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Spontaneous breaking of time-reversal symmetry in superconductors with the px + ipy symmetry
of the order parameter allows for a class of effects which are analogous to the anomalous Hall effect
in ferromagnets. These effects exist below the critical temperature, T < Tc. We develop a kinetic
theory of such effects. In particular, we consider anomalous Hall thermal conductivity, the polar
Kerr effect, the anomalous Hall effect, and the anomalous photo- and acousto-galvanic effects.

Introduction: One of the leading candidates for p-
wave pairing in electronic systems is Sr2RuO4. Nu-
merous experiments indicate that the superconducting
state of Sr2RuO4 has odd parity, breaks time reversal
symmetry and is spin triplet.1–6 The order parameter
consistent with these experiments is given by the chi-
ral p-wave state7 which is an analog of the 3He-A-phase.
The Fourier transform of the real space order parameter
∆αβ(r − r′) has the form ∆αβ(p) ∼ (px ± ipy)S · σαβ ,
where S is the spin of the Cooper pair, σ are the Pauli
matrices, and α and β are spin indices. However, the ob-
servation of power law temperature dependence of spe-
cific heat8 and NMR,9 the absence of electric currents
along edges,10 and the absence of a split transition in
the presence of an in-plane magnetic field11 are inconsis-
tent with the theoretically expected properties of a sim-
ple chiral superconductor. Consideration of additional
experimental manifestations of spontaneous breaking of
time-reversal symmetry in px+ ipy superconductors may
clarify the nature of superconducting state in Sr2RuO4.

Due to spontaneous breaking of time-reversal symme-
try, px + ipy superconductors must exhibit anomalous
transport phenomena in the absence of external mag-
netic fields, similar to those in metallic ferromagnets (see
Refs. 12 and 13 for a review). In this article we develop
a theory of several such effects in px + ipy superconduc-
tors: the anomalous Hall effect, polar Kerr effect for mi-
crowave radiation, anomalous Hall thermal conductivity,
and anomalous photo- and acousto-galvanic effects.

It should be noted that p-wave superconductivity ex-
ists only in the clean regime, l > ξ, where electron
transport may be described semiclassically. Generally, in
the semiclassical regime there are three contributions to
anomalous transport phenomena: skew scattering, side
jumps, and the intrinsic contribution. The side jump
contribution arises from the shift of the center of mass of
electron wave packets during the scattering events, while
the intrinsic contribution is related to the anomalous ve-
locity due to Berry curvature. The magnitude of these
contributions is independent of the mean free path. In
contrast, the magnitude of the skew scattering contribu-
tion is proportional to the quasiparticle mean free path
l. As a result, the skew scattering contribution exceeds
the intrinsic and side jump contributions by a large fac-
tor CpF l, where pF is the Fermi momentum, and C is
the prefactor that depends on the impurity strength and

the details of the band structure. In px + ipy supercon-
ductors l > ξ, the semiclassical parameter is sufficiently
large, pF l > 103h̄, so that the condition CpF l � 1 is
satisfied for most types of impurities. Therefore in this
article we will take into consideration only the skew scat-
tering contribution. We focus on anomalous transport
phenomena in the vicinity of the critical temperature,
where quasiparticles play a major role.

Kinetic scheme: Transport theory in conventional time
reversal invariant superconductors was developed long
ago (see for example reviews Refs. 14 and 15). Below
we generalize this approach to superconductors without
time reversal symmetry, which exhibit anomalous trans-
port phenomena. In the clean regime, l� ξ, and at suf-
ficiently low frequencies, ω � |∆|, where |∆| is the mod-
ulus of the order parameter, the quasiparticle dynamics
can be described by the Boltzmann kinetic equation for
the quasiparticle distribution function np(r, t),

∂np(r, t)

∂t
+
∂ε̃p
∂p

∂np
∂r
− ∂ε̃p

∂r

∂np
∂p

= Ist, (1)

where the collision integral Ist = I
(el)
st + Iεst in Eq. (1)

describes both elastic and inelastic scattering, and

ε̃p = εp + v · ps, εp =
√
ξ̃2p + |∆|2, (2a)

