−11 (x, y, s, i))

WT2
(x, y, s, i)[W−1T (x, y, s, i)]∗W ∗T2

(x, y, s, i)

W ∗T (T−12 (x, y, s, i)) = ηT2T χT2T (T−12 (x, y, s, i)) (B55)

Similar to previous case, by using εT transformation, we
are able to set χT1T and χT2T to be identity. The solution
for the above equation is

WT (x, y, s, i) = ηxT1T η
y
T2T wT (s, i) (B56)

The remaining εT is independent of unit cell coordinate
(x, y).

For group relation σ−1T −1σT = e, we have

(ηT1T ηT2T )x+yw−1σ (s, i)[w−1T (s, i)]∗

w∗σ(s, i)w∗T (σ(s, i)) = ησT χσT (σ(x, y, s, i)) (B57)

So, we conclude χσT (x, y, s, i) = χσT (s, i) and ηT1T =
ηT2T . Inserting the solution for wσ(s, i) into above equa-
tion, we get

w−1T (s, i)wT (σ(s, i)) = ησT χ
∗
σT (σ(s, i)) (B58)

Acting σ on both side of above equation, we get

w−1T (σ(s, i))wT (s, i) = ησT χ
∗
σT (s, i) (B59)

Since the left side of above two equations are hermitian
conjugate to each other, we conclude that χσT (s, i) =
χ∗σT (σ(s, i)).

Let us consider C−16 T −1C6T = e. The corresponding
equation is

WC6(x, y, s, i)[W−1T (x, y, s, i)]∗W ∗C6
(x, y, s, i)

W ∗T (C−16 (x, y, s, i)) = ηC6T χC6T (C−16 (x, y, s, i)) (B60)

Then, we get ηT1T = ηT2T = I, and χC6T (x, y, s, i) =
χC6T (s, i). Inserting values of WC6

, we have

w−1T (s, i)wT (C−16 (s, i)) = ηC6T χ
∗
C6T (C−16 (s, i)) (B61)

Under transformation WT → εTWT , χC6T changes as

χC6T (s, i)→ χC6T (s, i)εT (C6(s, i))ε∗T (s, i) (B62)

So, we can set all χC6T (s, i) = 1, with remaining εT ≡
εT (s, a/b) = ε∗T (s, c/d). The above equation is simplified
as

w−1T (s, i)wT (C−16 (s, i)) = ηC6T (B63)

Let’s try to fix χσT (s, i) by remaining εT . We observe
that χσT (s, a/b) → χσT (s, a/b)(ε∗T )2. So, we can set
χσT (u, a) = 1. Further, we get

χσT (v, b) = χ∗σT (u, d) = χσT (u, a) (B64)

due to the relation χσT (s, i) = χ∗σT (σ(s, i)). So, we have

w−1T (u, a)wT (u, d) = ησT (B65)

From Eq.(B63) and Eq.(B65), we conclude

w−1T (s, i)wT (σ(s, i)) = ησT (B66)

Namely, we have χσT (s, i) = 1.
So once we can determine the value of wT ≡ wT (u, a),

we get the complete the solution of time reversal symme-
try WT with WT (x, y, s, i) = wT (s, i). And wT (s, i) can
be expressed by wT as follows:

wT (u, a) = wT , wT (u, b) = ηC6T wT ,

wT (u, c) = ησT ηC6T wT , wT (u, d) = ησT wT ;

wT (v, a) = ηC6T wT , wT (v, b) = wT ,

wT (v, c) = ησT wT , wT (v, d) = ησT ηC6T wT ;

wT (w, a) = wT , wT (w, b) = ηC6T wT ,

wT (w, c) = ησT ηC6T wT , wT (w, d) = ησT wT ; (B67)

Now, let us determine ΘT . The equations for ΘT read
as

Θ∗g(x, y, s)ΘT (x, y, s)Θ∗g(x, y, s)Θ
∗
T (g−1(x, y, s)) = µgT

(B68)
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where g labels lattice symmetry generators T1, T2, C6, σ.
Further, under action of global phase factor Φ, ΘT
changes as

ΘT (x, y, s)→ ΘT (x, y, s)Φ2 (B69)

Therefore, by choosing proper phase, we can always set
ΘT (u) = 1. Combine with Eq.(B54), we are able to solve
Eq.(B68). The solution is ΘT (x, y, s) = ΘT (s), where

ΘT (u) = 1,

ΘT (v) = µ12µC6 ,

ΘT (w) = 1.

(B70)

And the constraint on µgT is

µσT = µσ, µC6T = µ12µC6
(B71)

Since site tensors are Z2 odd, we also have constraint on
ηgT as

ησT = ησ, ηC6T = η12ηC6
(B72)

Finally, let us consider group relation T 2 = e. For WT ,
we get

wT (s, i)w∗T (s, i) = ηT χT (x, y, s, i) (B73)

where we use the fact that WT (x, y, s, i) = wT (s, i). In-
serting Eq.(B67) back to the above equation, we conclude
that χT ≡ χT (x, y, s, i) = ±1. So, we have

wT (s, i)w∗T (s, i) = ηT χT (B74)

Similarly, for phase factor ΘT , we have

ΘT (s, i)Θ∗T (s, i) = µT (B75)

We conclude that µT = 1.
In our case, a physical leg lives Kramer doublets.

Namely, we have U2
T = −1, where T = UTK is the

action of time reversal operator on a physical leg, and
K is the complex conjugation. In the following, we will
prove that ηT cannot be trivial, and site tensor must be
Z2 odd tensor.

To see this, we can act time reversal twice on site tensor
T s. Then, we get

T s = ΘTWT TΘTWT T ◦ T s

=
∏
i

χT (s, i)µT ηT T 2 ◦ T

= −ηT ◦ T s (B76)

where we use Eq.(B73) and Eq.(B75) to get the second
line. And in the third line, we use the fact that µT = 1,
χT (s, i) = χT = ±1, while T 2 ◦ T s = −T s. So, we
conclude ηT ◦ T s = −T s, namely, ηT must be nontrivial,
and T s is Z2 odd.

Let us try to understand the physical meaning of
the above statement. We want to construct a PEPS
wavefunction on the kagome lattice with every site as a
Kramer doublet, and preserving all lattice symmetries as
well as time reversal symmetry. However, the above proof
tells us that, we are forced to introduce Z2 gauge struc-
ture due to the nontrivialness of ηT . The Z2 gauge struc-
ture leads to either a spin liquid phase or a symmetry
breaking phase in the long range physics. In other words,
we can never be able to write a trivial symmetric wave-
function with Kramer doublets on physical sites with no
ground state degeneracy in this formulation! The above
argument can be viewed as manifestation of Hastings-
Oshikawa-Lieb-Schultz-Mattis theorem on PEPS.

c. Adding spin rotation symmetry

At last, let us consider the spin rotation symmetry.
The action of a group element of the spin rotation sym-
metry on site tensors is defined as

Uθ~n ◦ T s
.
= (eiθ~n·

~S)ij(T
s)jαβγδ (B77)

where ~S labels physical spins. In our case, the system is
formed by half-integer spins. For PEPS invariant under
spin rotation symmetry, we have

T s = Θθ~nWθ~nUθ~n ◦ T s

Bb = Wθ~n ◦Bb (B78)

Here, Wθ~n and Θθ~n are projective representations of spin
rotation symmetry. To see this, let us consider the group
multiplication relation:

Uθ1~n1
· Uθ2~n2

= Uθ3~n3
(B79)

The corresponding equation on virtual legs reads

Wθ1~n1
(x, y, s, i) ·Wθ2~n2

(x, y, s, i) =

χθ1 ~n1,θ2~n2
ηθ1 ~n1,θ2~n2

·Wθ3~n3
(x, y, s, i) (B80)

The above equation implies Wθ~n(x, y, s, i) form a projec-
tive representation of SU(2) symmetry, with coefficient
U(1) × Z2. However, it is well known that SU(2) group
has no nontrivial projective symmetry. Thus, we can al-
ways set χ’s and η’s to be trivial ones by group extension
ambiguities. Further, we have Θθ~n always equal to 1,
since SU(2) has no nontrivial 1D representation.

The on-site spin rotation symmetry are commute with
all lattice symmetry. Namely, we have g−1U−1θ~n gUθ~n =
e, where g = T1, T2, C6, σ. So, for Wg and Wθ~n. The
corresponding equations for WR are:

W−1g (x, y, s, i)W−1θ~n (x, y, s, i)Wg(x, y, s, i)

Wθ~n(g−1(x, y, s, i)) = ηg,θ~nχg,θ~n(x, y, s, i) (B81)

According to the above solution, we have Wg(x, y, s, i) =
I/J, which always commute with Wθ~n. So, we get

W−1θ~n (x, y, s, i)Wθ~n(g−1(x, y, s, i)) = ηg,θ~nχg,θ~n(x, y, s, i)
(B82)
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One can prove that W−1θ~n (x, y, s, i)Wθ~n(g−1(x, y, s, i))
form a 1D representation of SU(2) symmetry. Thus,
ηg,θ~n and χg,θ~n can be set to trivial. We have

Wθ~n(x, y, s, i) = wθ~n (B83)

Namely, the representation of spin rotation symmetry
shares the same form on virtual legs.

Now, we consider the relation:

Wθ=2π(x, y, s, i) = ηθ=2πχθ=2π(x, y, s, i) (B84)

Using the fact that Wθ=2π(x, y, s, i) = wθ=2π, which is
independent of sites and virtual legs, we conclude that
χθ=2π(x, y, s, i) = χθ=2π = ±1.

