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We calculate the collective mode spectrum in models of superconductors with attractive interac-
tions in s-and d channels as a function of their relative strength, across a phase diagram that includes
transition between s, s+ id, and d-wave ground states. For one-band systems, we recover the largely
known results for the phase, amplitude, and Bardasis-Schrieffer modes of pure s or d-states, and
show how the well-defined Bardasis-Schrieffer mode softens near the s + id phase boundary and
evolves in a characteristic manner through the s + id phase as a mixed symmetry mode. For two-
band systems, we consider a model of hole-doped Fe-based superconductors, and find in the case
of an s-wave ground state a well-defined Bardasis-Schrieffer mode below the lowest gap edge, as
well as a second, damped mode of this type between the two gap energies. Both modes soften
as the s + id phase is approached, and only a single “mixed-symmetry Bardasis-Schrieffer mode”
below the pairbreaking continuum propagates in the s+ id phase itself. These modes coexist with
a damped Leggett mode with collective frequency between the two gap scales. In the pure d-state,
no Bardasis-Schrieffer type s excitonic mode exists at low T. We briefly discuss Raman scattering
experiments and how they can be used to identify an s + id state, and to track the evolution of
competing s- and d- interactions in these systems.

I. INTRODUCTION

In contrast to cuprate superconductors, which are be-
lieved to have universal d-wave symmetry,1,2 the Fe-based
superconductors (FeSC) appear to manifest generic s-
wave pairing, with an order parameter that likely changes
sign between Fermi surface (FS) sheets.3–5 On the other
hand, calculations of pairing by exchange of spin fluctu-
ations have suggested from the early days of research on
these materials that the d-wave channel can be strongly
competitive, and might under some circumstances be-
come the dominant pair symmetry.6,7 Within an RPA
treatment, it was argued that overdoping either by holes
or electrons away from a 6 electrons/Fe parent mate-
rial should lead to a d-wave ground state.8,9 This gave
rise to the possibility that the symmetry broken s-wave
phase could make a low-temperature transition to a d-
wave phase, and several authors argued that this should
proceed through an intervening s + id state, in which s
and d wave functions are combined with fixed relative
phase π/2 and time reversal symmetry T is broken.10,11

While such a transition would be of great potential inter-
est, and represent the first example of its kind, an s+ id
state is not trivial to detect. Although T is broken, the
state is not chiral, and thus does not manifest sponta-
neous edge currents as discussed, e.g. in the context of
the p+ ip′ state of Sr2RuO4. Its quasiparticle excitations
are fully gapped, but so are those of the s wave state out
of which it evolves, so thermodynamic signatures of the
transition are likely to be weak.

The proximity of different pairing channels is an un-
usual situation in superconductors(SC), but was stud-
ied quite early in the pioneering work of Bardasis and
Schrieffer,12 where the effect of fluctuations in a subdomi-
nant pairing channel was investigated in a conventional s-
symmetry ground state. The motion of the order param-

eter was found to include a collective mode correspond-
ing to the oscillation of the phase of the subdominant
pairing channel, with the q → 0 frequency dependent
on the difference between the inverse of the two pair-
ing interaction components. This frequency is located
below the pair-breaking edge of the condensed s-wave
system. This “Bardasis-Schrieffer (BS)” mode (some-
times referred to as a particle-particle exciton) was never
convincingly observed in conventional superconductors
owing, presumably, to a dearth of systems exhibiting a
strong s-d competition. Taking a hint from the proximity
of s and d channels predicted by spin fluctuation theory,
FeSC can be viewed as excellent candidates to probe such
modes. A search using Raman scattering was proposed
in FeSC by Devereaux and Scalapino.13 Recently, two
electronic Raman measurements on Ba1−xKxFe2As2

14,15

and NaFe1−xCoxAs,
16 found features associated with BS

modes. The exact identification of these features with a
BS mode is hindered by the fact that these systems posses
multiple gaps and the exact nature of possible collective
modes and their evolution across a typical doping phase
diagram is not clearly known. Nevertheless, these dis-
coveries raise the prospect of systematic studies of the
interaction strengths and collective modes in different
channels in FeSC for the first time.

To facilitate the interpretation of experimental results
in this area as they develop, we provide here the col-
lective mode spectrum in a simplified model of an un-
conventional superconductor with competing pairing in
s and d channels. The prime focus of this work is the
study of collective modes in a non-s wave ground state.
We thus explicitly account for the possibility of a tran-
sition to an s + id state between pure s and d phases
and investigate collective modes in the s + id state and
report a mixed symmetry collective mode which couples
the amplitude and phase sectors of the fluctuations in
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the SC order parameter and exhibits oscillations in both
s and d symmetry channels. As a demonstration of our
approach, we also study the simpler, one-band case, and
drive it through s to s+id to d transitions. We reproduce
the well known results for collective modes in single band
superconductor and use them as a benchmark to discuss
the differences in a multiband system. We demonstrate
the existence of the mixed symmetry collective mode in
both one and multi-band cases.

The study of collective modes in ‘exotic’ non-pure-
s wave superconductors has some history: Hirschfeld
et al17 studied the analog of the 3He-B “squashing
modes” in the Balian-Werthamer p-wave ground state,
discussing how such modes could be observed in opti-
cal conductivity. Wu and Griffin18 studied the possi-
bility of an s-excition for systems with d-wave ground
states, and showed that this mode does not propagate
at low T . More recently, in the context of the FeSC,
Devereaux and Scalapino investigated the role of a BS
particle-particle exciton on the Raman spectrum of an
s± superconductor.13 Khodas et. al. studied Raman sig-
nature of this mode and the role of density fluctuations
in Fe-selenides.19 Bittner et. al. derived general expres-
sions for the collective modes in the s-wave ground state
for noncentrosymmetric systems.20

Works on collective modes in T -broken superconduc-
tors are somewhat rarer. Several papers generalized the
well-known collective modes of the 3He-A phase21 to
p + ip′ and d + id′ superconductors in situations where
the two harmonics in question corresponded to the ba-
sis functions of a 2D representation of the symmetry
group.22,23 Balatsky et. al.24 phenomenologically dis-
cussed a ‘clapping’ type orbital mode analogous to those
discussed in Ref. 23, but for a general situation where the
two harmonics d and d′ were not necessarily degenerate.
The same mode and its detection in Raman experiments
was also discussed in Lee et. al.25

This mode corresponded to an oscillation of the rela-
tive phase of the two components dx2−y2 (d) and dxy(d

′),
two distinct representations of the tetragonal group.
More recently, one of the authors26 and Marciani et. al.27

studied, in the context of FeSC, the Leggett modes (the
oscillations of the relative phase between order param-
eters on two bands: see Ref 28) in a special s-wave T
broken s+ is′ SC where it was found that the mode soft-
ened at the boundaries of the s+ is′ state (see also Refs.
29–31).