ξ̃p = ξp + Φ +
p2
s

2m
, ξp =

p2

2m
− εF . (2b)

In Eq. (2) m is the electron mass, while ps and Φ, are
given by

ps =
h̄

2
∇χ− e

c
A, Φ =

h̄

2
∂tχ+ eφ, (3)

where χ is the order parameter phase, and φ and A are
the scalar and vector potentials. From Eq. (3) one ob-
tains the equation for the acceleration of the condensate,

∂tps = eE + ∇Φ. (4)

Equations (1)-(3) should be supplemented by the expres-
sion for the current density,

j =
eN

m
ps + e

∫
dΓvnp, (5)

and by the charge neutrality condition,

νΦ =

∫
dΓ

ξ̃p
ε̃p
np, (6)
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that relates the gauge invariant scalar potential and
the odd in ξ part of the quasiparticle distribution func-
tion, the self-consistency equation for the order param-
eter. Here ν is the density of states at the Fermi level,
dΓ = d3p/(2πh̄)3 and v = dξp/dp.

We work in linear response to external perturbations,
and neglect corrections to equilibrium value of |∆|. We
also assume that τε � τ , where τε and τ are inelastic
and elastic mean free time respectively. Therefore the
main contribution to the aforementioned anomalous ef-
fects comes from elastic scattering, which is described by
the collision integral

Ist =

∫
(Wpp′np′ −Wp′pnp) δ (ε̃p − ε̃p′) dΓ′. (7)

Skew scattering of quasiparticles corresponds to the part
of scattering probability Wpp′ in Eq. (7) that is associ-
ated with breaking of time reversal symmetry, δWpp′ =
Wpp′ −W−p′−p 6= 0. Thus, all the aforementioned ef-
fects are proportional to δWpp′ . Skew scattering arises
beyond the lowest Born approximation for the scattering
amplitude. Below we consider point-like impurities. In
the normal state such impurities scatter electrons only
in the s-wave channel and do not cause skew scattering.
Therefore in the superconducting state skew scattering
of quasiparticles is entirely due to the breaking of time
reversal symmetry by the px + ipy order parameter. The
elastic scattering probability for quasiparticles with en-
ergy ε can be characterized by ξ ≡ ξp, ξ′ ≡ ξp′ = ±ξ and
the azimuthal angles ϕ, ϕ′, which define the direction
of p and p′ in the xy-plane. For simplicity, we assume
cylindrical Fermi surface (with energy independent of pz)
and obtain for the scattering probability16

Wpp′ = W0 +W1 [1− cos (ϕ− ϕ′ + 2δε)] . (8)

Here δε is the energy-dependent scattering phase shift. It
is related to the normal state s-wave phase shift δn by

δε = arctan
δnε√

ε2 − |∆|2
. (9)

We assume weak impurities, for which δn ≈ tan δn ≡
−πνV0, is small. Here V0 is the impurity pseudo-
potential.17 In this case W0 and W1 are given by

W0(ξ, ξ′) =
ζ(ε)

2ντ

(ξ + ξ′)2

2ε2
, (10a)

W1(ξ, ξ′) =
ζ(ε)

2ντ

|∆|2

ε2
. (10b)

Here τ−1 = 2πniνV
2
0 , with ni being the impurity density,

is the elastic scattering rate in the normal state. The co-
efficient ζ(ε) = (ε2 − |∆|2)/[ε2(1 + δ2n)− |∆|2] represents
the enhancement factor of the quasiparticle scattering
cross-section over the normal state value. The first term
in Eq. (8), W0 given by Eq. (10a) has the same struc-
ture as in s-wave superconductors. It describes scattering
only within the same (particle-like, ξ > 0, or hole-like,

ξ < 0) branch and does not lead to branch imbalance
relaxation. The second term, W1 in Eq. (8) is absent
in s-wave superconductors. It leads to both skew scat-
tering and scattering between branches of quasiparticle
spectrum with different signs of ξ. The skew scattering
cross-section, described by the sin(ϕ−ϕ′) sin 2δε term in
Eq. (8), is energy-dependent. It follows from Eqs. (8),
(9), and (10b) that it changes sign when impurity poten-
tial V0 changes from repulsive to attractive.