At last, we have the relation U−1θ~n T −1Uθ~nT = e, which
is the equivalent way to say that a spin reverses its di-
rection under time reversal symmetry. Then, for trans-
formation rules on virtual legs, we get

W−1θ~n (x, y, s, i)[W−1T (x, y, s, i)]∗W ∗θ~n(x, y, s, i)

W ∗T (x, y, s, i) = ηT ,θ~nχT ,θ~n(x, y, s, i) (B85)

We can easily conclude that ηT ,θ~n = I, and
χT ,θ~n(x, y, s, i) = 1. The result is reasonable, since we
also expect spins living on virtual legs reverses direction
under time reversal action. Then, we have

w−1θ~n [w−1T (s, i)]∗w∗θ~nw
∗
T (s, i) = I (B86)

In our case, physical legs are spin doublets, so Uθ=2π =
−I. Using similar proof as in Kramer doublet case, we are
able to show that ηθ=2π must be nontrivial and site ten-
sors must be Z2 odd. So, we conclude ηθ=2π = ηT = J.
Further, it is straightforward to see that one can always
redefine J such that χθ=2π = 1. WLOG, we assume
J = ID1

⊕ (−ID2
), where D1 +D2 = D is dimension of a

virtual leg.
Now, let us fix the form of wθ~n and wT using the re-

maining V -ambiguity, which is leg-independent block di-
agonal matrix. Under gauge transformation V , we have

wθ~n → V wθ~nV
−1

wT → V wT [V −1]∗ (B87)

So, first, we are able to set the (reducible) representation
of spin rotation symmetry on virtual legs as

wθ~n =

M⊕
i=1

(Ini ⊗ eiθ~n·
~Si) (B88)

where ~Si labels spin quantum number while ni is the

extra degeneracy associated with spin ~Si. In other words,
a virtual leg is formed by ni number of spin Si, where
i = 1, 2, . . . ,M . The dimension for spin Si is ni(2Si +
1), and we get the total dimension of a virtual leg D =∑M
i=1 ni(2Si + 1). Further, we can arrange the order

of Si, such that Si is integer (half-integer) for i <= m1

(i > m1), and we have S1 < · · · < Sm1
as well as Sm1+1 <

· · · < SM . Apparently, D1 =
∑m1

i=1 ni(2Si + 1) and D2 =∑M
i=m1+1 ni(2Si + 1).
After fixing the form of wθ~n, we still left with over-

all gauge transformation V =
⊕

i(ṼSi ⊗ I2Si+1), where

ṼSi is arbitrary ni dimensional invertible matrix. We
will use the remaining gauge degree of freedom to fix the
representation of time reversal symmetry on virtual legs
wT (s, i). Particularly, let us focus on wT ≡ wT (u, a),
since representations on other legs can be generated us-
ing Eq.(B67).

According to Eq.(B86) and Eq.(B88), time reversal re-
verses spin direction. So the most general form of wT
reads:

wT =

M⊕
i=1

(w̃SiT ⊗ eiπS
y
i ) (B89)

Here, w̃SiT is ni-dimensional invertible matrix. Further,
according to Eq.(B74), we have

M⊕
i=1

(
[w̃SiT · (w̃

Si
T )∗]⊗ [eiπS

y
i · e−iπ(S

y
i )
∗
]
)

= ηT χT (B90)

where eiπS
y
i · e−iπ(S

y
i )
∗

= I(−I) for integer (half-integer)
spin. Note that we focus on the case where ηT = J, so
we have

w̃SiT (w̃SiT )∗ = χT (B91)

Then, under gauge transformation V =
⊕

i(ṼSi ⊗
I2Si+1),

w̃SiT → ṼSiw̃
Si
T [Ṽ −1Si

]∗ (B92)

If two matrices are related by above transformation, then
they are consimilar to each other. The canonical form for
matrix under consimilarity has already been studied in
the mathematical literature Ref.109. In the following, we
will give results for the two cases χT = ±1.

First, consider χT = 1. Then the ni dimensional extra
degeneracy space should accommodate representation of
Kramer singlet. By choosing proper basis, we are able to
obtain

w̃SiT = Ini (B93)

Then, the remaining gauge transformation must satisfy

ṼSi = Ṽ ∗Si (B94)

Namely, ṼSi is real matrix.
Then, we consider the case where χT = −1. Then the

ni dimensional space are Kramer doublets, so ni should
be even number in this case. By choosing proper basis,
the canonical form for w̃SiT is

w̃SiT = Ωni (B95)
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where Ωni = iσy ⊗ Ini/2. After choosing the basis for

canonical w̃SiT , we are left with gauge transformation V =⊕
i(ṼSi ⊗ ISi(Si+1)) that satisfies

ṼSi · Ωni = Ωni · Ṽ ∗Si (B96)

Now, let us summarize the result. For a fully symmet-
ric wavefunction on kagome lattice with a half-integer
spin per site, there are at most 23×22 = 32 classes in the
above framework. The different classes are distinguished
by parameter η’s and χ’s. Here, η12, ηC6

, ησ ∈ {I, J},
while other η’s are fixed. And χσ, χT = ±1.

2. Construction of PEPS state for different classes

In this part, we will use the symmetry transforma-
tion rules obtained above as constraint to determine the
Hilbert space for a symmetric PEPS state for all classes.
We will present the general framework first, and then
work out possible forms of bond tensors and site tensors
separately.

a. Genenal framework

In the following, we will set up the framework to get
the constraint Hilbert space for symmetric PEPS.

Let us start by reviewing Hilbert space of PEPS with-
out any symmetry. We require every virtual leg of site
tensors is isomorphism to a D dimensional Hilbert space
V. Virtual legs of bond tensors are all isomorphism to V̄,
which is the dual space of V. Further, every physical leg
is isomorphism a d-dimensional Hilbert space U.

The Hilbert space of a single bond tensor VB and a site
tensor VT have the following tensor product structure:

VB ∼= V̄⊗ V̄
VT ∼= U⊗ V⊗ V⊗ V⊗ V

(B97)

Then, let us add the spin rotation symmetry. For a
physical leg, there lives a half-integer spin S0, so we have

U ∼= VS0 (B98)

where VS0 accommodates a irreducible representation of
SU(2) with dimension 2S0 + 1.

Let us consider virtual legs of site tensors. Notice that
all virtual legs of site tensors are related by lattice group
transformations. So, in the presence of lattice symme-
tries, all virtual legs of site tensors share the same repre-
sentation (can be reducible) for spin rotation up to iso-
morphism. In particular, as we show in the previous sub-
section, we can always choose a proper basis, such that
the spin operators have the same form on all virtual legs
of site tensors, as in Eq.(B83). Further, we can decom-
pose V = V1 ⊕V2, where V1 with dimension D1 denotes

integer spin representations, and V2 (V̄2) with dimension
D2 accommodates half integer spin representations.

We can further decompose V to SU(2) irreducible rep-
resentations as

V ∼=
M⊕
i=1

(DSi ⊗ VSi) (B99)

Here DSi is an ni dimensional space that labels the extra
degeneracy for spin-Si. According to the decomposition,
the orthonormal basis of V can be chosen as

|Si, tα,mβ〉 ≡ |Si, tα〉 ⊗ |Si,mβ〉 (B100)

where |Si,mβ〉 ∈ VSi labels an eigenstate of ~S2 and Sz,
while |Si, tα〉 ∈ Di labels basis in the extra degenerate
space. Under this basis, the spin rotatio operator shares
the form as in Eq.(B88).

Similarly, virtual legs of bond tensors can be decom-
posed as

V̄ ∼=
M⊕
i=1

(D̄Si ⊗ V̄Si) (B101)

with basis as

〈Si, tα,mβ | ≡ 〈Si, tα| ⊗ 〈Si,mβ | (B102)

We point out that the nontrivial Z2 IGG element is in
fact 2π spin rotation on all virtual legs. In other words,
we get Z2 group {I, g} with a trivial representation on
V1 (V̄1) and a nontrivial representation on V2 (V̄2).

After establishing the structure of a single virtual leg
as in Eq.(B99), we are able to get the structure of VB
and VT according to Eq.(B97). VB and VT are formed
by tensor product of SU(2) representation, which can be
decomposed to direct sums of irreps of SU(2) by Clebsch-
Gordan coefficients. Further, we require bond states and
site states to be spin singlets, which gives extra constraint
to the possible Hilbert space.

Now, let us add lattice symmetries. There are two
kinds of constraint caused by lattice symmetries. First,
a lattice symmetry may act as a linear mapping between
the Hilbert space of different bonds and sites. In other
words, if a single bond/site tensor is fixed, one can use
transformation rules of lattice symmetries to generate
other symmetry related tensors. Second, a lattice sym-
metry may also be a self-mapping (automorphism) on
the Hilbert space of a single bond/site. In this case, the
possible Hilbert space of a single bond/site tensor will
be further constraint by lattice symmetry transformation
rules.

At last, due to time reversal symmetry, we require all
tensors to be Kramer singlets.

In the following, we will apply the method developed
above to solve the possible Hilbert space for the symmet-
ric PEPS wavefunction of all classes.
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b. Constraint on bond tensors

Let us consider bond tensors first. A bond tensor can
be viewed as a matrix with dimension D × D. Let us
define Bb = B(xysi|x′y′s′i′) as the bond tensor connecting
two virtual legs (x, y, s, i) and (x′, y′, s′, i′). It is obvious
that B(xysi|x′y′s′i′) = Bt

(x′y′s′i′|xysi).

Under the action of spin rotation symmetry wθ~n =⊕M
i=1(Ini ⊗ eiθ~n·

~Si), the bond tensor is a spin singlet in
the sense

Bb = w∗θ~n ·Bb · w−1θ~n (B103)

Then, we can explicitly write bond tensor Bb as a block
diagonal matrix according to the spin quantum number
of virtual legs as

Bb =

M⊕
i=1

(
B̃Sib ⊗KSi

)
(B104)

where B̃Sib is an ni dimensional matrix, and KSi

is a (2Si + 1) dimensional matrix labeling singlet

state. More precisely, the quantum state K̂Si ≡
〈Si,mα, Si,mβ |(KSi)αβ is a singlet state under Stot =
S⊗ I+I⊗S. Here, mα = −Si+α−1 labels the quantum
number of Szi . Namely, we have

〈S,mα, S,mβ |(KS)αβS
2
tot = 0 (B105)

Using Clebsch-Gordan(CG) coefficients, we get

(KS)αβ = eiφS (−1)S−mαδmα,−mβ (B106)

where φS is an indefinite phase. We can absorb the phase

factor to B̃Sb , thus KS is always real. For example, we
have KS=0 = 1, KS= 1

2
= iσy.

From another point of view, the Hilbert space of a
bond tensor VB is the tensor product of two virtual legs
V̄, where V̄ is decomposed as Eq.(B101). So, we can
decompose VB as

VB ∼=
⊕
i,j

(
(D̄Si ⊗ D̄Sj )⊗ (V̄Si ⊗ V̄Sj )

)
∼=
⊕
i,j,k

(
D̄Si ⊗ D̄Sj ⊗ V̄SkSiSj ⊗ V̄Sk

)
(B107)

where V̄SkSiSj is the “fusion space”, which means different

ways to fuse spin Si and Sj to spin Sk. According to

representation theory of SU(2), V̄SkSiSj is isomorphic to C
if |Si − Sj | ≤ Sk ≤ Si + Sj . Otherwise, V̄SkSiSj vanishes.