The current work is more along the spirit of the last
work above in the sense that the collective modes in a
multiband s + id SC are investigated. The mixed sym-
metry collective mode that we find also softens at the
boundaries of the s + id state. Besides the mixed sym-
metry collective mode in the s + id ground state, we
also find, in the s−wave ground state, a damped Leggett
mode (which has s-wave symmetry) residing between the
multiple gaps in the system (in our language we do not
consider them to be true collective modes of the system,
but nevertheless appropriate response functions will show

broad peaks). Additionally, besides the usual BS mode
residing below the minimum gap in the system, we report
another damped BS mode residing between the multiple
gaps. Within our model, we can show that there is only
one BS mode below the minimum gap for any interaction.
The presence of multiple BS modes is therefore expected
to be a generic feature of multiband systems.
In this work we have ignored the coupling to the den-

sity fluctuations. The main qualitative effect of ignor-
ing the density fluctuations is related to the Bogoliubov-
Anderson-Goldstone(BAG) mode. Although the BAG
mode is expected due to spontaneous breaking of U(1)
symmetry during the SC transition, coupling to charge
density fluctuations implies that the oscillation of the
gauge degree of freedom is identical to the usual plas-
mon (“Anderson-Higgs mechanism”).32 In conventional
cases of 1-band and 2-band SC, it is well known that
coupling to density fluctuations does not affect the mass
of the Leggett26–28 or the BS modes.12 Since the argu-
ments are based on gauge invariance and symmetries, we
assume without proof that same hold for our multiband
system. We expect our work to provide useful insight in
terms of number of collective modes to be expected in a
system and detecting a non-trivial multiband SC ground
states (s+ id is our case). Although there are many ways
to model the multiband scenario, we limit our consider-
ations to a minimal model that can be readily applied to
FeSC, as will be described later.
We study the collective modes by studying the pos-

sible excitations in the system within linear response in
different angular momentum channels. This method is
sometimes referred to as a generalized random phase ap-
proximation, and is known to yield results identical to
those obtained from the kinetic equation method21. We
explicitly derive a 1-band case and extend the formula to
the multiband scenario. We stress that the formulation
has the great advantage of spitting out all the collective
modes in a clean SC in all angular momentum channels
with minimal effort. The biggest advantage is its scalabil-
ity to multiband or multiorbital systems. The rest of the
paper is organized as follows: In Sec. II we specify our
1 band model, derive the collective mode equation and
study the collective modes; reproducing the well known
results. In Sec. III we discuss the modeling of a FeSC
with 3 pockets, discuss the collective modes and highlight
the differences with 1-band model. In Sec. IV we discuss
our results in connection to FeSC and some of the recent
Raman experiments. We summarize our main findings
in Sec. V. The Appendix presents details of some of the
calculations.

II. COLLECTIVE MODES IN A 1-BAND

MODEL

We revisit this simple model as this helps us in two
ways: we can systematically tune the system through a
s to s+ id to d transitions and trace the collective modes
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across the phase diagram (through the s+id phase whose
collective modes have not been addressed before); we will
then use this result as the benchmark against which the
multiband case will be compared. Since we are interested
in studying the collective modes in the SC state, we only
retain the interactions in the particle-particle (p-p) chan-
nel. As discussed in the introduction, the interactions
in the particle-hole (p-h) channel (which couples the SC
fluctuations to density fluctuations) will be dropped. The
logic of our presentation will be the following: we start
with an s−wave ground state; use the d−wave interac-
tion as our tuning parameter to generate a phase diagram
that scans through the s, s+ id, d wave regions; we then
find the collective modes with both s and d symmetries
in each region and consistently track them as the d−wave
interaction is tuned.

A. Model and phase diagram

Our one band model is a 2D Fermi liquid (FL) with

the interaction V (~p,−~p;~k,−~k) ≡ V (~p,~k) in the pairing
channel. We decompose this interaction into different
singlet angular momentum channels (limiting ourselves
up to the d−wave harmonic):

V (~p,~k) = Us + Udf~kf~p, (1)

where f~k =
√
2 cos 2θ~k. All the vectors are by definition

on the circular fermi surface (FS) and θ~k is the angle of
~k measured from the kx-axis. We follow the convention
where repulsion is denoted by the positive sign of U ’s.
We keep Us fixed and tune Ud. Within weak coupling,
this results in the usual self consistency relation for the
order parameter ∆~p:

33

∆~p = −
∫

K

V (~p,~k)
∆~k

ω2
n + ε2~k + |∆~k|2

, (2)

where
∫

K stands for T
∑

n

∫

d2k
(2π)2 . Taking as input that

the only stable solutions are s, s + id, and d states (no
s + d),11 and writing ∆~p = ∆s + ∆df~p (with ∆s,d as
constants) we arrive at

∆s = −Us

∫

K

∆s

ω2
n + ε2~k

+ |∆~k|2
,

∆d = −Ud

∫

K

f2
~k
∆d

ω2
n + ε2~k

+ |∆~k|2
. (3)

Since we work in the FL regime, we implement
∫

~k =

ν2D
∫

dθ
2πdε which leads to the definition of two dimen-

sionless parameters us ≡ ν2DUs and ud ≡ ν2DUd where
ν2D is the 2D density of states at the fermi surface. This
model is then easily solved (see Appendix A) and the
resulting phase diagram is schematically plotted in Fig.
1a.

The quantities that change with ud are Tc, ∆s, and
∆d. To remove the energy cut-off (Λ) dependence of our
results, these quantities are normalized to ∆s

0, the gap
value at ud = 0 (the pure s−wave state). We thus work
with the normalized parameters:
αs ≡ ∆s/∆s

0, αd ≡ ∆d/∆s
0, η ≡ αd/αs.

The most relevant points that define the boundaries of
the s+ id phase are at T = Tc and T = 0. Tc (obtained
by setting αs,d → 0) across the phase diagram is given
by

ln
2γΛ

πTc
= min

{

− 1

us
,− 1

ud

}

> 0, (4)

where γ ≈ 1.78. The boundaries of the s + id state can
be found after rewriting the self consistency equations as
(see Appendix A for details)

lnαs = −
∫

dθ

2π
ln
√

1 + η2f2
~k
,

1

us
− 1

ud
= −

∫

dθ

2π
(f2

~k
− 1)ln

√

1 + η2f2
~k

(5)

and setting η → 0 and η → ∞ in the second equation.
This results in the s/s+ id boundary at us = ud and the
s+ id/d boundary at ud = 2us/(2+us).

11 Fig. 1b shows
the calculated gaps αs,d as ud is tuned through the s+ id
state.

B. Collective modes-formulation and results

We employ standard linear response to study the col-
lective modes in this system. We provide a simple deriva-
tion for the 1-band model as this will help us generalize
the formula to the multi-band case with ease. The Hamil-
tonian in the SC state is given by

H =
∑

k

Ψ†
~k
H~kΨ~k, where Ψ†

~k
=
(

c†~k↑, c~k↓

)

,

H~k = ε~kσ3 −∆R
~k
σ1 +∆I

~k
σ2,

∆∗
~k

= −
∑

~q

V (~k, ~q)〈c†−~q↑c
†
~q↓〉, (6)

where σ0 is a 2× 2 identity matrix, ~σ is a vector of Pauli
matrices and R, I stand for real and imaginary part of
the order parameter. The perturbing fields(originating
from fluctuations of density and the order parameter)
that couple to this Hamiltonian have the form:

δH~q,~k(t) =
(

δD~q,~kσ3 − δ∆R
~q,~k

σ1 + δ∆I
~q,~k

σ2

)

e−iωt.(7)

It is convenient to deal with perturbing fields indepen-

dent of the internal variable ~k in order to formulate the
linear response problem. This is achieved by writing