Below we consider linear response to several external
perturbations and look for the quasiparticle distribution

function in the form np = n(0) + n
(1)
p , where n(0) is a

locally equilibrium Fermi distribution, and n
(1)
p describes

the deviation from equilibrium. Noting that the collision
integral (7) is nullified by an arbitrary function n(0)(ε̃p)
we write the linearized Boltzmann equation in the form

S(p) =

∫
dΓ′Wpp′(n(1)p − n

(1)
p′ )δ(εp − εp′), (11)

where the source S(p) is obtained by linearizing the left
hand side of Eq. (1) about the equilibrium, and its spe-
cific form of the depends on the type of perturbation.

Anomalous Hall thermal conductivity: We first con-
sider the Hall component of the thermal conductivity κxy
which describes the heat flux perpendicular to the direc-
tion (x-axis) of the temperature gradient. In this case
the source term in Eq. (11) has the form,

S(p) = − ξ
T

v ·∇T
∂n(0)

∂ε
. (12)

The expression for the heat flux is

jQ =

∫
dΓ εp

∂εp
∂p

n(1)p . (13)

Note that ∂εp/∂p = vξ/ε is the group velocity of the
quasiparticles while v is the bare velocity as in a normal
metal, |v| = vF . The solution of Eqs. (11), (12) has the
form

n(1)p = − ξ
T
vF∇T

∂n(0)

∂ε
[αs(ε) sinϕ+ αc(ε) cosϕ] .

The Hall component of the thermal conductivity ten-
sor, κxy, is determined by αs(ε) in the above expression,
which is given by αs(ε) = a(ε)/[b2(ε) + a2(ε)], with

a(ε) =
ζ(ε)

2τ

|∆|2

2ε|ξ|
sin 2δε, (14a)

b(ε) =
|ξ|
ετ

+
ζ(ε)

2τ

|∆|2

2ε|ξ|
(cos 2δε + 2) . (14b)

For weak impurities, |δn| � 1, we obtain, close to Tc

κxy = 3κ

(
|∆|
πT

)2

δn, (15)

where κ = π2νTD/3 (with D = v2F τ/2 being the diffu-
sion constant) is the normal state thermal conductivity.
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Polar Kerr effect: Next we consider a linearly polar-
ized electromagnetic wave at normal incidence to the xy
surface of px + ipy superconductor. The reflected wave
is elliptically polarized with the major axis rotated with
respect to the incident one by the polar Kerr angle18

θk =
(1− n2 + κ2)∆κ+ 2nκ∆n

(1− n2 + κ2)2 + (2nκ)2
, (16)

where n and κ are, respectively, the real and imaginary
part of the refraction index and

∆n+ i∆κ = −4π

ω

(n− iκ)σxy
n2 + κ2

, (17)

where σxy is the complex ac conductivity.
In this case the electric field is uniform in the direction

parallel to the surface of the sample, Φ = 0, and the value
of ps(t) is determined by Eq. (4). The diagonal part of
the conductivity is given by14

σxx ≈ σD +
iNs(T )

ω
, (18)

where Ns(T ) is the temperature dependent superfluid
density and σD = e2νD is the Drude conductivity. In
contrast to the thermal conductivity consideration, in the
present case n(0) = 1/(exp[εp + v · ps(t)]/T + 1) gives a
nonvanishing contribution to the current response (via
Ns(T )) because the superfluid momentum depends on
the electric field. The Kerr angle θ is determined by the
value of the Hall component of conductivity σxy.

To find σxy we seek the solution of Eq. (1) in the form

n = n(0)(εp/T ) + n
(1)
p . The source in Eq. (11) becomes

S(p) = −iωn(1)p − ev ·E
∂n(0)

∂ε
, (19)

where the external electric field E is along x-direction.

