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We consider the effect of adding quantum dynamics to a classical topological spin liquid, with
particular view to how best to detect its presence in experiment. For the Coulomb phase of spin
ice, we find quantum effects to be most visible in the gauge-charged monopole excitations. In the
presence of weak dilution with nonmagnetic ions we find a particularly crisp phenomenon, namely
the emergence of hydrogenic excited states in which a magnetic monopole is bound to a vacancy at
various distances. Via a mapping to an analytically tractable single particle problem on the Bethe
lattice, we obtain an approximate expression for the dynamic neutron scattering structure factor.

The quest for spin liquids is an important enterprise in
strongly correlated many body physics in an era when
a huge amount of theoretical interest has focused on
forms of order outside the canonical broken symmetry
paradigm1–4. The search involves identifying relatively
simple Hamiltonians that host spin liquids and finding
experimental systems and signatures—the latter being
more elusive than in Landau ordered systems. Indeed,
at this point the list of experimental systems where
there is strong evidence of spin liquid behavior is small.
Among them is the celebrated spin ice system, arising
in some rare earth pyrochlore magnets, which exhibits
a U(1) spin liquid and excitations which are condensed
matter analogs of Coulombically interacting magnetic
monopoles5. Spin ice is truly special at this point in host-
ing a three dimensional spin liquid, but, owing to large
magnetic moments, is limited to the classical regime, in
which coherent quantum dynamics appears to play little
role.

Logically, much recent interest has focused on looking
for quantum generalizations of spin ice. There are several
candidate materials for quantum spin ice behavior, such
as Tb2Ti2O7

6–9, Yb2Ti2O7
10–12 and Pr2Zr2O7

13, but an
unambiguous experimental signature of quantum spin ice
has been lacking. Logically, much recent theoretical work
has focused on looking for quantum generalizations of
spin ice in which quantum fluctuations can lead to a fully
quantum U(1) spin liquid14–20 .

Here we investigate the addition of quantum fluctua-
tions to spin ice but in a different limit which is, plau-
sibly, of relevance to existing materials. Fundamentally,
we wish to understand the leading order effects of adding
quantum dynamics about the classical spin ice limit. As
we will detail below, this has a parametrically larger ef-
fect on monopole motion than on monopole-free ground
states so the leading manifestations of quantum fluctua-
tions appear when monopoles are present.

We begin this program by studying the simplest man-
ifestation of the quantum mechanics of monopoles—a
striking effect that appears in the response of quantum
spin ice to the introduction of a vacancy or missing spin.
We find that the lowest lying excited states in the vicinity
of the vacancy resemble those of hydrogen modulo lat-
tice induced mixing—they involve a magnetic monopole

bound to the impurity site into an infinite set of lev-
els. In the presence of a dilute set of such impurities,
these states give rise to a characteristic signature in neu-
tron scattering at low temperatures which we discuss.
Readers may note the family resemblance of these hy-
drogenic monopole states to hydrogenic states in doped
semiconductors21 (and references therein), although we
caution that the details have crucial differences. We
also note that the response of spin liquids to impuri-
ties is of broad interest as a diagnostic of their internal
dynamics22,23: what happens when you dope a spin liq-
uid is the fundamental question of the RVB theory of
high temperature superconductivity24.

In the balance of the paper we begin by briefly re-
viewing how the dynamics of quantum spin ice can be
formulated as the quantum mechanics of monopoles. We
then concentrate our attention on the problem of a va-
cancy spin and describe how it can be mapped to a good
approximation to a monopole on a Bethe lattice interact-
ing with a fixed Coulombic charge. This model leads to a
family of hydrogenic bound states of the monopole along
with a continuum band. In the technical heart of the pa-
per we solve this problem and obtain an exact closed form
solution for the onsite Green’s functions. We use these
results to obtain the signature of the hydrogenic states
in the structure factor of spin ice containing a dilute set
of vacancy spins. We conclude with some comments and
pointers to future work.
Quantum dipolar spin ice: Our model Hamiltonian

HQDSI = HDSI +
∑
i

t · Si (1)

consists, firstly, of the classical dipolar spin ice Hamil-
tonian, defined for Ising spins Si living on the sites of
pyrochlore lattice and pointing along the local easy axis
joining centers of neighboring tetrahedra25,26 (and refer-
ences therein):

HDSI =
µ0µ

2

4π

∑
i<j

[
Si · Sj
r3ij

− 3(Si · rij)(Sj · rij)
r5ij

]
. (2)