δ∆j

~q,~k
=
∑

L

δ∆j,L
~q fL

~k
,

δD~q,~k =
∑

L

δDL
~q f

L
~k
, (8)
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FIG. 1: (a) The schematics of the phase diagram of the 1-band model. (b) The calculated evolution of the s− and d−wave
gaps αs and αd (normalized to the pure s− wave gap) as a function of the d−wave interaction strength ud. (c) The evolution
of the collective modes(solid lines) in a 1-band model as |ud| is increased. The BS mode softens as the s+ id boundary(shown
in light blue dots) and acquires a mixed symmetry (MS) character in the s+ id state and softens again at the other boundary.
The dashed black line denotes the minimum gap in the system. Collective modes are well defined only below the minimum
gap. There are no other damped resonances in this model. Here us = −0.5.

where L are the different orthogonal angular momentum
channels. (These will correspond to the irreducible repre-
sentations of the point symmetry group in the presence
of a lattice). In the usual case of density fluctuations,

there is no dependence of δD~q,~k on ~k (as it corresponds

to non-equilibrium fluctuations of total density). This is
why the higher angular momentum channels, in this sim-
ple model, are not affected by the Coulomb force. This
will be utilized later. For now, proceeding in complete
generality, we are then led to

δH~q(t)

=
∑

k,L

fL
~k
Ψ†

~k

(

δDL
~q σ3 − δ∆R,L

~q σ1 + δ∆I,L
~q σ2

)

Ψ~ke
−iωt,

=
∑

L,i

δFL
i (~q)RL

i (~q)e
−iωt. (9)

where

RL
i (~q) =

∑

k

fL
~k
Ψ†

~k
σiΨ~k, (10)

and the perturbing field

δFL
i = (−δ∆R,L, δ∆I,L, δDL). (11)

The self-consistency equation in Eq. (6) is then written
as:

(∆∗)L = −
∑

~k

V LL′

fL′

~k
〈c†−~k↑c

†
~k↓〉, (12)

where V LL′

is defined through

V (~k, ~q) =
∑

L,L′

V LL′

fL
~k
fL′

~q . (13)

Starting from

δ∆∗
~q = −

∑

~k

V (~q,~k)δ〈c†−~k↑c
†
~k↓〉, (14)

we can make use of the following relations

Ψ†σ1Ψ = c†↑c
†
↓ − c↑c↓,

Ψ†σ2Ψ = −i
(

c†↑c
†
↓ + c↑c↓

)

,

Ψ†σ3Ψ = c†↑c↑ + c†↓c↓, (15)

to write down,

2δ∆R
~q = −

∑

~k

V (~q,~k)δ〈Ψ†
~k
σ1Ψ~k〉,

−2δ∆I
~q = −

∑

~k

V (~q,~k)δ〈Ψ†
~k
σ2Ψ~k〉,

δD~q = V~q

∑

~k

δ〈Ψ†
~k
σ3Ψ~k〉,

(16)

where V~q = 2πe2/q. Following the argument around Eq.
(13) and abbreviating V LL as V L, we can write Eq. (16)
as:

2δ∆R,L
~q = −V Lδ〈OL

1 〉,
−2δ∆I,L

~q = −V Lδ〈OL
2 〉,

δDL
~q = V L

~q δ〈OL
3 〉.

(17)

We will work in the limit of ~q → 0 so that ~q will only be
retained in D~q to account for the singular nature of the
Coulomb interaction.
The statement of linear response is that the change in

an operator due to the applied perturbation is given by
(recalling that G = −〈ΨΨ†〉)

δ〈RL
i 〉(Q) =

∑

j,L′

ΠLL′

ij (Q)δFL′

j (Q),

ΠLL′

ij (Q) =

∫

K

fL
~k
fL′

~k
Tr [G(K)σiG(K +Q)σj ] . (18)
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Combining Eqs. (14)-(18), we arrive at the one-band
system of equations:

∑

j,L′

{

ΠLL′

ij − 2[V L]−1δLL′

δij
}

δFL′

j = 0.

(19)

See Appendix B for explicit form of the mode equation.
The non-trivial solutions of this set of equations are the
collective modes of the system.

1. General considerations

We see from Eq. (19), that the collective modes can
be found once the interactions V L and the polarization
bubbles ΠLL′

ij are known. These depend on the specifics
of a microscopic model and can be easily computed. In a
particle-hole symmetric system, quite generally, we will
have:

ΠLL′

11 (iΩn) =

∫

K

2fL
θ f

L′

θ

D+D−

[

−ω+ω− − ε2 +∆2
R −∆2

I

]

,

ΠLL′

22 (iΩn) =

∫

K

2fL
θ f

L′

θ

D+D−

[

−ω+ω− − ε2 −∆2
R +∆2

I

]

,

ΠLL′

33 (iΩn) =

∫

K

2fL
θ f

L′

θ

D+D−

[

−ω+ω− + ε2 −∆2
R −∆2

I

]

,

ΠLL′

13 (iΩn) =

∫

K

2fL
θ f

L′

θ

D+D−
[Ωn∆I ] = −ΠLL′

31 (iΩn),

ΠLL′

23 (iΩn) =

∫

K

2fL
θ f

L′

θ

D+D−
[−Ωn∆R] = −ΠLL′

32 (iΩn),

ΠLL′

12 (iΩn) =

∫

K

2fL
θ f

L′

θ

D+D−
[2∆R∆I ] = ΠLL′

21 (iΩn).

(20)

D± =
(

ωm ± Ωn

2

)2
+ ε2 + |∆|2. ∆R,I are the ground

state properties and are taken as input from the analysis
in the previous section. Although the temperature evo-
lution can be tracked, we shall perform calculations at
T = 0 as the calculations are tractable and already very
informative. We make use of the following integrals:

∫

K

ω2
m

D+D−
=

1

∆0
s

∫

~k

1

4E
, (21)

∫

K

1

D+D−
=

1

(∆0
s)

3

∫

~k

1

4E

1

E2 +
(

Ωn

2∆0
s

)2 , (22)

where E2 =
(

ε~k
∆0

s

)2

+ α2
s + α2

df
2
~k
; and

ν2D∆0
sI0(iΩn) =

∫

~k

1

E

1

E2 +
(

Ωn

2∆0
s

)2 , (23)

ν2D∆0
sI2(iΩn) =

∫

~k

1

E

f2
θ

E2 +
(

Ωn

2∆0
s

)2 , (24)

ν2D∆0
sI4(iΩn) =

∫

~k

1

E

f4
θ

E2 +
(

Ωn

2∆0
s

)2 . (25)

where f s
θ = 1; fd

θ =
√
2 cos 2θ. It is worth noting that in

the s−wave ground state (αd = 0), I2 = I0 and I4 = 3
2I0.

Analytic continuation to real frequencies is performed by
iΩn → Ω+iδ. As one tunes ud, the ground state changes,
and the ΠLL′

ij ’s need to be calculated at every ud.
In what follows, we will ignore the coupling of the col-

lective modes to the charge sector as justified in the Intro-
duction. We refer the reader to discussion in Ref. 26 and
references therein where explicit coupling to the charge
sector, within the same formalism, is presented. The re-
sults from now on therefore pertain, strictly speaking, to
the collective modes in a ‘neutral’ SC. This simplification
allows the formulation of the whole problem in a 4 × 4

space of δ∆R,I
s,d . In the chosen gauge (where the s−wave

condensate is chosen to be real), R maps onto the ampli-
tude sector and I maps onto the phase sector. We now
investigate the individual cases.