Since we only focus on spin singlet bond states Sk = 0, so
we conclude the possible Hilbert space of a bond tensor
should be

V̄S=0
B
∼=
⊕
i

(D̄Si ⊗ D̄Si ⊗ V̄S=0
SiSi ⊗ V̄S=0) (B108)

where we use the fact V̄S=0
SiSj

vanishes if Si 6= Sj . Then

B̂b ∈ V̄S=0
B can be decomposed to

ˆ̃
B
Si

b ∈ D̄Si ⊗ D̄Si and

K̂Si ∈ V̄S=0
SiSi
⊗ V̄S=0. Namely, we have

B̂b =
∑

i;α1,α2;β1,β2

〈Si, tα1 ,mα2 ;Si, tβ1 ,mβ2 |(B̃
Si
b )α1β1(KSi)α2,β2

(B109)

The above equation is just another way to express
Eq.(B104). Notice that we use B̂b to denote the quantum
state associated with matrix (tensor) Bb.

Let us add the lattice symmetry. Given a single bond
tensor Bb0 , we can generate all other bond tensors by
using the relation R−1Bb0 = R−1WRR ◦Bb0 , where R is
some lattice symmetry here. The explicitly expression is

B(R(xysi)|R(x′y′s′i′)) =

W ∗R(R(x, y, s, i)) ·B(xysi|x′y′s′i′) ·W−1R (R(x′, y′, s′, i′))

(B110)

It is obvious that we can generate all bond tensors if we
consider the group generated by T1, T2 and C6.

Further, reflection σ will provide extra constraint on
the Hilbert space of a single bond tensor. Let us consider
B(vd|wb) ≡ B(00vd|00wb). It is straightforward to see that

B(vd|wb) = w∗σ(v, d) ·Bt
(vd|wb) · w

−1
σ (w, b) (B111)

According to Eq.(B45), we have wσ(v, d) = χση12ησησC6

and wσ(w, b) = η12ησC6
. Then, we get

B(vd|wb) = χσησ ·Bt
(vd|wb). (B112)

Namely, for any block of B(vd|wb), it is either symmetric
or antisymmetric, depending on values of χσ and ησ. One
can easily verify that the above result is not limited to
bond B(vd|wb). In fact, it is true for all bond tensors.

Note that for integer (half-integer) spin S, KS is sym-

metric (antisymmetric). So, we conclude matrix B̃Sib
must be either symmetric or antisymmetric depending
on values of χσ and ησ. In particular, we can write

ηR =
⊕
i

(µR)2Si · Ini(2Si+1) (B113)

where µR = 1(−1) for ηR = I(J). Since we also have
Kt
Si

= (−1)2SiKSi , we conclude

B̃Sib = (−µσ)2Siχσ(B̃Sib )t (B114)

Finally, let us consider time reversal symmetry. Bond
tensor should be a Kramer singlet in the sense

B∗(s1i1|s2i2) = WT (s1, i1) ·B(s1i1|s2i2) ·W
t
T (s2, i2)

(B115)

By inserting Eq.(B67), we conclude, for any bond Bb, we
have

B∗b = ησwT ·Bb · wt
T (B116)
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Further, using Eq.(B89) and Eq.(B104), we get

(B̃Sib )∗ = (µσ)2Siw̃SiT · B̃
Si
b · (w̃

Si
T )t (B117)

where we use the fact that KS is invariant under time
reversal symmetry:

eiπS
y

·KS · (eiπS
y

)t = K∗S (B118)

Here we have w̃SiT = Ini for χT = 1 while w̃SiT = Ωni for
χT = −1.

So, to summarize, the constraint on the Hilbert space
of a single bond tensor is determined by parameter χσ,
ησ and χT . We will list the constraint case by case.

1. χT = 1
In this case, time reversal symmetry reads as

wT =

M⊕
i=1

(Ini ⊗ eiπS
y
i ) (B119)

So, according to Eq.(B117),

(B̃Sib )∗ = (µσ)2SiB̃Sib (B120)

Further, we are left with remaining global gauge
transformation

V =
⊕
i

(ṼSi ⊗ I2Si+1) (B121)

where ṼSi is matrix defined on R. Under gauge
transformation V , we get

B̃Sib → Ṽni · B̃
ni
b · Ṽ

t
ni (B122)

(a) ησ = I, χσ = 1

In this case, we get B̃Sib is real symmetric for
integer Si, while real antisymmetric for half-
integer Si.

(b) ησ = I, χσ = −1

In this case, we get B̃Sib is real antisymmetric
for integer Si, while real symmetric for half-
integer Si.

(c) ησ = J, χσ = 1

In this case, we get B̃Sib is real symmetric
for integer Si, while imaginary symmetric for
half-integer Si.

(d) ησ = J, χσ = −1

In this case, we get B̃Sib is real antisymmetric
for integer Si, while imaginary antisymmetric
for half-integer Si.

By using the remaining gauge transformation V ,
we can set the bond tensor to a maximal entan-
gled states. Namely, if B̃Sib is real symmetric, the
canonical form is

B̃Sib = Diag(1, . . . , 1,−1, . . . ,−1) (B123)

where the number of ± sign ni± is not fixed. After
doing this, we still left with gauge transformation

Ṽni ∈ O(ni+) ⊗ O(ni−). Here, we point out that
different ni± does not lead to new classes. If we
do not require bond tensors to be maximal entan-
gled, different ni± can be connected adiabatically
by continuously tuning the entries of bond tensors.

If B̃Sib is real antisymmetric, the canonical form is

B̃Sib = Ωni/2 (B124)

where Ω ≡ iσy⊗ Ini/2. The remaining gauge trans-

formation satisfies Ωni/2 = Ṽni · Ωni/2 · Ṽ t
ni .

If B̃Sib is imaginary, the canonical form is similar
as the real case, except that all entries are replaced
by ±i.

2. χT = −1

In this case, the time reversal symmetry reads as

wT =

M⊕
i=1

(Ωni ⊗ eiπS
y
i ) (B125)

So, we get the constraint on the bond tensor to be

(B̃Sib )∗ = (µσ)2SiΩni · B̃
Si
b · Ω

−1
ni (B126)

Then, depending on values of µσ and Si, either

B̃Sib or iB̃Sib is quaternion matrix. In this case, the
remaining gauge transformation is block diagonal
matrix V , which reads

V =
⊕
i

(ṼSi ⊗ I2Si+1) (B127)

where ṼSi satisfies

ṼSi · Ωni = Ωni · Ṽ ∗Si (B128)

Under the gauge transformation V , we have

B̃Sib → Ṽni · B̃
Si
b · Ṽ

t
ni (B129)

(a) ησ = I, χσ = 1

In this case, we get B̃Sib is quaternion sym-
metric for integer Si, while quaternion anti-
symmetric for half-integer Si.

(b) ησ = I, χσ = −1

In this case, we get B̃Sib is quaternion antisym-
metric for integer Si, while quaternion sym-
metric for half-integer Si.

(c) ησ = J, χσ = 1

In this case, we get B̃Sib is quaternion sym-

metric for integer Si, while iB̃Sib is quaternion
symmetric for half-integer Si.

(d) ησ = J, χσ = −1

In this case, we get B̃Sib is quaternion antisym-

metric for integer Si, while iB̃Sib is quaternion
antisymmetric for half-integer Si.
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c. Constraint on site tensors

The Hilbert space of a site tensor VT is defined in
Eq.(B97). In the presence of SU(2) symmetry, VT can
be decomposed as

VT ∼=U⊗ V⊗ V⊗ V⊗ V
∼=

⊕
ia,ib,ic,id

(DSiaSibSicSid ⊗ VS0
⊗

VSia ⊗ VSib ⊗ VSic ⊗ VSid )

∼=
⊕

ia,ib,ic,id,k

(DSiaSibSicSid ⊗ VSkS0SiaSibSicSid
⊗ VSk)

(B130)

where

DSiaSibSicSid ≡ DSia ⊗ DSib ⊗ DSic ⊗ DSid (B131)

labels the extra degenerate space associated with spins
Sia , Sib , Sic , Sid on four virtual legs. The basis of
DSiaSibSicSid is labeled as

|Sia , tα〉 ⊗ |Sib , tβ〉 ⊗ |Sic , tγ〉 ⊗ |Sid , tδ〉 (B132)

V SkS0SiaSibSicSid
is the fusion space, which denotes differ-

ent ways to fuse spin S0, Sia , Sib , Sic , Sid to spin Sk. The
complicated fusion rules with six spins can be obtained
by the fusion rules with only three spins as

VSkS0SiaSibSicSid
∼=
⊕
α,β,γ

VSαS0Sia
⊗ VSβSαSib ⊗ VSγSβSic ⊗ VSkSγSid

(B133)

Since site tensors are SU(2) singlet, we should focus on
the Hilbert space with S = 0:

VS=0
T
∼=

⊕
ia,ib,ic,id

(DSiaSibSicSid ⊗ VS=0
S0SiaSibSicSid

⊗ VS=0)

(B134)

The basis for space VS=0
S0SiaSibSicSid

⊗ VS=0 can be ex-

pressed as

K̂l
S0SiaSibSicSid

≡ (Kl
S0SiaSibSicSid

)jαβγδ×

|S0,mj〉 ⊗ |Sia ,mα〉 ⊗ |Sib ,mβ〉 ⊗ |Sic ,mγ〉 ⊗ |Sid ,mδ〉
(B135)

where K̂l
S0SiaSibSicSid

labels orthogonal singlet states for

different l.
Then, in terms of the tensor representation, we decom-

pose the site tensor T s as

T s =
⊕

ia,ib,ic,id,l

(T̃ lSiaSibSicSid
⊗Kl

S0SiaSibSicSid
) (B136)

where the state∑
α,β,γ,δ

(T̃ lSiaSibSicSid
)αβγδ|Sia , tα〉 ⊗ |Sib , tβ〉

⊗|Sic , tγ〉 ⊗ |Sid , tδ〉 (B137)

is an arbitrary state lives in the extra degenerate space
DSiaSibSicSid .

Due to the representation theory of SU(2),
KS0SiaSibSicSid

does not vanish only if there are
even number of half integer spins for S0, . . . , Sid . Since
S0 is a half-integer spin, we conclude that there should
always be odd number of half integer spins living on
virtual legs. For a site tensor, there are four virtual legs,
so we get two different cases:

1. Only one virtual leg are a half integer spin, while
other three are integer spins;

2. Three virtual legs are half integer spins, while the
remaining one is an integer spin.

We now consider the constraint from lattice symme-
try. Remember that in the presence of translation and
rotation, we can always choose a gauge such that all site
tensors share the same form, as shown in Eq.(B7) and
Eq.(B28). Then, in the following, we only need to focus
on a single site tensor.