The second term in Eq. (1) is the transverse field, ori-
ented perpendicular to the local easy axis, which adds
the simplest quantum dynamics in the form of single spin
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FIG. 1. Spin ice projected onto a plane, with each vertex
of the resulting square lattice in (a) corresponding to a py-
rochlore tetrahedron. (b) A missing spin gives rise to a +1
and a −1 charges; (c) flipping one of the majority spins ad-
jacent to the vacancy creates a bulk charge +2, inverting the
sign of one of the vacancy charges; (d) the bulk charge prop-
agates in the system through further spin flips, while the net
charge of vacancy is approximated as a single −2 monopole.

flips. This simple form is convenient for a first theoretical
analysis, for a more complete symmetry-based analysis of
quantum terms in the Hamiltonian, see17,27.
Ghost spins and the Bethe lattice: At this point
we switch from a spin description to that referred to as
the dumbbell model5 which we quickly review. Each spin
is replaced by a pair of magnetic charges ±qm = µ/ad
of opposite sign, where ~ad is a vector pointing between
the centres of neighboring tetrahedra. By summing up
the net charge at the center of each tetrahedron (Qα ≡∑
i∈α qi = 0,±2qm,±4qm), we can replace the dipolar

piece of the spin Hamiltonian (2) by

H =
µ0

4π

∑
α<β

QαQβ
rαβ

+
v0
2

∑
α

Q2
α , (3)

Coulomb interactions between charges on the diamond
lattice, with v0 =

(
2 +
√

6
)
µ0/ (4πad) the cost of cre-

ating a monopole, which can be shifted by a nearest-
neighbor exchange term. In spin ice ground states,
Qα ≡ 0. Flipping a spin in a ground states yields a pair of
magnetic monopoles of charges ±2qm on adjoining tetra-
hedra which can then move apart via further spin flips
at finite cost in energy. Each charge has three majority
spins that are all pointing in or out of the tetrahedron,
and a single minority spin pointing in the opposite direc-
tion. We note that the ±4qm excitations are explicitly
excluded from the present analysis.

With this in hand let us discuss the energetics of sub-
stituting a magnetic ion on the pyrochlore lattice by a
non-magnetic impurity, see Fig. 1. Removing a spin
from a classical spin ice state (Fig. 1a) leaves behind two
monopoles of charges ±qm28 (Fig. 1b). A bulk monopole

with charge ±2qm can be ‘emitted’ by the vacancy via
flipping one of the two majority spins at each of the tetra-
hedra adjacent to the ghost spin (Fig. 1c). The bulk
monopole can then move around in the system. We de-
fine a quantity that can be thought of as the ionization

energy of the vacancy: I = µ0

2π
µ2

a3d
+ 2v0

µ2

a2d
. This is the

total energy cost of an emitted monopole moved out to
infinity. Emitting another monopole into the bulk would

cost additional energy of the order of 2v0
µ2

a2d
, so the lowest

energy charged excitation in the presence of an isolated
vacancy is a single monopole with charge ±2qm. Once
the monopole is emitted into the bulk, it is free to hop
through fluctuation-induced spin flips, while a net charge
of opposite sign ∓2qm remains at the vacancy (Fig. 1d).

Adding quantum dynamics via the transverse field in
Eq. (1) has only a weak effect on the ground states, as
connecting two of them requires flipping spins in closed
loops, minimally six of them on a hexagon of the py-
rochlore lattice. Near the classical limit, v0 � t, such
processes come with a prohibitively small energy scale,
∼ t6/v50 . By contrast, for a state containing a monopole,
the lowest order effect – a monopole hopping onto a
neighboring tetrahedron by flipping a majority spin – is
parametrically stronger: linear in t!

Thus, in experiment, the most promising place to
see quantum effects in spin ice is in the gauge-charged
monopole excitations, rather than its gauge-neutral gap-
less emergent photons. Analogous considerations apply
in the proximity of a vacancy, where we focus on the case
of a monopole emitted into the bulk (Fig. 1d), also with
low-order signatures. For this reason, here we perform a
quantum calculation for the monopole states, and do a
thermal sum over the nearly degenerate spin ice configu-
rations.

We treat the problem as that of two Coulombic
charges, one of which is stationary. As the charge prop-
agates through the bulk, it changes the spin ice back-
ground. This process is difficult to capture exactly, but
fortunately it is possible to make considerable progress
via an effective model that we describe next. From this,
we are able to extract the bound states in considerable
detail, followed by a continuum band, much as we would
expect for the Hydrogen atom.