2. Collective modes - s wave ground state

It can be seen from Eq. (20) that in a pure angular

momentum ground state (pure s or pure d), ΠLL′

= 0 if
L 6= L′ (due to orthogonality) and in non-complex order
parameter ground state, Π12 = 0. Thus, in the s wave
ground state, the only surviving bubbles are:

Πss
11(Ω) = ν2D

[

−4Lg +

(

1−
(

Ω

2∆s
0

)2
)

I0(Ω)

]

,

Πss
22(Ω) = ν2D

[

−4Lg −
(

Ω

2∆s
0

)2

I0(Ω)

]

,

Πdd
ii (Ω) = I0 → I2 (= I0), i ∈ (1, 2), (26)

where Lg =
∫

~k
1
4E = 1

2 ln
2Λ
∆s

0

. This implies that (1) s and

d channels are completely decoupled and (2) amplitude
and phase sector are completely decoupled. As a result,
the collective mode equation (det[Eq. (19)= 0]) in the
amplitude(phase) sector of angular momentum L reads

ΠLL
11(22) −

2

V L
= 0, (27)

where, V L is the interaction in the Lth angular momen-
tum channel (s or d).
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Collective modes in the amplitude sector: The solu-
tions to the mode equation are contained in

(

1−
(

Ω

2∆s
0

)2
)

I0(Ω) = 0, (28)

(

1−
(

Ω

2∆s
0

)2
)

I2(Ω) =
2

ud
− 2

us
. (29)

Neither of these equations has an undamped solution (see
Appendix C).
Collective modes in the phase sector: The solutions to

the mode equation are contained in

(

Ω

2∆s
0

)2

I0(Ω) = 0, (30)

−
(

Ω

2∆s
0

)2

I2(Ω) =
2

ud
− 2

us
. (31)

The first equation yields the soft BAG mode (Ω = 0)
and the second (arising from the d−wave sector) yields
the well known BS mode.12,34 Looking Eq. (4) and Eq.
(31) we see that the BS mode frequency is related to
the competing Tc values for the s and d channels. Thus
detecting the BS mode at low temperatures and recording
the Tc of a sample gives direct quantitative estimate of
the competing d-wave pairing interaction.13 This feature
will change for a multiband system.
The above modes lie below the minimum gap in the

system and hence are not damped. Notice that at bound-
ary of the s and s+id state, where us = ud, the BS mode
softens as expected.

3. Collective Modes in the s+ id ground state

The collective modes in the s + id ground state are
interesting. The surviving bubbles in this state are:

Πss

11(Ω) = ν2D

[

−2

∫

θ

ln
2Λ

|∆θ |
+

(

α2

s −

(

Ω

2∆s
0

)2
)

I0(Ω)

]

,

Πss

22(Ω) = ν2D

[

−2

∫

θ

ln
2Λ

|∆θ |
+ α2

dI2(Ω)−

(

Ω

2∆s

0

)2

I0(Ω)

]

,

Πdd

11(Ω) = ν2D

[

−2

∫

θ

f2

θ ln
2Λ

|∆θ|
+

(

α2

s −

(

Ω

2∆s

0

)

2
)

I2(Ω)

]

,

Πdd

22(Ω) = ν2D

[

−2

∫

θ

f2

θ ln
2Λ

|∆θ|
+ α2

dI4(Ω)−

(

Ω

2∆s

0

)2

I2(Ω)

]

,

Πsd

12(Ω) = ν2DαsαdI2(Ω), (32)

where αs,d are to be found from T = 0 solutions of the
gap equation as discussed in Appendix A. The non-zero
Πsd

12 couples the s and d channels and also the ampli-
tude and phase sector. This is expected from Eq. (20)
because the ground state itself is a mixture of the two
angular momentum channels and the order parameter is

complex. The physical consequence of this non-zero bub-
ble is that the 4 decoupled sectors now coalesce into two
2× 2 sectors formed out of the
(1) s-phase and the d−amplitude components which
yields

(

Ω

2∆s
0

)2

I2

[

−
(

Ω

2∆s
0

)2

I0 + α2
sI0 + α2

dI2

]

= 0.(33)

This sector contains the gauge-mode at Ω = 0.
(2) s-amplitude and the d−phase components which
yields

(

α2
dI4 −

(

Ω

2∆s
0

)2

I2

)(

α2
s −

(

Ω

2∆s
0

)2
)

I0 − α2
sα

2
dI

2
2 = 0.

(34)

This contains the collective mode with mixed symme-
try that adiabatically continues to the Bardasis-Schrieffer
mode in the s-wave phase; we will refer to this mode
henceforth as the mixed-symmetry Bardasis-Schrieffer
mode (MSBS). This mixed symmetry mode is the analog
of the d + id′ and p + ip′ clapping modes discussed in
Refs. 21,23,24.

The d− ground state can be similarly worked out (see
Appendix C). There are no collective modes (other than
the BAG mode) that propagate and hence we do not
dwell on this further.

Fig. 1(c) traces all the collective modes below the min-
imum gap across the phase diagram. It is worth noting
that all the collective modes could be found essentially
from one mode equation.

III. COLLECTIVE MODES IN A 3-POCKET

MODEL

We now move to the 3-pocket model which is more
relevant for the FeSCs. Other than the multiband aspect,
the approach is identical to the 1 band model. We shall
thus focus on discussing the results and highlight the
differences with the 1-band model.

A. Model and phase diagram

Here we study a prototypical FeSC system with one Γ
centered hole pocket and two M centered electron pock-
ets (the latter two are from the same band-and hence are
related by symmetry). The model and the pairing inter-
actions between the fermions is schematically shown in
Fig. 2. The interactions in explicit form can be written
as (only the leading harmonics are retained; e1 → +1
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and e2 → −1):

Vhh(~k, ~p) = Us
h + Ud

hfkfp,

Ve1e1 (
~k, ~p) = Us

e + Ud
e (1)(1),

Ve2e2 (
~k, ~p) = Us

e + Ud
e (−1)(−1),

Ve1e2 (
~k, ~p) = Us

e1e2 + Ud
e1e2(1)(−1),

Vhe1 (
~k, ~p) = Us

he + Ud
hefk(1),

Vhe2 (
~k, ~p) = Us

he + Ud
hefk(−1),

(35)

where fk =
√
2 cos θk. The self consistency gap equations

for this model read:

∆h
~p = −

∫

~k

[

V h
~p,~k

∆h
~k
Wh

~k
+ V he1

~p~k
∆e1

~k
W e1

~k
+ (e1 ↔ e2)

]

,

∆e1 = −
∫

~k

[

V he1
~p~k

∆h
~k
Wh

~k

]

,

∆e2 = −
∫

~k

[

V he2
~p~k

∆h
~k
Wh

~k

]

,

(36)

where W x
~k

= 1
2Ex

~k

tanh
Ex

~k

2T , with x ∈ {h, e1, e2}. We fur-

ther assume, for the sake of simplicity of presentation,
that the electron and hole bands have identical disper-
sions: resulting in the same density of states. This choice
of interactions requires the gap structure to assume the
form

∆h
~p = ∆h

s +∆h
df~p,

∆e1
~p = ∆e

s +∆e
d,

∆e2
~p = ∆e

s −∆e
d. (37)

To minimize the parameter space we set the following
interactions to zero: Us

h, U
s,d
e,e1e2 . The rationale behind

this lies in the fact that we want to model a system driven
to a d−wave state by the hole pockets (hence we retain
Ud
h) and the d−wave character in the rest is induced due

to the interband coupling terms (hence we retain Ud
he).