We figure out lattice symmetries that maps site tensor
Tu to itself as follows

σ ◦ (Tu)iαβγδ = (Tu)iδγβα

T1T2C
3
6 ◦ (Tu)iαβγδ = C6 ◦ (Tu)iαβγδ = (Tu)iβαδγ

(B138)

Besides, combining reflection σ and rotation C6, we get

σC6 ◦ (Tu)iαβγδ = (Tu)iγδαβ

(B139)

In the following, we will solve the constraint from above
symmetry operations. Further, we can prove that the
whole site tensor can be generated by lattice symmetries
once we fix quantum states in the Hilbert space satisfying
the two situations below:

1. Sia is a half integer spin, while other three are in-
teger spins;

2. Sia is an integer spin, while other three are half
integer spins.

To see this, let us first consider reflection symmetry σ.
Under the action of σ, for the decomposed parts of the
site tensor, we have

σ ◦ (T̃ lSiaSibSicSid
)αβγδ = (T̃ lSidSicSibSia

)δγβα

σ ◦ (Kl
S0SiaSibSicSid

)jαβγδ = (Kl
S0SidSicSibSia

)jδγβα
(B140)

It is obvious that we can choose KS0SiaSibSicSid
to be ei-

ther symmetric or antisymmetric under the permutation
of {Sia , Sib , Sic , Sid}:

(KS0P(SiaSibSicSid )
)jP(αβγδ) = ±(KS0SiaSibSicSid

)jαβγδ
(B141)
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where P is any permutation. The ± sign depends on the
definition of K. Particularly, we have

σ ◦ (KS0SiaSibSicSid
)jαβγδ = ±(KS0SidSicSibSia

)jδγβα
(B142)

For the two cases we consider here, Sia is always
different from spins of other three virtual legs. So,
KS0SiaSibSicSid

and KS0SidSicSibSia
are always indepen-

dent tensors. Thus, we can absorb minus sign in the
above equation by redefining KS0SidSicSibSia

. Then, we
get

σ ◦ T l =
⊕

ia,ib,ic,id,l

(σ ◦ T̃ lSiaSibSicSid ⊗K
l
S0SiaSibSicSid

)

(B143)

Remember that the site tensor is symmetric under σ, so
we have

Tu = ΘσWσσ ◦ Tu

= ΘσWσ

⊕
ia,ib,ic,id,l

(
σ ◦ T̃ lSiaSibSicSid ⊗K

l
S0SiaSibSicSid

)
(B144)

As shown in the last subsection, we always choose the
basis such that WR(x, y, s) ∈ {I, J} for any lattice sym-
metry R. So, we can always define the action of Wσ

trivially on Kl
S0SiaSibSicSid

. Namely, we can decompose

WR(x, y, s, i) as

WR(x, y, s, i) =
⊕
i

(
W̃Si
R (x, y, s, i)⊗ I2Si+1

)
(B145)

Then, from the above analysis, we conclude

T̃ lSiaSibSicSid
= ΘσW̃σσ ◦ T̃ lSiaSibSicSid (B146)

Writing the above equation explicitly, we get

[T̃ lSiaSibSicSid
]αβγδ =Θσ(u)[w̃

Sia
σ ]αα′ [w̃

Sib
σ ]ββ′ [w̃

Sic
σ ]γγ′

[w̃
Sid
σ ]δδ′ [T̃

l
SidSicSibSia

]δ′γ′β′α′

(B147)

According to Eq.(B45), we have

w̃Sσ (u, a) = I, w̃Sσ (u, b) = χσ(µ12µC6)2S ,

w̃Sσ (u, c) = χσ(µ12µC6
µσ)2S , w̃Sσ (u, d) = (µσ)2S .

(B148)

Then, we can simplify the constraint as

[T̃ lSiaSibSicSid
]αβγδ =Θσ(u) · (µσ)2Sic+2Sid (µ12µC6

)2Sib+2Sid

× [T̃ lSidSicSibSia
]δγβα (B149)

Since Sib , Sic and Sid are all integer spins or all half-
integer spins, the above equation reads

[T̃ lSiaSibSicSid
]αβγδ = Θσ(u)[T̃ lSidSicSibSia

]δγβα (B150)

where Θσ(u) = (µσ)
1
2 .

We consider the constraint by the rotation symmetry

now. Similarly, T̃ lSibSiaSidSic
and T̃ lSicSidSibSia

can be

obtained from T̃ lSiaSibSicSid
and T̃ lSidSicSibSia

by rotaion

symmetry:

T̃ lSiaSibSicSid
= ΘC6

W̃C6
C6 ◦ T̃ lSiaSibSicSid

T̃ lSidSicSibSia
= ΘC6

W̃C6
C6 ◦ T̃ lSidSicSibSia (B151)

By inserting wC6
(u, i) defined in Eq.(B53), we get

[T̃ lSiaSibSicSid
]αβγδ = ΘC6

(u)[T̃ lSibSiaSidSic
]βαδγ

[T̃ lSiaSibSicSid
]αβγδ = µ12µC6ΘC6(u)Θσ(u)[T̃ lSicSidSiaSib

]γδαβ

(B152)

where ΘC6(u) = (µ12µC6)
1
2 .

Thus, once we know tensors T̃ lSiaSibSicSid
with Sia

to be a half-integer/integer spin and Sib , Sic , Sid to be
integer/half-integer spins, by the above lattice symme-

tries, we are able to generate tensors T̃ lSiaSibSicSid
which

satisfy one virtual leg to be a half-integer/integer spin
and other three virtual legs to be integer/half-integer
spins.

At last, we add time reversal symmetry. The con-
straint of time reversal symmetry reads T s = ΘTWT T ◦
T s. Since Kl

S0SiaSibSicSid
is a Kramer singlet state and

real, we have

[Kl
S0SiaSibSicSid

]jαβγδ = [eiπS
y
0 ]jj′ [e

iπSyia ]αα′ [e
iπSyib ]ββ′×

[eiπS
y
ic ]γγ′ [e

iπSyid ]δδ′ [K
l ∗
S0SiaSibSicSid

]j
′

α′β′γ′δ′ ;

(B153)

Then, according to Eq.(B89), the constraint on

T̃ lSiaSibSicSid
reads

[T̃ lSiaSibSicSid
]αβγδ = [w̃

Sia
T (u, a)]αα′ [w̃

Sib
T (u, b)]ββ′×

[w̃
Sic
T (u, c)]γγ′ [w̃

Sid
T (u, d)]δδ′ [T̃

l ∗
SiaSibSicSid

]α′β′γ′δ′

(B154)

where according to Eq.(B67), we obtain w̃ST (u, i) as

w̃ST (u, a) = w̃ST , w̃ST (u, b) = (µ12µC6
)2Sw̃ST ,

w̃ST (u, c) = (µ12µC6
µσ)2Sw̃ST , w̃ST (u, d) = (µσ)2Sw̃ST ;

(B155)

And w̃ST depends on χT . Remember that we will focus
on the case where Sib , Sic and Sid must be all integer or
half integer spins. Then, by inserting Eq.(B155) back to
Eq.(B154), we get

[T̃ lSiaSibSicSid
]αβγδ = [w̃

Sia
T ]αα′ [w̃

Sib
T ]ββ′×

[w̃
Sic
T ]γγ′ [w̃

Sid
T ]δδ′ [T̃

l ∗
SiaSibSicSid

]α′β′γ′δ′

(B156)
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When χT = 1, we have w̃SiT = Ini , then Eq.(B156) is
simplified as

T̃ lSiaSibSicSid
= T̃ l ∗SiaSibSicSid

(B157)

So, T̃ lSiaSibSicSid
is real tensor.

When χT = −1, we have w̃SiT = Ωni , then Eq.(B156)
becomes

[T̃ lSiaSibSicSid
]αβγδ = [Ωnia ]αα′ [Ωnib ]ββ′×

[Ωnic ]γγ′ [Ωnid ]δδ′ [T̃
l ∗
SiaSibSicSid

]α′β′γ′δ′ (B158)

d. Examples

Now, let us focus on a special case where the physical
spin S0 = 1

2 and there are only spin-0 and spin- 12 living
on virtual legs. Then, to obtain site tensors, according
the above analysis, we restrict ourselves to two subspace
of VS=0

T :
1. Sia = 1

2 and Sib = Sic = Sid = 0. Then the
corresponding Hilbert space H0 is

H0 = D 1
2
⊗ (D0)3 ⊗ V0

1
2

1
2 000
⊗ V0 (B159)

where fusion space V0
1
2

1
2 000

∼= V0
1
2

1
2

with dimension one.

The singlet state K0
.
= K 1

2
1
2 000

is

(K0)jαβγδ = (iσy)jα (B160)

since β = γ = δ ≡ 1 in this case. One can easily verify
that K0 is invariant under time reversal operator:

(K∗0 )jαβγδ = (iσy)jj′(iσ
y)αα′ · (K∗0 )j

′

α′βγδ (B161)

Then, quantum state in H0 can be expressed by the
tensor form as

T̃0 ⊗K0 (B162)

where T̃0 denotes an arbitrary quantum state in D 1
2
⊗

(D0)3.
2. Sia = 0 and Sib = Sic = Sid = 1

2 . The the corre-
sponding Hilbert space H1 is

H1 = D0 ⊗ (D 1
2
)3 ⊗ V0

1
2 0

1
2

1
2

1
2
⊗ V0 (B163)

Using representation theory of SU(2), we get

V0
1
2 0

1
2

1
2

1
2

∼=(V0
1
2

1
2
⊗ V

1
2
1
2 0
⊗ V0

1
2

1
2
)⊕

(V0
1
2

1
2
⊗ V

1
2
1
2 1
⊗ V1

1
2

1
2
) (B164)

So, V0
1
2 0

1
2

1
2

1
2

has dimension 2. And we choose the two

basis in V0
1
2 0

1
2

1
2

1
2

⊗ V0 as

(K1)jαβγδ = (iσy)jβ(iσy)γδ

(K2)jαβγδ =
∑
µν

(iσy)jνC
1
2mν
1
2mβ1mµ

C
1mµ
1
2mγ

1
2mδ

(B165)

where α ≡ 1 in this case. Here, CJmJS1m1S2m2

.
=

〈S1m1S2m2|JmJ〉 is the CG coefficient. And mi =
−S − 1 + i is the Sz quantum number. Simialr as the
previous case, K1 and K2 are also chosen to be invariant
under time reversal operator:

(K1(2))
j
αβγδ = (iσy)jj′(iσ

y)ββ′(iσ
y)γγ′(iσ

y)δδ′(K
∗
1(2))

j′

αβ′γ′δ′

(B166)

Then quantum state in H1 can be expressed by the
tensor form as

T̃1 ⊗K1 ⊕ T̃2 ⊗K2 (B167)

where T̃1, T̃2 are tensor representation of arbitrary states
in D0 ⊗ (D 1

2
)3.