In order to investigate the problem of an isolated va-
cancy that has emitted a free monopole into the bulk,
we switch to the state lattice description29. First, con-
sider a new basis of the following (classical) states: a
spin ice state with a vacancy, which we label |0〉, and
states with an emitted monopole in the bulk, connected
to |0〉 through single spin flips. Next, each site of the
state lattice represents one of the basis states |n〉; while
bonds connect those sites whose corresponding states are
connected by single spin flips. Apart from site 0 (repre-
senting |0〉), the state lattice is trivalent. It can be shown
that the smallest closed cycle in the state lattice of disor-
dered pyrochlore spin ice has length 2030. We therefore
approximate the state lattice by a cycle-free infinite Cay-
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FIG. 2. The Bethe lattice describing state space. Its root,
n = 0, corresponds to the unionized vacancy state |0〉.

ley tree (the Bethe lattice) rooted at site 0 (Fig. 2). The
monopole propagating in real space corresponds to a sin-
gle particle hopping on this lattice in the presence of the
Coulomb potential:

H|0〉 = −t
4∑

m=1

|0m〉; H|k〉 =

(
I +

C

dn

)
|k〉−t

3∑
m=1

|km〉

(4)
where k labels a site at the nth generation of the Bethe
lattice and the sums run over states reached by flipping
majority spins of the monopole. dn denotes the distance
between the vacancy and the monopole in the bulk in
units of ad, such that C/dn is the attractive Coulomb

potential (C = −µ0

π
µ2

a2d
) between the two charges. In

conventional spin ice, the cost of having a monopole is
larger than the magnitude of the Coulomb interaction
between two charges: I > |C|, where ad has been set to
unity. For concreteness, we use C = −I/3; t = I/10 in
the following. Since we restrict ourselves to a particular
starting spin ice configuration and omit other degenerate
ice states from the discussion, the mapping from Eq. (1)
to (4) is accurate to O(t5/v40). Our final approximation
concerns the distance between monopoles. Since the four
sites at the first generation of the Bethe lattice corre-
spond to the bulk monopole being one spin flip away from
the vacancy, it is natural to approximate dn in Eq. (4)
by the generation of the Bethe lattice n. This definition
fails to be exact already beyond O(t2), but should work
sufficiently well in the I, |C| � t regime, when the bulk
monopole prefers not to move too far. In return for these
approximations, we are able to solve exactly our idealized
model, that of a single particle hopping on the Bethe lat-
tice in the presence of a Coulomb potential I + C/n for
n > 0.
The Bethe lattice problem: We calculate the diag-
onal elements Gii(ω) of the lattice Green’s function to
infinite order in t31,32. We find30 that each Gii(ω) can
be written down in terms of a finite number of GFk (ω),
infinite sums involving particle hopping from a site at
generation k to sites at generations g > k. The latter
have a closed form expression in terms of the Gauss hy-
pergeometric functions F 2

1 (a, b, c, z)33:

GFk (ω) =
2k/ω√

1 + x2 + 1

1

k − C/ω√
1+x2

F 2
1

(
1− C/ω√

1+x2
, k + 1, k + 1− C/ω√

1+x2
, 1−
√
1+x2

1+
√
1+x2

)
F 2
1

(
1− C/ω√

1+x2
, k, k − C/ω√

1+x2
, 1−
√
1+x2

1+
√
1+x2

) (5)

where x2 = − 8t2

ω2 . This yields the exact expression for
any of the diagonal elements of the Green’s function; for
instance at the root site

G00(ω) =
(
ω − 4t2GF1 (ω − I)

)−1
.

The full Green’s function yields the energy levels via its
poles and the local densities of states for each Bethe lat-
tice generation, proportional to its imaginary part. The
local density of states at site 0 in Fig. 3 indicates that
indeed there are bound states followed by the contin-
uum energy band. While the classical ground state (a
spin ice state with a vacancy) would have zero energy,
the ground state energy of the quantum problem ω0 is
lowered due to the hopping t. Low-lying excited states
are separated from the ground state by a gap, which is
also decreased from the classical value I through hop-
ping and Coulomb attraction. They accumulate below
the edge of the continuum band, located at L = I−

√
8t2.