The reason behind the choice of this model is related to
our desire to eventually address the Raman experiments
on the hole doped FeSC, and is explained further in Sec.
IV. The s−wave character in this system driven by Us

he.
For brevity, we introduce the following dimensionless con-
stants for the interactions

vs,d ≡ ν2DUs,d
he , ud ≡ ν2DUd

h . (38)

Recognizing the vs and ud are the main ingredients for
our problem and that vd is only needed to induce SC in
the electron pockets, we set vd = zud; where the ratio z is
set to some constant. Keeping vs fixed (as in the 1-band
case), the system now has ud (and z if one so desires)
as the tuning parameter of the model. This is sufficient
to generate the s to s + id to d phase diagram. We will

U
s +

 U
d

U
s

+ U
d

U
s

+ U
d

U
s

+ U
d

e
1

h

e
2

U
s +

 U
d

U
s

+ U
d

U
s

+ U
d

U
s

+ U
d

U
s +

 U
d

U
s

+ U
d

U
s

+ U
d

U
s

+ U
d

e
1

h

e
2

FIG. 2: The interactions in a 3 pocket (1 hole and 2 electron)
model. The interactions in light grey font are unimportant as
far as the main message of the work with applications to hole
doped FeSC is concerned and are thus set to zero.

then need to define a few more dimensionless parameters
in analogy with the 1-band case

αx
s ≡ ∆x

s/∆0; αx
d ≡ ∆x

d/∆0, x ∈ (h, e),

rs ≡
αe
s

αh
s

; rd ≡ αe
d

αh
d

, (39)

where ∆0 is the s-wave gap on the hole pocket when
vd = 0. This model is easily solved at T = 0 and T = Tc

(see Appendix D). The results for the boundaries of the
s + id state are given as follows: at T = Tc, the critical
ud(< 0) is the solution to (larger |ud| favors a d−wave
state)

(

zud

vs

)2

= 1 +
1√
2

(

ud

vs

)

. (40)

There are two points marking the boundary of the s +
id state at T = 0. The s-wave side boundary (setting

∆e,h
d → 0 and requiring rd to be arbitrary) yields

1

rs
− 2rs = 2vs ln |rs|,

ucrit,1
d =

−rs −
√

r2s + 4z2

2z2
vs. (41)

The d−wave side boundary (with ∆h,s
s → 0, rs arbitrary)

ucrit,2
d is the solution to

1

2v2s
=

[

− rd
zud

+
1

2

] [

− rd
zud

+ c2 − ln |rd|
]

,

and rd satisfies
1

rd
− 2rd = zud (c2 − ln |rd|) , (42)
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where c2 ≡
∫

f2 ln |f | = 0.153. These boundaries are
shown in Fig. 3(a). The detailed solution for the gap
components as a function of ud presented in Fig. 3(b).

B. Collective modes

For multiband systems, we follow the same procedure
to derive the collective mode equation. Unless we con-
sider Cooper pairing between different bands, there will
be no interband ΠLL′

ij ’s of the type
∫

GhGe. Then, Eq.
(19) will be generalized to matrix equation in the band

space. ΠLL′

ij is then evaluated in the relevant ground
state. This generalization is given by:

∑

j,L′,b

{

ΠLL′

ij,a [δab]− 2[V −1
L ]abδ

LL′

δij
}

δFL′

j,b = 0, (43)

where a, b are the band indices. The explicit form of
this equation is discussed in Appendix E. The only off-
diagonal elements (in the band space) arise from [V L]−1.
As before, we drop the coupling to the density channel
and work with a 2s/d × 2real/imag× 2bands = 8× 8 matrix
space. The interaction matrices in each angular momen-
tum channel are given by

[Vs] =

(

0 vs
vs 0

)

, [Vd] =

(

ud vd
vd 0

)

. (44)

1. Collective modes in the s-wave ground state

As in the 1-band scenario, Πsd and Π12 are zero due
to the symmetry of the ground state. The non-zero Π’s
are given by

Πss
11,h = ν2D

[

−4Lh +

(

1−
(

Ω

2∆0

)2
)

Ih0 (Ω)

]

,

Πss
11,e = ν2D

[

−8Le + 2

(

(αe
s)

2 −
(

Ω

2∆0

)2
)

Ie0 (Ω)

]

,

Πss
22,h = ν2D

[

−4Lh −
(

Ω

2∆0

)2

Ih0 (Ω)

]

,

Πss
22,e = ν2D

[

−8Lh − 2

(

Ω

2∆0

)2

Ie0(Ω)

]

,

(45)

where Lh,e =
1
2 ln

2Λ

|∆h,e
s | . Π

dd involves changing I0 → I2,

but in the s−wave ground state I0 = I2. Also for x ∈
(h, e),

ν2D∆0I
x
m(iΩn) =

∫

~k

1

Ex

(fx)
m

(Ex)2 +
(

Ωn

2∆0

)2 ,

(Ex)2 =

(

εx

∆0

)2

+ (αx
s )

2 + (αx
d)

2f2
x . (46)

For the s−wave ground state, sectors in the s and d
channels decouple. Further, the amplitude and phase sec-
tors decouple. This leads to the following four decoupled
equations:

Πss
11,hΠ

ss
11,e =

4

v2s
, (47)

Πss
22,hΠ

ss
22,e =

4

v2s
, (48)

Πdd
11,h

(

Πdd
11,e +

2ud

v2d

)

=
4

v2d
, (49)

Πdd
22,h

(

Πdd
22,e +

2ud

v2d

)

=
4

v2d
. (50)

It helps to note that at T = 0 the self consistency equa-
tions tell us that

2Le = − 1

2rsvs
,

2Lh = − rs
vs

. (51)

Eq. (47) is the s−amplitude sector which has no solution.
Eq. (48) is the s−phase sector. This sector contains the
BAG mode and the damped Leggett mode (blue dots in
Fig. 4(top) where the real part of LHS = RHS). Using
T = 0 relations, Eq. (48) gives

(

Ω

2∆0

)2
[

4LhI
e
0 + 4LeI

h
0 +

(

Ω

2∆0

)2

Ih0 I
e
0

]

= 0.(52)

Since I0 > 0, the only solution is Ω = 0 the BAG
mode. The other solution, a Leggett resonance, has an
imaginary part and is thus damped. Eq. (49) is the
d−amplitude sector which also has no solution. Eq. (50)
is the d−phase sector which contains the BS mode. Note
that there is one true mode (below the minimum gap)
and a resonance in the continuum as shown by the blue
dots in Fig. 4(bottom). To see that this true generically
in the model, we again substitute for Π’s and use T = 0
relations to we find-

(

Ω

2∆0

)4

Ih0 I
e
0 +

(

Ω

2∆0

)2

A− 2

v2d
S = 0, (53)

where

S = 1− rs
ud

vs
− v2d

v2s
, (54)

A = − 2

vs

(

1

2rs
+ rs +

udvs
2v2d

)

> 0. (55)

Comparing Eq. (40) and Eq. (54) we see that in the
s−wave phase S > 0. The mode equation can be cast
into LΩ4 +AΩ2 − S = 0. This clearly has two solutions
with Ω2 > 0 and < 0. The Ω2 > 0 solution is given by
the implicit in Ω equation

Ω2 =
−A+

√
A2 + 4LS

2L
, A > 0, L > 0. (56)
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FIG. 3: (a) The phase diagram in the 3-pocket model. (b) The evolution of the gap components with ud in the 3-pocket
model at T = 0. The boundaries of the s + id phase are marked with arrows. Red(Blue) represents the hole(electron) pocket
and the solid(dashed) line corresponds to s−wave(d−wave) component of the gap. The grey line at zero is the size of error in
the numerical calculation due to the choice of grid and resolution parameters. (c): The (undamped) collective modes across
the phase diagram in different channels. The dashed black line is 2∆min in the system. The dots indicate the s + id phase
boundaries at T = 0. In all the figures z = 1/2 and vs = 0.2.