We can explicitly write down Ki as a quantum state by
introducing basis |0〉 for spin-0 and | ↑〉, | ↓〉 for spin- 12 :

K̂0 =| ↑〉 ⊗ | ↓ 000〉 − | ↓〉 ⊗ | ↑ 000〉
K̂1 =| ↑〉 ⊗ (|0 ↓↑↓〉 − |0 ↓↓↑〉)−

| ↓〉 ⊗ (|0 ↑↑↓〉 − |0 ↑↓↑〉)
K̂2 =| ↑〉 ⊗ (2|0 ↑↓↓〉 − |0 ↓↑↓〉 − |0 ↓↓↑〉)+

| ↓〉 ⊗ (2|0 ↓↑↑〉 − |0 ↑↑↓〉 − |0 ↑↓↑〉)
(B168)

where we define K̂i = (Ki)
j
αβγδ|mj〉 ⊗ |mαmβmγmδ〉.

Now, let us consider case D = 3 virtual legs V ∼= 0⊕ 1
2 .

Then, There is no extra degeneracy of spins. So, accord-
ing to constraint from bond tensors, only classes with
ησ = J, χσ = 1 and χT = 1 can be realized. Other
classes require even dimensional extra degenerate spaces,
since bond tensors of those classes are either antisymmet-
ric or symplectic in the extra degenerate spaces. Thus,
when D = 3, we only left with η12, ηC6

, and the number
of classes can be realized is 22 = 4.

Given a bond tensor Bb0 , we can fix it as a maximal
entangled state with the following form

Bb0 =

±1 0 0
0 0 −i
0 i 0

 (B169)

Other bonds are all related to Bb0 by translation and
rotation symmetry, and can be generated as

BR(b) = R−1WRR ◦Bb0 (B170)

where R = Tn1
1 Tn2

2 C
nC6
6 with n1, n2, nC6 ∈ Z.

For site tensors, they all share the same form. The
spin singlet state K̂S0SiaSibSicSid

is fixed as Eq.(B168).
So we can express the site tensor using the quantum state
representation as

T̂ s ={K̂0 + K̂12(p1, p2)}+ Θ−1C6
(u){a↔ b, c↔ d}+ Θ−1σ (u)·

{a↔ d, b↔ c}+ µ12µC6(ΘC6(u)Θσ(u))−1{a↔ c, b↔ d}
(B171)
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where we have

K̂12 =a1K̂1 + a2K̂2

=p1 · (| ↑〉 ⊗ |0 ↓↑↓〉+ | ↓〉 ⊗ |0 ↑↓↑〉)+
p2 · (| ↑〉 ⊗ |0 ↓↓↑〉+ | ↓〉 ⊗ |0 ↑↑↓〉)−
(p1 + p2) · (| ↑〉 ⊗ |0 ↑↓↓〉+ | ↓〉 ⊗ |0 ↓↑↑〉 (B172)

where we define p1 ≡ a1 − a2 and p2 ≡ −a1 − a2 as the
two tunable parameters.

Now, let us consider virtual legs V ∼= 0 ⊕ 0 ⊕ 1
2 ⊕

1
2

with D = 6. In this case, there are extra two dimensional
degeneracy spaces for both spin-0 and spin- 12 . We believe
all 32 classes can be realized in this case. However, here
we will focus on the 4 classes realized in D = 3 case.

Fixing ησ = J, χσ = 1 and χT = 1, the bond tensor
Bb0 now reads

Bb0 =

(
±1 0
0 ±1

)
⊕
(
±1 0
0 ±1

)
⊗
(

0 i
−i 0

)
(B173)

Other bonds can be generated by translation and reflec-
tion symmetry as discussed above.

For the site tensor, we have

T̂ s ={ ˆ̃
T 0 ⊗ K̂0 +

ˆ̃
T 1 ⊗ K̂1 +

ˆ̃
T 2 ⊗ K̂2}

+ Θ−1C6
(u){a↔ b, c↔ d}+ Θ−1σ (u){a↔ d, b↔ c}

+ µ12µC6
(ΘC6

(u)Θσ(u))−1{a↔ c, b↔ d}
(B174)

where
ˆ̃
T i labels a quantum state in extra degenerate

space, which has dimension 24 = 16. Further, the

transformation rules of T̃ ’s are given in Eq.(B150) and

Eq.(B152). So, there are three
ˆ̃
T ’s (

ˆ̃
T 0,

ˆ̃
T 1 and

ˆ̃
T 2) serv-

ing as tunable parameters. Then the tunable parameters
in D = 6 case should be 16 × 3 − 1 = 47, where the
additional −1 comes from the fact that the norm of the
wavefunction has no physical consequence.

Appendix C: Projective representation, group
extension and second cohomology

In this appendix, we will introduce mathematical tools
for symmetry fractionalization, including projective rep-
resentation, group extension as well as the second coho-
mology. Readers may refer Ref.38 for more details.

Consider a group G with elements g ∈ G. We call Γ(g)
a projective representation of G with coefficient A, where
A is an Abelian group, if

Γ(g1)Γ(g2) = ω(g1, g2)Γ(g1g2) (C1)

Here ω is a map, which is defined as ω : G × G → A.
According to associativity of matrix product, we get

Γ(g1)Γ(g2)Γ(g3) = ω(g1, g2)ω(g1g2, g3)Γ(g1g2g3)

= ω(g1, g2g3) g1ω(g2, g3)Γ(g1g2g3).
(C2)

where appearance of g1ω(g2, g3) comes from commuta-
tion of g1 and ω(g2, g3), which indicates action of G on
coefficient A may be nontrivial. Further, we require the
action of ∀g ∈ G on Abelian group A should be an auto-
morphism of A. Then the associativity constraint for ω
is

ω(g1, g2)ω(g1g2, g3) = ω(g1, g2g3) g1ω(g2, g3). (C3)

Any function ω satisfy the associativity constraint is
called a factor set.

If ωa and ωb are both factor sets, then ωab =
ωaωb is also a factor set, where (ωaωb)(g1, g2) ≡
ωa(g1, g2)ωb(g1, g2). The product of factor sets is associ-
ated with tensor product of projective representations: if
ωa, ωb are factor sets of Γa,Γb, respectively, then ωab is
factor set of the tensor product representation Γa ⊗ Γb.

Now, let us define the equivalent class for factor sets.
Suppose we allow a redefinition of the Γ’s by

Γ′(g) = λ(g)Γ(g) (C4)

where λ defined as λ : G→ A. This induces transforma-
tion of the factor set:

ω′(g1, g2) = λ(g1) g1λ(g2)λ(g1g2)−1ω(g1, g2) (C5)

where ω′ is also a factor set. Two factor sets ω and ω′

are said to be equivalent if they are related by the above
equation for some λ, and we write as ω ∼ ω′. We group
all equivalent ω as a class, and define equivalence class
by c(ω). Then, one can easily verify that the equivalent
classes form an Abelian group with product defined by

c(ω1)c(ω2) = c(ω1ω2) (C6)

The Abelian group of factor set equivalence classes is
isomorphic to the cohomology group H2(G,A). We can
view it as definition of the second group cohomology.
Any factor set ω is named as cocycle, which is classi-
fied by Z2(G,A), while λ is called coboundary, classified
by B2(G,A). Then, we have

H2(G,A) = Z2(G,A)/B2(G,A) (C7)

We point out here, the definition of H2(G,A) depends
on the action of G on A. In mathematics language, A
is a G-module, which is equivalent to say that ∀g ∈ G
may have nontrivial action on A with the action to be
automorphism of A, rather than just an Abelian group.
For example, a trivial module just means A is invariant
under G:

ga = a, ∀g ∈ G, a ∈ A (C8)

One should always fix a G-module A, and then classify
projective representation with coefficient A. However,
in our case, IGG = Z2, the automorphism of Z2 only
contains trivial one.

We now put projective representation aside and turn
to discussion about group extension. Assume group E
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has a normal subgroup A. Then, we can define G as
quotient group

G = E/A (C9)

with associated homomorphism π : E → G. Then, it is
natural to define G-module A: given g ∈ G, the action
of g on A is characterized by

ga = g̃ag̃−1 (C10)

where we choose g̃ so that π(g̃) = g. E is called an
extension of a group G by G-module A. In particular, A
is central in E if and only if the G-action is trivial. In
this case, the extension is called a central extension.

Now, let us discuss about the relation between group
extension and projective representation. Roughly speak-
ing, the equivalent class of projective representation has
one-to-one correspondance with group extension of G by
G-module A. Namely, group extension E is also classified
by 2-cohomology H2(G,A). Projective representation Γ
can be viewed as a map Γ : G→ E such that π◦Γ = idG.
Then, factor set ω is naturally induced by Γ, and auto-
matically satisfies associativity constraint Eq.(C5). No-
tice that the choice of Γ is far from unique, and we can
always redefine Γ as shown in Eq.(C4).

In the following, we will develop a general method to
solve the inequivalent projective representations for dis-
crete group G with G-module A, and the corresponding
extended group is E. Particularly, we will focus on G
as the symmetry group of kagome PEPS defined in Ap-
pendix A, while A = IGG = Z2 is a trivial G-module.
Spin-rotation symmetry will also be discussed.

Let us first set up the general framework. G is defined
by generators {T1, T2, C6, σ, T } as well as the relation
between these generators, as shown in Eq.(A3). In other
words, ∀g ∈ G, there is one integer set {n1, n2, nC6

, nσ}
such that

g = Tn1
1 Tn2

2 C
nC6
6 σnσ (C11)

As discussed before, projective representation can be
constructed from E by map Γ. Let us first choose the
gauge such that Γ(1) = 1. Then, this implies ω(1, 1) =
ω(g, 1) = ω(1, g) = 1,∀g ∈ G. Let us consider a particu-
lar relation between generators as

T−12 T−11 T2T1 = e (C12)

Lifting this relation to E by Γ, we have

Γ(T2)−1Γ(T1)−1Γ(T2)Γ(T1) = η12 (C13)

where η12 ∈ Z2. Similarly, for all relations, we obtain a
set of η’s.

These η’s are closely related to classification of pro-
jective representation. However, there are some issues
arise. First, the η’s are not, in general, one-to-one corre-
spondance with cohomology classes. There may be some
redundancy in this description. Second, some choices of

η’s may be inconsistent and not give a legitimate factor
set. To see this, let us solve the classification of pro-
jective representations for the kagome lattice symmetry
group completely. Conditions for group relations are as
follows

Γ(T2)−1Γ(T1)−1Γ(T2)Γ(T1) = η12,

Γ(σ)−1Γ(T1)−1Γ(σ)Γ(T2) = ησT2 ,

Γ(σ)−1Γ(T2)−1Γ(σ)Γ(T1) = ησT1 ,

Γ(C6)−1Γ(T2)−1Γ(C6)Γ(T1) = ηC6T1 ,

Γ(C6)−1Γ(T2)−1Γ(T1)Γ(C6)Γ(T2) = ηC6T2 ,

Γ(σ)−1Γ(C6)Γ(σ)Γ(C6) = ησC6 ,

Γ(C6)6 = ηC6 ,

Γ(σ)2 = ησ,

Γ(T )2 = ηT ,

Γ(g)−1Γ(T )−1Γ(g)Γ(T ) = ηgT , ∀g = T1,2, σ, C6 (C14)

where we get 13 η’s. One may expect the number of
cohomology classes should be 213, however, as we will
see later, there is lots redundancy.