In the Bethe lattice problem, the band of the extended
states, of width linear in t, is confined to the region
I −
√

8t2 < ω < I +
√

8t2. (Introducing closed cycles

into the lattice has the effect of adding band tails, ex-
tending beyond these edges.)
Signatures of monopoles in neutron scattering:
One of our central results is the dynamic structure factor,
defined as

S(~q,∆ω) =
∑
f

δ(Ef −Ei−∆ω)|
∑
~R

〈f |S+
~R
|i〉ei~q·~R|2. (6)

In order to extract the information that is most relevant
to spin ice experiments from the Bethe lattice model,
we calculate a one dimensional version of Eq. (6), aver-
aged over all directions of ~q. Such a quantity, S(q,∆ω),
can be measured directly in a powder averaged neutron
scattering experiment. The details of our calculation,
carried out in the limit of dilute nonmagnetic impurities,
are given in the Supplemental Material30. The dynamic
structure factor S(q,∆ω), plotted in Fig. 4(a), has sharp
features signaling the presence of bound states. The
structure of the lines gives direct information about the
character of the ground and excited states. The most vis-
ible signatures show up in elastic scattering and at the
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FIG. 3. Local density of states at site 0 of the Coulomb prob-
lem on the Bethe lattice, for C = −I/3; t = I/10. Bound
states (red) appear as sharp peaks; the lower edge of the con-
tinuum (blue) is labeled L, the classical ground state energy
by 0 and the ionization energy by I.

energy transfer equal to the difference between the first
excited state and the ground state. For a well-localized
ground state, the matrix elements between S+

~R
|i〉 and ex-

cited states at higher energies (bound to the vacancy at
distant radii) give rise to peaks whose structure is essen-
tially identical up to a scale factor, as shown in Fig. 4(b).
Note that for t = 0, the signals corresponding to n 6= 1
would be absent, vanishing as powers of t. Their presence
thus yields direct evidence of the existence of quantum
dynamics. Observing such hydrogenic bound states may
well serve as the diagnostic of quantum spin ice which
has thus far been lacking. An ideal compound would
have a large value of total angular momentum J , and
hence appreciable Coulomb splitting of the bound states;
in addition to substantial transverse terms for multiple
bound states to appear in neutron scattering. Moving
away from the classical spin ice limit, much progress has
been made very recently34,35. One needs substantial sub-
leading admixtures to the spin’s crystal field ground state
doublet, as suggested34 to be the case in CdEr2Se4

36.
Another origin of transverse terms is through interac-
tions of the ion with surrounding magnetic moments35.
In Dy2Ti2O7, a transverse magnetic field on the order of
0.5 Tesla37,38 exists in the vicinity of a monopole. How-
ever, once projected onto the crystal-field ground state
doublet, the Ising nature of the effective spin-1/2 still
suppresses quantum fluctuations. Regarding compounds
whose magnetic ions are not strictly Ising, one of the
best-known quantum spin ice candidates, Yb2Ti2O7, has
an easy-plane anisotropy. While the exchange forces the
magnetic moments in the 〈111〉 direction, there are trans-
verse terms of the same order as the 〈111〉 exchange11.
Another easy-plane compound where a similar scenario
may apply is CdDy2Se4

39, whose large J may put this
spinel in the right parameter range.

Conclusion and outlook: We have studied in detail
the properties of magnetic monopoles in dipolar quantum
spin ice. We have demonstrated that these are the prime
indicators of the presence of quantum dynamics. In the
presence of nonmagnetic impurities we have found both

sharp hydrogenic bound states as well as a broad contin-
uum energy band. While we believe these results to be
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FIG. 4. Left: dynamic structure factor S(q,∆ω) for pow-
der averaged neutron scattering. Each line is multiplied
by Exp[0.7|n− 1|], where n labels the all-even energy lev-
els with n = 0 the ground state. Right: Lineshapes
S(q,∆ωn)/S(0,∆ωn) for n = 0, 1, 5, 10. C = −I/3; t = I/10
throughout.

robust, there is clearly much scope for further, presum-
ably numerical, modeling taking into account the detailed
lattice structure, as well as any material specific single-
ion physics and terms in the quantum Hamiltonian.

The quantum dynamics of a pair of monopoles presents
a more difficult problem due to the pair’s center of mass
motion. We are planning to address this issue, as well
as clarify the detailed character of the continuum band
of states in the vacancy problem, in future work. Addi-
tionally, despite neutron scattering being the method of
choice for investigating magnetic materials, local disorder
is an attractive subject for other types of experimental
probes, such as nuclear magnetic resonance. While such
techniques are beyond the scope of this work, our the-
oretical model can also be employed for calculating real
space quantities accessible by the local probes.
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