This is the only real solution, representing the well de-
fined BS collective mode. As we approach the s + id
boundary in the s−state, S → 0+ and the mass of the
collective mode approaches zero (as expected). Note
at this stage the following differences with the 1-band
model: (1) We get a damped Leggett mode; (2) we get
two BS modes where one is damped; (3) The BS mode
frequency is no longer related to parameters determined
at Tc because of temperature dependence of the gap ra-
tios. Depending on the magnitude of the effect (which
depends on a chosen microscopic model), this should be
important for quantifying the experiment with the model.

2. Collective modes in the s+ id ground state

As in the 1-band case, the s, d, amplitude and phase
sectors get coupled due to Πsd

12 6= 0. The non-zero Π’s

are:

Πss
11,h = ν2D

[

−4

∫

θ

Lh +

(

(αh
s )

2 −
(

Ω

2∆0

)2
)

Ih0 (Ω)

]

,

Πss
11,e = ν2D

[

−8Le + 2

(

(αe
s)

2 −
(

Ω

2∆0

)2
)

Ie0(Ω)

]

,

Πss
22,h = ν2D

[

−4

∫

θ

Lh + (αh
d)

2Ih2 (Ω)−
(

Ω

2∆0

)2

Ih0 (Ω)

]

,

Πss
22,e = ν2D

[

−8Le + 2(αe
d)

2Ie2(Ω)− 2

(

Ω

2∆0

)2

Ie0(Ω)

]

,

Πsd
12,h = ν2D

[

αh
sα

h
dI

h
2 (Ω)

]

,

Πsd
12,e = ν2D [2αe

sα
e
dI

e
2(Ω)] ,

Πdd
11,h = ν2D

[

−4

∫

θ

f2Lh +

(

(αh
s )

2 −
(

Ω

2∆0

)2
)

Ih2 (Ω)

]

,

Πdd
11,e = ν2D

[

−8Le + 2

(

(αe
s)

2 −
(

Ω

2∆0

)2
)

Ie2(Ω)

]

,

Πdd
22,h = ν2D

[

−4

∫

θ

f2Lh + (αh
d)

2Ih4 (Ω)−
(

Ω

2∆0

)2

Ih2 (Ω)

]

,

Πdd
22,e = ν2D

[

−8Le + 2(αe
d)

2Ie2(Ω)− 2

(

Ω

2∆0

)2

Ie2(Ω)

]

,

(57)

where Lh,e =
1
2 ln

2Λ
√

(∆h,e
s )2+f2

~k
(∆h,e

d
)2
.

The T = 0 solutions suggest the following useful rela-
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FIG. 4: Collective mode solutions in the multi-band s−wave
ground state. Top: The s-wave order parameter phase fluctu-
ation sector – solution to Eq. (48) The blue dots indicate the
frequency of the collective mode/resonance(if the imaginary
part is non-zero). The Ω = 0 solution is the BAG mode; and
the Ω between the coherence peaks is the Leggett resonance
(as in MgB2

35). Bottom: The d-wave order parameter phase
fluctuation sector – solution to Eq. (50). The dots indicate
the frequency of the collective mode/resonance. There is a
conventional BS mode below the minimum gap and another
resonance in between the two s−wave gaps. Here is used pa-
rameters vs = 0.2, ud = −0.18, z = 1/2.

tions

1 = −2vsrs[2Le],

1 = −vs
rs

∫

[2Lh],

1 = −ud

∫

f2[2Lh]− 2vdrd[2Le],

1 = −vd
rd

∫

f2[2Lh]. (58)

We thus get two decoupled 4 × 4 sectors formed out of
22ss− 21sd− 11dd and 11ss− 12sd− 22dd parts, of the
form

det











Πss
22,h − 2

vs
Πsd

21,h 0

− 2
vs

Πss
22,e 0 Πsd

21,e

Πsd
12,h 0 Πdd

11,h − 2
vd

0 Πsd
12,e − 2

vd
Πdd

11,e +
2ud

v2

d











= 0. (59)

0 0.5 1 1.5 2 2.5 3
−3000

−2000

−1000

0

1000

Ω/∆
0

Re[LHS]
Im[LHS]
RHS

0 0.5 1 1.5 2 2.5 3
−5000

−4000

−3000

−2000

−1000

0

1000

2000

Ω/∆
0

Re[LHS]
Im[LHS]
RHS

FIG. 5: Solutions to Eq. (59) (top) and its counterpart with
Nambu components 1 and 2 exchanged(bottom) in the s+ id
phase. Solution to Eq. Eq. (59) contains the BAG mode
(blue dot at Ω = 0) and the other equation has the mixed
symmetry collective mode (blue dot at finite Ω). This mode
goes soft at the boundaries of the s + id state. Note that in
the s+ id state, phase and amplitude degrees of freedom are
mixed in both equations. Here we used parameters vs = 0.2,
ud = −0.231, z = 1/2.

The other equation is given by (1 ↔ 2). The solutions
are plotted in Fig. 5. We obtain the BAG mode and
a single mixed symmetry collective mode. The result of
tracking the collective modes (with no imaginary part)
as function of ud is shown in Fig. 3(c). There are no
other damped resonances.

IV. DISCUSSION

Having understood the spectrum of collective modes
that can exist in a specific multiband model for a SC
with competing s and d channels, we now discuss in
some detail the practical motivation behind the choice of
our model. As mentioned earlier, FeSC are complicated
systems with a varying range of FS topologies and usu-
ally the minimal model depends on the particular fam-
ily of FeSC of interest. We chose to study the case of
s to d transition as it is supposed to host the exotic
s + id state whose detection is challenging. We pro-
pose the identification of the MSBS collective mode to
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detect the s + id state. Heavily hole or electron doped
FeSC are the best candidates for the detection of the
s + id state. Our model was designed keeping in mind
Ba1−xKxFe2As2 near x ∼ 1. This is an interesting ma-
terial which is known to be a fully gapped s± SC at
x ∼ 0.436–38. It is also known to be nodal at x ∼ 1.
The symmetry of the latter compound is heavily de-
bated: thermal conductivity39 data is interpreted in favor
of d-wave which is in line with functional renormalization
group prediction40. This is strongly contradicted by the
photoemission data41,42 which supports s−wave and also
has theoretical support43. In either case, traversing from
x ∼ 0.4 to x ∼ 1 may require the system to go through
exotic states like s+ id or s+ is′ as the case may be. The
collective modes in the s+ is′ state26,27 have Leggett-like
collective modes (with s−symmetry) that soften at the
transition. We have now shown that the collective modes
in the s + id state have a mixed symmetry BS mode
(with contributions in both s and d symmetry channels)
which also softens at the boundary of the s + id state.
The onset of the s + id state can thus be identified by
simultaneous (and/or correlated) observation of the on-
set of modes in both the s− and d− channels of Raman
spectroscopy. Experimentally, there is strong indication
of a mode in the d−channel as claimed in some recent
works.14,15 The signal in the s−channel is not conclusive
which leaves us with two possibilities - (i) The system is
still in the s-wave ground state, (ii) the screening effects
in the s channel of Raman spectroscopy washes out the
mode features, in which case the intensity of the s com-
ponent in the MSBS must be carefully analysed. Both
scenarios are unexplored theoretically as far as the ma-
terial is concerned.