The nonequilibrium distribution n
(1)
p has the form

n(1)p = −eEvF
∂n(0)

∂ε
[βs(ε) sinϕ+ βc(ε) cosϕ] . (20)

The Hall conductivity depends only on the function βs(ε),
which is given by βs(ε) = a(ε)/{[b(ε)−iω]2+a2(ε)}, with
a(ε) and b(ε) being defined in Eq. (14). Substituting
Eq. (20) into Eq. (5) we obtain the Hall conductivity in
the weak impurity limit, |πνV0| � 1, in the form

σxy(ω) = σD
|∆|
2T

δn

∫ ∞
0

dx

cosh2(
√
x2 + 1|∆|/2T )

× x2 + 1

(−iωτx
√
x2 + 1 + x2 + 3/4)2

. (21)

where x = |ξ|/|∆|. At temperature close to Tc and at
low frequencies, ωτ � 1, this expression yields

σxy =
7π

12
√

3
δn
|∆|
T

σD. (22)

This result was derived assuming px + ipy symmetry of
the order parameter. In the px − ipy state the Hall con-
ductivity σxy has opposite sign. It also changes sign if
the impurity potential V0 changes from repulsive, δn < 0,
to attractive, δn > 0, in agreement with Ref. 19. Note
that our result for the low frequency Hall conductivity,
Eq. (22), is proportional to the elastic mean free time τ
and to the density of quasiparticles.

There is another contribution to σxy associated with
the existence of the transverse component of the super-
fluid velocity vy ∼ ṗx, which is proportional to the con-
densate acceleration in the x-direction. It may not be
obtained within the present formalism that is based on
the Boltzmann kinetic equation for the quasiparticles. At
T ∼ Tc this contribution is smaller than the quasiparti-
cle contribution, Eq. (22). However at T � Tc when the
quasiparticle contribution becomes exponentially small
in Eq. (21) it becomes the dominant contribution. The
requirement for this contribution to exist is violation of
Galilean invariance in the system. Thus it should exist
in any crystalline superconductors with px + ipy symme-
try.20,21 The conclusion that σxy remains finite even at
ω → 0, and T = 0 is in agreement with the results pre-
sented in Fig. 2 of Ref. 20. Galilean invariance can also
be broken by impurities. The corresponding contribution
to σxy is inversely proportional to the electron mean free
time.

Hall effect for normal current injection: Let us now
consider a normal metal/px + ipy-superconductor junc-
tion, through which a steady current is flowing. At
T � |∆| this situation was considered in Ref. 22. In
this regime conversion of normal current to supercur-
rent is mediated by multiple Andreev reflections. Here
we work near the critical temperature and consider a
setup, in which the normal current is injected into the
superconductor in the x- direction, as shown in the in-
set in Fig. 1. In this case the conversion of quasiparticle
current to the supercurrent occurs in the superconduc-
tor. Just as in the case of s-wave superconductor, near
Tc, the electric field penetrates into superconductor to a
large distance LQ � l, which is determined by the re-
laxation of imbalance between the populations of quasi-
particles in electron-like, ξ > 0, and hole-like, ξ < 0
branches of the spectrum (see for example Ref. 14 and
references therein). The new feature of normal current
injection that appears in px+ipy superconductors is that
skew scattering of quasiparticles generates nonequilib-
rium current that is perpendicular to the electric field.
Another aspect is that, in contrast to s-wave supercon-
ductors, impurity scattering leads to branch imbalance
relaxation even if the magnitude of the order parameter
|∆| is isotropic in the Fermi surface. Below we assume
that the inelastic scattering rate is smaller than 1/τ and
thus impurity scattering gives the dominant contribution
to branch imbalance relaxation.

In linear response we write the quasiparticle dis-
tribution function in the superconductor in the form
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n(0)(εp/T )+n
(1)
p . This yields the source term in Eq. (11)

S(p) =
ξ

ε
v · ∂n

(1)
p

∂r
. (23)

At length scales in excess of the mean free path we may
employ the diffusive approximation. With the aid of
Eq. (5) the Hall current jy can be expressed in the form

jy(x) = −4eνD δn

∫
dξ
|∆|2

ξ2
∂xn̄a(ξ, x), (24)

where n̄a(ξ, x) is the antisymmetric in ξ part of the distri-
bution function averaged over the momentum directions.
The latter satisfies the diffusion equation with relaxation