Now, let’s try to eliminate those redundant parameters
by choosing gauge of Γ(g). By doing gauge transforma-
tion Γ(T1)→ ηC6T2

Γ(T1) and T2 → ηC6T2
ησT1

T2, we are
able to set ηC6T2

= ησT1
= I. Notice, other η’s may also

change, however, we can always absorb the change by
redefining other η’s.

Then, we have

Γ(T2) = Γ(σ)Γ(T1)Γ(σ)−1 (C15)

By applying the above equation, we get

ησT2
= Γ(σ)−1Γ(T1)−1Γ(σ)Γ(T2)

= Γ(σ)−1Γ(T1)−1Γ(σ)Γ(σ)Γ(T1)Γ(σ)−1 = I.
(C16)

as well as

ηT2T = Γ(T2)−1Γ(T )−1Γ(T2)Γ(T )

= Γ(σ)Γ(T1)−1Γ(σ)−1Γ(T )−1Γ(σ)Γ(T1)Γ(σ)−1Γ(T )

= ησT Γ(σ)Γ(T1)Γ(T )−1Γ(T1)Γ(σ)−1Γ(T )

= (ησT )2Γ(T )Γ(T1)−1Γ(T )−1Γ(T1) = ηT1T .
(C17)

After above calculation, we are left with 9 free tunable
Z2 parameters,

{η12, ηC6T1 , ησC6 , ησ, ηC6 , ηT , ηT1T ησT , ηC6T } (C18)

So, we expect H2(G,Z2) = 29.
Now, let’s adding spin rotation symmetry Rs(θ~n). We

have

Γ(Rs(2π)) = ηθ=2π,

Γ(Rs(θ~n))Γ(g) = ηg,θ~nΓ(g)Γ(Rs(θ~n)) (C19)
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where g ∈ T1, T2, C6, σ, T . As argued in Ref.38, one can
always set ηg,θ~n = I. Thus, by including spin rotation
symmetry, we get an extra parameter ηθ=2π. So the num-
ber of cohomology classes becomes 210.

Appendix D: Distinguishing different classes by
lattice quantum numbers

It has been shown that for system defined on a torus,
lattice quantum numbers can be served as useful tools
to distinguish different phases26,45,46,110. Here, we will
show lattice quantum numbers are also very useful to
distinguish different classes.

First, let us set the framework to extract quantum
numbers of symmetric PEPS wavefunction |Ψ〉 defined
on a torus. Similar to the PEPS on a infinite plane, ten-
sors of the torus PEPS wavefunction |Ψ〉 satisfy

T (x,y,s) = ΘRWRR ◦ T (x,y,s)

B(x,y,b) = WRR ◦B(x,y,b) (D1)

where R is the global symmetry operator, while WR acts
on virtual legs as a gauge transformation. Then, the
global quantum number of R is simply product of all
ΘR. Namely, we get

R|Ψ〉 =
∏
x,y,s

ΘR(x, y, s)|Ψ〉 (D2)

Let us focus on two particular classes:

1. Class-I is labeled by η12 = ηC6
= I, ησ = J and

χσ = χT = 1. Q1 = Q2 spin liquid phase27 belongs
to this class.

2. Class-II is labeled by η12 = I, ηC6 = ησ = J and
χσ = χT = 1. Q1 = −Q2 spin liquid phase27

belongs to this class.

To distinguish quantum numbers of these two classes,
let us consider systems on a torus with (4n + 2) unit
cells with even number of unit cells in T1 direction and
odd number of unit cells in T2 direction. Notice that
wavefunctions defined on this system explicitly break C6

rotation symmetry. However, it still preserves inversion
symmetry Rπ = C3

6 . In the following, we will show that
the ground state manifold of these two classes defined on
systems with (4n+ 2) unit cells form distinct representa-
tions of symmetry group generated by translation T1, T2
and inversion Rπ.

Let us first list symmetry transformation rules for infi-
nite PEPS. For translation, we can choose a proper gauge
such that WT1

(x, y, s, i) = WT2
(x, y, s, i) = I as well as

ΘT1
(x, y, s) = ΘT2

(x, y, s) = 1 for both two classes. The
symmetry transformation rule of reflection Rπ can be

TABLE I. Translation and inversion quantum numbers for
topological degenerate ground states on (4n + 2)-uc lattice
(even by odd) samples

(a): Quantum number for Class-I
Sym. |Ψ0,0〉 |Ψπ,0〉 |Ψ0,π〉 |Ψπ,π〉
T1 1 -1 1 -1
T2 1 1 1 1
Rπ 1 -1 1 -1

(b): Quantum number for Class-II
Sym. |Ψ0,0〉 |Ψπ,0〉 |Ψ0,π〉 |Ψπ,π〉
T1 1 -1 1 -1
T2 1 1 1 1
Rπ -1 1 -1 1

generated by C6 rotation as

WRπ (x, y, s, i) =WC6(x, y, s, i)WC6(C−16 (x, y, s, i))·
WC6(C−26 (x, y, s, i))

ΘRπ (x, y, s) =ΘC6
(x, y, s)ΘC6

(C−16 (x, y, s))·
ΘC6

(C−26 (x, y, s)) (D3)

Thus, for infinite PEPS in Class-I, we have

WRπ (x, y, s, i) = I,

ΘRπ (x, y, s) = 1. (D4)

And for Class-II, we have

WRπ (x, y, s, a/c) = I,

WRπ (x, y, s, b/d) = J,

ΘRπ (x, y, s) = i. (D5)

Now, let us turn to PEPS on a torus with (4n+2) unit
cells. For these two classes, one can construct a symmet-
ric wavefunction |Ψ0,0〉 with the symmetry transforma-
tion rules defined the same as infinite PEPS, since the
transformation rules of T1, T2 and Rπ on virtual legs of
both classes are compatible with the system size. Sym-
metry quantum numbers of these states can be calcu-
lated using Eq.(D2), where the result is listed in the first
columns in Table I.

As discussed in Sec.V, other bases of ground state man-
ifold is obtained by inserting non-contractible flux loops,
labeled by |Ψπ,0〉, |Ψ0,π〉 and |Ψπ,π〉. WR and ΘR change
their values after the loop insertion, but it is easy to
extract the quantum numbers of these states. For ex-
ample, let us consider T1 quantum number of |Ψπ,0〉. T1
will move the non-contractible g loop with one lattice
spacing, leading to a new wavefunction |Ψ′π,0〉. One can
easily figure out that the PEPS wavefunction |Ψ′0,π〉 is
related to |Ψ0,π〉 by a Z2 gauge transformation on the
column sandwiched by g loops of |Ψ0,π〉 and |Ψ′π,0〉, plus
the T1 symmetry transformation rule of |Ψ0,0〉. Since
there are odd number of sites per column, and site tensors
are Z2 odd, the single column Z2 gauge transformation
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FIG. 15. Visulization of the 12-site valence bond solid state
as coverings of spin singlets (red thick bonds) on the kagome
lattice.

contributes an extra −1 to T1 quantum number. Follow-
ing similar strategy, one can obtain the representation of
symmetry group on the whole ground state manifold for
both classes. We list the result in Table I.

As seen in Table I, ground state manifolds of the
two classes have distinct representations. So, these two
classes can be distinguished by lattice quantum numbers.

Appendix E: Valence bond solid phase

As we mentioned before, a single class includes many
different phases, which can only be distinguished by finite
size scaling. One may ask, is it possible that some par-
ticular phase can be described by different classes? We
think that the answer is yes, and we will give an example
in the following.

Let us focus on Class-I and Class-II discussed in Ap-
pendix D. As we argued before, the ground state spaces of
these two corresponding QSL have different lattice quan-
tum numbers on systems with (4n+ 2) unit cells.

Now, let us consider the valence bond solid (VBS)
phases. The VBS pattern can be obtained by Landau-
Ginzburg theory of visons. The effective Lagrangian of
visons is constrained by visons’ transformation rules un-
der symmetries, which are calculated in Sec.V. It turns
out that the transformation rules only depend on spinon
distributions, which are the same for all classes. Thus,
we expect both Class-I and Class-II give the same VBS
order pattern after vison condensation. This seems to
contradict with the quantum number discrepancy men-
tioned before.

The first observation is that for those samples where
two classes have different lattice quantum numbers, it
is impossible to write a compatible VBS order with the
lattice size. In other words, there are always domain wall
configurations on those samples.

To see this, let us consider a particular 12-site VBS or-
der pattern shown in Fig.(15) which is compatible with
vison symmetry transformation rules48. As shown in Ap-
pendix D, Class-I and Class-II have different lattice quan-
tum numbers on a torus with (4n+2) unit cells with even
number of unit cells in T1 direction and odd in T2 direc-

(a)

(c)

(e)

(b)

(d)

(f)

FIG. 16. (a),(b): 1D chain in T1 direction. The periodic
boundary condition is imposed, so every site shares four
bonds. If two sites connected by a bond form a spin sin-
glet, then we require the direction of the singlet is along the
arrow on the bond. Arrows on (a) is consistent with Class-
I, while arrows on (b) is consistent with Class-II. (c),(d),(e):
Four possible domain wall configurations connected by sym-
metry T2 and Rπ. The direction of spin singlets (red thick
bonds) follows arrows in (a).

tion. It is straight forward to see that on those samples,
one can never avoid domain walls. In the following , we
will show the different lattice quantum numbers are ac-
tually caused by different quantum fluctuations along the
domain wall.

Let us focus on the simplest case where the sample is
a chain along the T1 direction with even number of unit
cells, but with only one unit cell along the T2 direction,
as shown in Fig.(16). Notice that the periodic boundary
condition is imposed. Then, every site is connected with
four bonds. Arrows on Fig.(16a,b) denotes the direction
of singlet bonds of Class-I and Class-II respectively. The
direction of single bonds (red ones) on Fig.(16c-f) follows
the convention in Fig.(16). We label these four domain
wall states as |φ1〉, |φ2〉, |φ3〉 and |φ4〉 respectively. In the
following, we will show how these four simple VBS con-
figurations give states with different quantum numbers.