Its worth mentioning that the proposed d−wave state
in the x ∼ 1 sample has the property that SC is driven
by the hole pockets40. We thus chose to study the model
where SC was driven by d−wave interaction within the
hole pocket.

We should warn the readers, however, that the exis-
tence of collective modes is different from actually ob-
serving them through experimental probes. One of the
most promising probe to detect these modes (along with
their symmetries) is electronic Raman spectroscopy. But
the coupling of the modes to a Raman probe needs a spe-
cial attention due to screening effects in the s−channel.
The distribution of intensities across the s and d parts of
the mixed symmetry collective modes is another aspect
which requires careful attention. Thus, while a quanti-
tative mapping of our results to Raman still needs more
work, we are in a position to at least suggest the num-
ber and nature of the collective modes to be expected in
FeSC.

Finally, although we know form the efforts of
Ref. 18 the possible modes in a ‘conventional’ nodal
d−wave state, there are other d-wave models like fully
gapped d−wave state proposed for systems like alkali
intercalated-FeSe44,45 that need exploration in terms of
the behavior of collective modes and is left for a future

effort. It is also worth noting that as far as mixed sym-
metry modes are concerned, such an analysis could be
applied to systems under uniaxial strain where we gen-
erate a similar s− d competition.46

V. CONCLUSIONS

To summarize, we have used a simple linear response
approach to study collective modes in a SC with com-
peting s and d channel instabilities. We work close to
the region where s and d channels are nearly degenerate
such that the system supports an exotic s+ id state. We
model a system that can be tuned from a pure s state
to pure d state through the s + id state. Although our
goal is the description of a multiband FeSC system, we
first used a 1-band model to demonstrate the simplic-
ity of the approach. In this 1 band model, we find the
massless BAG mode throughout the phase diagram in
the s−channel. In the d−channel, in the s−wave ground
state we find the BS mode and in the s+ id ground state
find a mixed symmetry collective mode that softens at
the boundaries of the s + id state. These boundaries
were also calculated analytically. This mixed symmetry
mode, which couples amplitude and phase sectors, oscil-
lates with both s and d wave components and only exists
in the T -broken s+ id SC state. It is interesting to note
that such a mode, which we refer to as a mixed-symmetry
Bardasis-Schrieffer mode, corresponds, in a certain sense,
to modes in T -breaking ground states that have been dis-
cussed before, usually in situations where the two com-
peting interactions correspond to degenerate basis func-
tions of a 2D representation, e.g. “clapping modes” in
p + ip′ or d + id′ situations.22,23 More generally if there
are two competing representations, a mode of this type
is possible24.
We generalized our approach for a multiband system

and found (1) the usual BAG mode in the s channel
across the phase diagram; (2) damped Leggett mode be-
tween the electron and hole gaps in the s−wave state;
(3) 2 BS modes (where one is damped, like the Leggett
mode) in the s−wave state; (4) A mixed symmetry col-
lective mode in the s + id state that softens at the
boundaries. Based on the multiband model that was
designed to minimally reproduce the qualitative effects
of Ba1−xKxFe2As2 near x ∼ 1, we suggest detection of
the above ‘symmetry-selective’ collective modes. We pro-
pose that such a systematic search can eventually settle
the longstanding debate about the pairing symmetry for
the x ∼ 1 samples.
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VI. APPENDIX

A. Solving the 1-band model

We solve the model described by Eq (3). For analytical answers will only look at T = 0 and T = Tc points to study
the special points in the phase diagram of the model. We conjecture (based on continuity) that there are no other
special points in the phase diagram. At T = Tc (∆s,d → 0), Eq. (3) leads to

∆s = −us∆
s[2Lc],

∆d = −ud

∫

θ

f2
~k
∆d[2Lc]. (60)

where
∫

θ stands for the angular integral at the Fermi surface, Lc =
1
2 ln

2γΛ
πTc

. Using
∫

θ f
2
~k
= 1 we see that

2Lc = min

{

− 1

us
,− 1

ud

}

; (61)

with the s+ id state being realized when ud = us. At T = 0, as discussed, there are three regions. For the s−wave
state Eq. (3) yields:

1 = −usln
2Λ

∆s
, ∆d = 0. (62)

This requires us < 0 (attractive) and also gives the T = 0 value for ∆s. We shall now define

2L ≡ ln
2Λ

∆s
0

= − 1

us
. (63)

∆s
0 is the s−wave gap in the model at T = 0 with no competing d−wave interaction. As the d−wave interaction (ud)

grows, ∆d remains zero up to the point where the second equation in Eq. (3) first has a non-trivial solution, then ∆d

begins to grow and ∆s begins to suppress. In the s+ id state we have

1 = −us

∫

θ

ln
2Λ

√

∆2
s +∆2

df
2
~k

,

1 = −ud

∫

θ

f2
~k
ln

2Λ
√

∆2
s +∆2

df
2
~k

, (64)

In the notation of the main text, Eq. (64) can then be cast into a simpler form-

− 1

us
= 2Lg +

∫

θ

ln
1

√

α2
s + η2α2

sf
2
~k

,

− 1

ud
= 2Lg +

∫

θ

f2
~k
ln

1
√

α2
s + η2α2

sf
2
~k

, (65)

or,

lnαs = −
∫

θ

ln
√

1 + η2f2
~k
,

1

us
− 1

ud
= −

∫

θ

(f2
~k
− 1)ln

√

1 + η2f2
~k
. (66)

where 2Lg = ln 2Λ
∆s

0

. This system of equations gives the gap ratios αs,d as a function of the parameter ud.
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B. Explicit form for the 1-band mode equation

In explicit form for the 1-band case the collective mode equation is

















Πss
11 − 2V −1

s Πss
12 Πss

13 Πsd
11 Πsd

12 Πsd
13

Πss
21 Πss

22 − 2V −1
s Πss

23 Πsd
21 Πsd

22 Πsd
23

Πss
31 Πss

32 Πss
33 − V −1

s,q Πsd
31 Πsd

32 Πsd
33

Πds
11 Πds

12 Πds
13 Πdd

11 − 2V −1
d Πdd

12 Πdd
13

Πds
21 Πds

22 Πds
23 Πdd

21 Πdd
22 − 2V −1

d Πdd
23

Πds
31 Πds

32 Πds
33 Πdd

31 Πdd
32 Πdd

33 − V −1
d,q

































−δ∆R,s

δ∆I,s

δDs

−δ∆R,d

δ∆I,d

δDd

















= 0 (67)

Ignoring the density channel we get:









Πss
11 − 2V −1

s Πss
12 Πsd

11 Πsd
12

Πss
21 Πss

22 − 2V −1
s Πsd

21 Πsd
22

Πds
11 Πds

12 Πdd
11 − 2V −1

d Πdd
12

Πds
21 Πds

22 Πdd
21 Πdd

22 − 2V −1
d

















−δ∆R,s

δ∆I,s

−δ∆R,d

δ∆I,d









= 0. (68)

All information about collective modes are obtained by looking at the determinant of the above matrices. Depending
on the relevant ground state, some of the Π’s (as discussed in the main text) are zero, thereby simplifying the matrix
structure.