D
∂2

∂x2
n̄a(ξ, x) =

1

τQ(ξ)
n̄a(ξ, x), (25)

with energy dependent relaxation rate τ−1Q (ξ) =

τ−1|∆|2(ξ2 + 2|∆|2)/ξ4. The solution of Eq. (25) is

n̄a(ξ, x) = n̄a(ξ, 0) exp [−x/LQ(ξ)] , (26)

where LQ(ξ) =
√
DτQ(ξ) is the energy-dependent branch

imbalance relaxation length.
We work in the vicinity of the critical temperature

Tc, where for typical thermal quasiparticles ξ ∼ T ,
(|ξ| � |∆|), the relaxation lengths are long, LQ(ξ) =
l|ξ|/|∆| � l. These quasiparticles diffuse into the bulk of
the superconductor and contribute to the gauge-invariant
potential Φ given by Eq. (6). The boundary value of
the nonequilibrium quasiparticle population, n̄a(ξ, 0) in
Eq. (26) is obtained by matching the solution of Eq. (25)
with the solution of diffusion equation with energy relax-
ation for the electrons in the normal metal. The result
depends on both the inelastic mean free path in the nor-
mal metal, le, and the branch imbalance relaxation length
LQ in the superconductor. For le � LQ the boundary
condition is

n̄a(ξ, 0) = sign(ξ)
eEx(0)LQ(ξ)

4T cosh2(ξ/2T )
, (27)

where Ex(0) is the electric field in the normal metal gen-
erating the steady current. Here we used the fact that
in the stationary case E = −∇Φ/e, which follows from
Eq. (4). Using this relation and substituting Eqs. (27),
(26) into Eqs. (6) and (24) we obtain the spatial distri-
butions of the electric field Ex(x) and the Hall current
jy(x) in the superconductor,

Ex(x) = Ex(0)F0

(
x

〈LQ〉

)
, (28)

jy(x) = σDEx(0)δn

(
|∆|
T

)2

F−2

(
x

〈LQ〉

)
, (29)

where 〈LQ〉 = 2 ln 2(T l/|∆|) and the functions Fn, are
defined as

Fn(x) =

∫ ∞
0

dy
yn

cosh2(y)
exp

(
− ln 2

x

y

)
, (30)

N SEx
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x
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FIG. 1. Plot of the functions F−2(x) (solid line) and F0(x)
(dashed line) in Eq. (30). The inset shows a schematic setup
of the normal current injection experiment. Electric current
is injected into the superconductor S from the normal metal
N along along the x-axis. Skew scattering of quasiparticles
generates an anomalous Hall current in the y direction.

and are plotted in Fig. 1. The spatial distributions of
the Hall current jy(x) and the electric field Ex(x) are
drastically different, and cannot be related by a local
Hall conductivity σxy. At relatively short distances,
l � x � 〈LQ〉, we see from Eq. (29) that jy(x) ∝
σDEx(0)δn(|∆|/T )2〈LQ〉/x, so that the Hall current is

Iy =

∫
dxjy(x) ≈ σDEx(0)δn

(
|∆|
T

)2

〈LQ〉 ln
〈LQ〉
l

.

Anomalous photo- and acousto-galvanic effects: When
an electromagnetic or an acoustic wave propagates
through a conductor it generates an anisotropic in mo-
mentum p distribution function. The induced current
density is proportional to the rate of the the momentum
transfer from the wave to the electron system,15

Jx = Iαxx.

Here I is the rate of momentum density transfer due to
the wave adsorption, and x is the direction of the wave
propagation. In px + ipy superconductors an anomalous
current in the y direction is generated. Considerations
similar to those leading to Eq. (22) near Tc yield

αxy ∼ αxx
|∆|
T

δn.

Finally, we note that all anomalous transport phe-
nomena discussed above are driven by the underlying
symmetry of the superconducting state. Therefore they
should exist in any superconductor whose order param-
eter breaks time reversal symmetry, see for example
Refs. 23–27. Although our consideration focused on
px + ipy materials we believe our approach is applica-
ble to other superconductors with broken time-reversal
invariance.
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