On the Hilbert space spanned by these four basis, the
representation of T1, T2 and Rπ reads

T1 =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 0 1

 , T2 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , Rπ =

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


(E1)

Then, eigenstates and eigenvalues for these three matrix
are as following

Eigenstates T1 T2 Rπ
|φ1〉+ |φ2〉+ |φ3〉+ |φ4〉 1 1 1
|φ1〉+ |φ2〉 − |φ3〉 − |φ4〉 1 1 −1
|φ1〉 − |φ2〉+ |φ3〉 − |φ4〉 −1 1 1
|φ1〉 − |φ2〉 − |φ3〉+ |φ4〉 −1 1 −1
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So different superpositions of VBS configurations give
different quantum numbers. The above picture is sim-
ilar to spin liquid phases (RVB states). Different spin
liquid phases are distinguished by relative phases of dif-
ferent configurations of bond coverings. These relative
phase factors may result in different quantum numbers
on some finite size sample. However, unlike spin liquid
phases, fluctuation along the VBS domain wall is essen-
tially 1D physics. This remains true after considering
samples with more unit cells along the T2 direction. In
one dimension, in the thermodynamic limit, the system
will be pinned to a particular VBS configuration, and
the information of phase factors are lost. So we believe
different ways of fluctuations along the VBS domain wall
will not give new phases.

Now, let us check the correctness of the fluctuation-
along-domain-wall picture by studying the possible su-
perposition of these four states in Class-I and Class-II
respectively. By comparing directions of singlet bonds,
We conclude that for Class-I, the possible superposition
of these four states is (|φ1〉 + |φ2〉 + |φ3〉 + |φ4〉). Fur-
ther, we observe |φ1〉 − |φ2〉 − |φ3〉 − |φ4〉 is also consis-
tent with Class-I with a non-contractible flux loops in T2
direction. While for Class-II, there are two cases. For
chains with (4n + 2) uc, the possible superposition of
these four states is (−|φ1〉− |φ2〉+ |φ3〉+ |φ4〉) as well as
|φ1〉 − |φ2〉+ |φ3〉 − |φ4〉 (with no-ncontractible flux loop
in T2 direction). For chains with 4n uc, we get the same
result as Class-I. Thus, for systems with (4n + 2) sites,
the two classes always have different quantum numbers.
The above observation is consistent with the quantum
numbers of Class-I and Class-II obtained in the previous
appendix.

Appendix F: An example on the square lattice

As a pedagogical example, here we present the classi-
fication of symmetric PEPS with IGG = Z2 for systems
on the square lattice with a half-integer spin per site, in
the presence of lattice translation, lattice C4 rotation and
spin SU(2) rotation symmetries.

The lattice symmetry group is generated by T1, T2, C4,
which transform the virtual leg labeled by (x, y, i) as:

T1(x, y, i) = (x+ 1, y, i)

T2(x, y, i) = (x, y + 1, i)

C4(x, y, i) = (−y, x, C4(i)), (F1)

where i = a, b, c, d labels the four virtual legs on a site
tensor at (x, y) in a counter-clockwise fashion, as shown
in Fig.(17). The counter-clockwise C4 rotates the legs as:

C4(a) = b, C4(b) = c, C4(c) = d, C4(d) = a. (F2)

These generators satisfy the following identities which

FIG. 17. A site on the square lattice with four virtual legs
labeled as a, b, c, d.

define the space group:

[1] : T1T2T
−1
1 T−12 = e

[2] : C−14 T1C4T2 = e

[3] : C−14 T2C4T
−1
1 = e

[4] : C4
4 = e

And the on-site physical spin rotation by an angle θ
around the spin axis ~n: Uθ~n, which forms a half-integer
spin irrep of the SU(2), commutes with all lattice sym-
metries:

g−1 · Uθ~n · g · U−1θ~n = e, ∀g = T1, T2, C4 (F3)

Below we solve the implementations of these symmetries
on PEPS with IGG = Z2 = {I, J}, step by step. As
discussed in Sec.III A, each symmetry element R is asso-
ciated with its own η-ambiguity and ε-ambiguity. And
the PEPS itself has an Φ-ambiguity and a V -ambiguity,
a statement unrelated to specific symmetry elements.
(1) Choose the virtual basis such that J(x, y, i) = J =

ID1
⊕ (−ID2

) is a site and leg independent diagonal ma-
trix, according to the discussion in III B. This determines
J up to an overall ±1 sign, which we will use in step-(10).
(Note that we have not attached any physical meanings
for the D1 and D2 sectors yet.) All the remaining V -
ambiguity matrices (could be site and leg dependent) as
well as all the WR matrices (could be site and leg depen-
dent) commute with J, so they are block diagonal and
act within the D1 and D2 subspaces.

(2) Consider identity-[2]. Applying Eq.(28) to this
identity:

W−1C4
(−y, x, C4(i))WT1

(−y, x, C4(i))WC4
(−y − 1, x, C4(i))

·WT2
(x, y + 1, i) = η[2]χ[2](x, y, i) (F4)

Since WT1
appears in this equation only once, we can

always use the ηT1
ambiguity: WT1

→ JWT1
to tune

η[2] = I. This fixes the relative η-ambiguity for WT1
,WT2

,
and still leaves an overall η-ambiguity WT1

,WT2
→

JWT1
, JWT2

.
(3) Using the remaining V -ambiguity to transform

WT2
, according to Eq.(32):

WT2
(x, y, i)→ V (x, y, i)WT2

(x, y, i)V −1(x, y − 1, i).
(F5)
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So we can set WT2
(x, y, i) = I. There is no εT2

ambiguity
left. The remaining V -ambiguity satisfies V (x, y, i) =
V (x, 0, i).

Next, we use this remaining V -ambiguity to transform
WT1

along the row of sites at y = 0:

WT1
(x, 0, i)→ V (x, 0, i)WT1

(x, 0, i)V −1(x− 1, 0, i),
(F6)

so that WT1
(x, 0, i) = I. Now the remaining

V -ambiguity is site independent but could be leg-
dependent: V (x, y, i) = V (i). The remaining εT1

am-
biguity satisfy εT1

(x, 0, i) = 1.
Consider identity-[1]. Applying Eq.(28) to this iden-

tity:

WT1(x, y, i)WT2(x− 1, y, i)W−1T1
(x, y − 1, i)

·W−1T2
(x, y, i) = η12χ12(x, y, i) (F7)

The remaining η-ambiguity for WT1
,WT2

cannot tune
away η12. Using results obtained previously in the step,
we have

WT1
(x, y, i)W−1T1

(x, y − 1, i) = η12χ12(x, y, i) (F8)

We then use the remaining εT1 ambiguity to transform
χ12, according to Eq.(36):

χ12(x, y, i)→ χ12(x, y, i)εT1
(x, y, i)ε∗T1

(x, y − 1, i). (F9)

So we can set χ12(x, y, i) = 1. After this Eq.(F8) leads
to WT1(x, y, i) = ηy12WT1(x, 0, i) = ηy12, and there is no
εT1 ambiguity left. In this gauge all site tensors are the
same: T (x,y) = T (0,0) ≡ T , while bond tensors are spatial
dependent if the η12 index is nontrivial.

Next we study ΘT1
and ΘT2

. First we use the Φ-
ambiguity, which we have not used before, to transform
ΘT2

. According to Eq.(34):

ΘT2(x, y)→ ΘT2(x, y)Φ(x, y)Φ∗(x, y − 1), (F10)

so we can set ΘT2
(x, y) = 1, and the remaining Φ-

ambiguity satisfies Φ(x, y) = Φ(x, 0).
We then use the remaining Φ-ambiguity to transform

ΘT1
along the row of sites at y = 0:

ΘT1(x, 0)→ ΘT1(x, 0)Φ(x, 0)Φ∗(x− 1, 0), (F11)

so we can set ΘT1
(x, 0) = 1. The remaining Φ-ambiguity

is only a site-independent overall phase: Φ(x, y) =
Φ(0, 0) ≡ Φ. Since we will not study time-reversal sym-
metry here, it turns out that this overall phase ambiguity
is not useful.

Applying Eq.(29) to the identity-[1], we have

ΘT1
(x, y)ΘT2

(x− 1, y)Θ∗T1
(x, y − 1)Θ∗T2

(x, y)

= µ12

∏
i

χ∗12(x, y, i), (F12)

where µ12 is the site-independent phase factor obtained
when applying η12 on a site tensor, as mentioned in III B.

Using the results obtained so far, we find ΘT1
(x, y) =

µy12ΘT1(x, 0) = µy12.
We can summarize the results obtained in step-(3):

WT1
(x, y, i) = ηy12

WT2(x, y, i) = I

ΘT1(x, y) = µy12
ΘT2

(x, y) = 1. (F13)

The remaining Φ-ambiguity is an overall phase. The re-
maining V (x, y, i) = V (i). There is no remaining εT1 , εT2

ambiguities left. There is a remaining overall η-ambiguity
for WT1 ,WT2 .
(4) Consider identity-[2] again. Based on the discus-

sion in step-(2), we have:

W−1C4
(−y, x, C4(i))WT1

(−y, x, C4(i))WC4
(−y − 1, x, C4(i))

·WT2
(x, y + 1, i) = χ[2](x, y, i). (F14)

Plugging in the results in step-(3), we obtain:

W−1C4
(−y, x, C4(i))WC4(−y − 1, x, C4(i)) = ηx12χ[2](x, y, i).

(F15)

Now we use the εC4 ambiguity. Applying Eq.(36), this
transforms χ[2] as:

χ[2](x, y, i)→
χ[2](x, y, i)εC4

(−y − 1, x, C4(i))ε∗C4
(−y, x, C4(i)). (F16)

So we can set χ[2](x, y, i) = 1, and the remaining εC4-
ambiguity satisfies εC4(x, y, i) = εC4(0, y, i). After this,
Eq.(F15) leads to WC4(x, y, i) = ηxy12WC4(0, y, i).
(5) Consider identity-[3]. Applying Eq.(28):

W−1C4
(−y, x, C4(i)) · I ·WC4

(−y, x− 1, C4(i))W−1T1
(x, y, i)

= ηC4TχC4T (x, y, i) (F17)

Using results in step-(3) and step-(4), we have

W−1C4
(0, x, C4(i))WC4(0, x− 1, C4(i)) = ηC4TχC4T (x, y, i),

(F18)

so we know χC4T (x, y, i) = χC4T (x, 0, i), independent of
y.

we then can use the remaining εC4 -ambiguity from
step-(4) to transform χC4T :

χC4T (x, 0, i)→
χC4T (x, 0, i)ε∗C4

(0, x, C4(i))εC4(0, x− 1, C4(i)). (F19)

So we can set χC4T (x, 0, i) = 1 and the remaining εC4
-

ambiguity is site independent: εC4
(x, y, i) = εC4

(i).
After this, the site-dependence of WC4

is solved:
WC4

(0, y, i) = ηyC4T
WC4

(0, 0, i). Together with results
in step-(4):

WC4
(x, y, i) = ηxy12 η

y
C4T

WC4
(i), (F20)
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where we defined WC4
(i) ≡WC4

(0, 0, i).
So far we have not used the η-ambiguity for WC4

. The
remaining εC4

(x, y, i) = εC4
(i), and there is still a re-

maining V (x, y, i) = V (i) ambiguity.
(6) Consider ΘC4

. Applying Eq.(29) to identity-[2],
together with results in step-(2,4):

Θ∗C4
(−y, x)ΘT1(−y, x)ΘC4(−y − 1, x)ΘT2(x, y) = 1.

(F21)

Pluggin in results in step-(3), this leads to:

ΘC4
(x, y) = µxy12ΘC4

(0, y). (F22)

Similarly, we apply Eq.(29) to identity-[3]:

Θ∗C4
(−y, x)ΘC4

(−y, x− 1)µy12 = µC4T

∏
i

χ∗C4T (x, y, i),

(F23)

where we used results in step-(3). Plugging in χC4T = 1,
which has been obtained in step-(5), and use Eq.(F22),
the site-dependence of ΘC4

is solved:

ΘC4
(x, y) = µyC4T

µxy12ΘC4
, (F24)

where we introduced ΘC4 ≡ ΘC4(0, 0).
(7) Consider identity-[4]. Applying Eq.(28) and the

site-dependence of WC4 obtained in step-(5), we have:

WC4
(i)WC4

(C3
4 (i))WC4

(C2
4 (i))WC4

(C4(i))

= ηC4
χC4

(i), (F25)

where χC4
(i) ≡ χC4

(x, y, i) since the above relation dic-
tates χC4

to be site independent.
Applying Eq.(29) and the site-dependence of ΘC4

ob-
tained in step(6), we find:

Θ4
C4

= µC4

∏
i

χ∗C4
(i). (F26)

But due to the definition of the χ− group, we know that
χC4

(a) = χ∗C4
(c) and χC4

(b) = χ∗C4
(d), so

∏
i χ
∗
C4

(i) = 1.

Consequently ΘC4 = (µC4)
1
4 . Naively there would be

four allowed roots for a given choice of ηC4 . However,
we have not used the η-ambiguity for WC4 . Under the
η-ambiguity transformation: WC4 → J ·WC4 , clearly ΘC4

transforms as: ΘC4 → µJΘC4 .
We will prove that µJ = −1 in step-(10); i.e., every site

tensor is Z2-odd. Thus, we can use the η-ambiguity for
WC4 to tune away the sign in ΘC4 , and there are only two
independent values for the root. We made the following
choice:

ΘC4
= 1 or i, if ηC4

= I;

ΘC4
= ei

π
4 or e−i

π
4 , if ηC4 = J. (F27)

After this, there is no remaining η-ambiguity for WC4
.

Next, we can use the remaining V (i) ambiguity to
transform WC4

(i):

WC4(i)→ V (i)WC4(i)V −1(C−14 (i)). (F28)

So we can set WC4
(b) = WC4

(c) = WC4
(d) = I. This

leaves no remaining εC4
-ambiguity, because εC4

(a) =
ε∗C4

(c) as required in the definition of the χ − group.
The remaining V -ambiguity is site and leg independent:
V (x, y, i) = V .

Coming back to Eq.(F25), in the current gauge we
have:

WC4
(a) = ηC4

χC4
(i), ∀i = a, b, c, d. (F29)

Consequently χC4
(i) ≡ χC4

is leg independent, and
χC4

= ±1 since e.g., χC4
(a) = χ∗C4

(c).
One may worry that if ηC4

= J, we simply have
WC4

(a) = χC4
J, and the ±1 sign here may be tuned away

by redefining the J element (recall that there is such sign
freedom as mentioned in step-(1)). But for the moment
let us not use this sign freedom in the definition of J
because it will be used later in step-(10). Consequently
after step-(10), the χC4 index here cannot be tuned away.
(8) Consider the on-site SU(2) symmetry. We can

apply Eq.(28) for a group identity in the multiplication
table of SU(2):

[θ2~n2] · [θ1~n1] = [θ3~n3], (F30)

and obtain:

W−1θ3~n3
(x, y, i)Wθ2~n2

(x, y, i)Wθ1~n1
(x, y, i)

= η[θ2~n2],[θ1~n1]χ[θ2~n2],[θ1~n1](x, y, i) (F31)

Let us focus on a single virtual leg (x, y, i), and consider
all the possible [θ2~n2], [θ1~n1]. One can then immediately
see that both η[θ2~n2],[θ1~n1] and χ[θ2~n2],[θ1~n1](x, y, i) must
satisfy 2-cocycle conditions as a function of [θ2~n2] and
[θ1~n1] (see Appendix C for detailed discussions). Namely,
for a fixed (x, y, i):

η[θ2~n2],[θ1~n1] ∈ H
2(SU(2), Z2) = Z1,

χ[θ2~n2],[θ1~n1](x, y, i) ∈ H
2(SU(2), U(1)) = Z1 (F32)

Because both 2-cohomology groups are trivial, we
find both η[θ2~n2],[θ1~n1] and χ[θ2~n2],[θ1~n1](x, y, i) are 2-
coboundaries. Consequently, one can use the η-
ambiguities for Wθ~n and the εθ~n(x, y, i)-ambiguities to
set η[θ2~n2],[θ1~n1] = I and χ[θ2~n2],[θ1~n1](x, y, i) = 1. After
this, Eq.(F31) simply means that Wθ~n(x, y, i) forms a
representation of SU(2), ∀(x, y, i):

W−1θ3~n3
(x, y, i)Wθ2~n2

(x, y, i)Wθ1~n1
(x, y, i) = I. (F33)

(9) Study the site and leg dependence of Wθ~n(x, y, i).
For any space group symmetry element g, we have the
group identity:

g−1 · [θ~n] · g · [θ~n]−1 = e. (F34)
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Applying Eq.(28) to this identity, we find:

W−1g (g(x, y, i))Wθ~n(g(x, y, i))Wg(g(x, y, i))W−1θ~n (x, y, i)

= ηg,[θ~n]χg,[θ~n](x, y, i) (F35)

Because we have already determined the form of
Wg(x, y, i) in step-(3,5,7), and Wg(x, y, i) can only be
a power of J up to a factor, we conclude that Wg(x, y, i)
commutes with Wθ~n(x, y, i). So the above equation re-
duces to:

Wθ~n(g(x, y, i))W−1θ~n (x, y, i) = ηg,[θ~n]χg,[θ~n](x, y, i).

(F36)

Next, one can plug in [θ2~n2] · [θ1~n1] = [θ3~n3] on the RHS
of this equation and apply Eq.(F33). One then concludes
that, for any fixed (x, y, i), ηg,[θ~n] (χg,[θ~n](x, y, i)) must
be a representation of SU(2) in Z2 (U(1)). But such
representations must be trivial. Therefore, ηg,[θ~n] = I
and χg,[θ~n](x, y, i) = 1, ∀(x, y, i). Eq.(F36) dictates that
Wθ~n must be site and leg independent:

Wθ~n(x, y, i) = Wθ~n, ∀(x, y, i). (F37)

In addition, we can consider Θθ~n(x, y). Due to the
definition of Θ, the following is true for any site tensor
T (x,y):

T (x,y) = Θθ~nWθ~nUθ~n ◦ T (x,y), (F38)

However, since Uθ~n is the SU(2) representation on the
physical leg and we already showed that Wθ~n also form
a representation of SU(2), Θθ~n must be a representa-
tion of SU(2) in U(1), which again must be trivial. So
Θθ~n(x, y) = 1.

(10) Finally, consider the θ = 2π SU(2) rotation.
Eq.(F38) for this particular case becomes:

T (x,y) = −Wθ=2π ◦ T (x,y), (F39)

where we use the fact that the physical spin is half-integer
and Θθ=2π = 1 obtained in step-(9). This means that
Wθ=2π, a site and leg independent transformation, must
be an element in IGG and thus can be written as:

Wθ=2π = ηθ=2πχθ=2π(x, y, i), (F40)

we see that χθ=2π(x, y, i) ≡ χθ=2π is site and leg inde-
pendent. Due to the definition of the χ − group, this
limits χθ=2π = ±1. Plugging the above equation back in
Eq.(F39), one has:

−µθ=2π

∏
i

χθ=2π = −µθ=2π = 1 (F41)

So µθ=2π = −1. This dictates that ηθ=2π = J and every
site tensor must be Z2 odd: µJ = −1.

We then have:

Wθ=2π = χθ=2πJ (F42)

Note that we still have a sign ambiguity in the definition
of J, as mentioned in step-(1). We now use this sign
ambiguity to set χθ=2π = 1, and Wθ=2π = J.
(11) We still have the remaining V (x, y, i) = V am-

biguity. Now we use this ambiguity to tranform the site
and leg independent Wθ~n to the standard form:

Wθ~n = ⊕Mi=1(Ini ⊗ eiθ~n·
~Si); (F43)

namely each virtual leg is a direct sum of ni number of ~Si
with different spin representation ~Si. Here we are only
left with the V -ambiguity that is a direct sum of the
similarity transformations acting in the Ini spaces.
Summary: We find in the presence of translational

symmetry, C4 symmetry, spin-rotational symmetry, the
IGG = Z2 symmetric PEPS for a half-integer spin sys-
tem on the square lattice are classified by the following
three sets of algebraic data:

1. η12, ηC4T , ηC4
∈ IGG = {I, J}.

2. χC4
which can be ±1.

3. ΘC4 which can choose values as defined in
Eq.(F27).

Since each index can choose two values, there are 25 = 32
classes. These indices completely determine the transfor-
mation rules of the site and bond tensors as:

Wθ~n(x, y, i) = Wθ~n = ⊕Mi=1(Ini ⊗ eiθ~n·
~Si),

J = Wθ=2π,

WT1
(x, y, i) = ηy12,

WT2
(x, y, i) = I,

WC4(x, y, a) = χC4η
xy
12 η

y
C4T

ηC4

WC4
(x, y, b/c/d) = ηxy12 η

y
C4T

,

(F44)

and:

Θθ~n(x, y) = 1

ΘT1
(x, y) = µy12,

ΘT2
(x, y) = 1,

ΘC4(x, y) = µyC4T
µxy12ΘC4 . (F45)

Here µ12 = 1(−1) if η12 = I (J), and similarly µC4T =
1(−1) if ηC4T = I (J). ΘC4 = 1 or i(ΘC4 = eiπ/4 or
e−iπ/4) if ηC4 = I (J).

After the physical half-integer spin is specified, e.g.
S = 1/2 or S = 3/2, we know the transformation rules for
both physical and virtual legs. One can thus determine
the generic form of the symmetric tensor network for each
class and use it for numerical simulation as discussed in
Sec.III C.
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