C. Finding solutions to the 1-band collective mode equation

Here we present the graphical solutions to some of the equations presented in the main text. Fig. 6 shows the
s−wave sector solutions (amplitude and phase) to the collective mode equation in the 1-band s−wave ground state.
Fig. 7 shows the d−wave sector solutions (amplitude and phase) to the collective mode equation in the 1-band s−wave
ground state. Fig. 8 shows the collective mode solutions in the two coupled sectors in the 1-band s+ id ground state.

In the s+ id ground state, the matrix equation in Eq. (19) becomes block diagonal in the 1s-2d and 2s-1d sectors.
This mixes amplitude and phase and the s and d channels. The equations in the two sectors are:

(Πss
11 −

2

us
)(Πdd

22 − 2

ud
)− α2

sα
2
dI

2
2 = 0,

(Πss
22 −

2

us
)(Πdd

11 − 2

ud
)− α2

sα
2
dI

2
2 = 0,

(69)

which simplifies to

(

α2
dI4 −

(

Ω

2∆s
0

)2

I2

)(

α2
s −

(

Ω

2∆s
0

)2
)

I0 − α2
sα

2
dI

2
2 = 0,

(

α2
dI2 −

(

Ω

2∆s
0

)2

I0

)(

α2
s −

(

Ω

2∆s
0

)2
)

I2 − α2
sα

2
dI

2
2 = 0.

(70)

The final forms are given in Eqs. (33) and (34).
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FIG. 6: (Left) Graphical solution to the amplitude sector Eq. (28) in 1-band s−wave ground state with s−wave fluctuations.
No solution for Ω < 2∆s

0. (Right) Graphical solution to the phase sector Eq. (30) with 1-band s−wave fluctuations. We get
the BAG mode at Ω = 0.
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FIG. 7: (Left) Graphical solution to the amplitude sector Eq. (29) in 1-band s−wave ground state with d−wave fluctuations.
No solution for Ω < 2∆s

0. (Right) Graphical solution to the phase sector Eq. (31) with d−wave fluctuations. We get the BS
mode at finite Ω that softens when ud = us. Here, us = −1 and ud = −0.6.
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FIG. 8: (Left) “Amplitude” sector Eq. (33) – with Ω2 removed – in the s + id ground state. No solution. (Right) “Phase”
sector Eq. (34) in the s+ id state. There is only one solution indicated by the intersection of LHS and RHS. As ud is tuned,
this solution starts from 0 at the s−boundary and reaches 2∆s at the other boundary-which in turn → 0.
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1. The d−wave ground state

Πss
11 = ν2D

[

−
∫

~k

1

E
−
(

Ω

2

)2

I0

]

,

Πss
22 = ν2D

[

−
∫

~k

1

E
−
(

Ω

2

)2

I0 + α2
dI2

]

,

Πdd
11 = ν2D

[

−
∫

~k

f2

E
−
(

Ω

2

)2

I2

]

,

Πdd
22 = ν2D

[

−
∫

~k

f2

E
−
(

Ω

2

)2

I2 + α2
dI4

]

.

(71)

The gap equation yields

1

ud
= −

∫

~k

f2

2E
= − ln

2Λ

αd∆s
0

+ c2. (72)

Also,

∫

~k

1

E
=

2

ud
− 1. (73)

These yield the mode equations:

(

Ω

2

)2

I0 =
2

ud
− 2

us
− 1,

(

Ω

2

)2

I0 − α2
dI2 =

2

ud
− 2

us
− 1,

(

Ω

2

)2

I2 = 0,

(

Ω

2

)2

I2 − α2
dI4 = .

(74)

It can be explicitly checked that, other than the BAG mode (Ω = 0), there is no solution to these equations.

D. Solving the 3-pocket model

Using the interaction form defined in Eq (36) and performing
∫

~k
→ ν2D

∫

dθ
2π

∫

dε, the gap equations at Tc can be
written as

∆h
~p = −

[

udf~p

∫

θ

f~k∆
h
~k
+ vd

√

me

mh
f~p

∫

θ

∆e1
~k

+ vs

√

me

mh
f~p

∫

θ

∆e1
~k

+ (e1 ↔ e2)

]

[2LTc
],

∆e1
~p = −

√

mh

me

[

vs

∫

θ

∆h + vd

∫

θ

f~k∆
h
~k

]

[2LTc
],

∆e2
~p = −

√

mh

me

[

vs

∫

θ

∆h − vd

∫

θ

f~k∆
h
~k

]

[2LTc
],

(75)
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where
∫

dεW x
~k
= 2LTc

≡ ln 2γΛ
πTc

. In the pure s−wave state, we get:

∆h
s = −vs

√

me

mh
[2∆e

s][2LTc
],

∆e
s = −vs

√

mh

me
∆h

s [2LTc
],

⇒ 2LTc
=

1√
2vs

,
∆h

s

∆e
s

= −
√
2

√

me

mh
(76)

In the pure d−wave state, we get:

∆h
s = −ud∆

h
d [2LTc

]− vd

√

me

mh
[2∆e

d][2LTc
],

∆e
d = −vd

√

mh

me
∆h

d [2LTc
],

⇒ 2LTc
=

ud +
√

u2
d + 8v2d

4v2d
,

∆h
s

∆e
s

= − 4vd

ud +
√

u2
d + 8v2d

√

me

mh
(77)

The s−wave solution will be dominant when
(

vd
vs

)2

≤ 1 +
1√
2

(

ud

vs

)

, (78)

with the equality reaching when the two solutions are degenerate. This will be the s+ id point at T = Tc. We shall
now set me = mh to continue. Its going to be cumbersome otherwise.
At T = 0, we get the following system of non-linear equations:

∆h
s = −vs[2∆

e
s][2Le],

∆e
s = −vs∆

h
s

∫

θ

[2Lh],

and

∆h
d = −ud∆

h
d

∫

θ

f2
~k
[2Lh]− vd[2∆

e
d][2Le],

∆e
d = −vd∆

h
d

∫

θ

f2
~k
[2Lh], (79)

where,

2Lh = ln
2Λ

√

(∆h
s )

2 + f2
~k
(∆h

d)
2
,

2Le = ln
2Λ

√

(∆e
s)

2 + f2
~k
(∆e

d)
2
. (80)

In the pure s− or d− phase we simply set the other gap to zero. At T = 0, there are two points: where ∆d → 0 (the
s-wave boundary) and where ∆s → 0 (the d−wave boundary).

1. s−wave boundary

At this boundary, we have

∆h
s = −vs[2∆

e
s][2Le],

∆e
s = −vs∆

h
s [2Lh],

and

∆h
d(1 + ud[2Lh]) = −vd[2∆

e
d][2Le],

∆e
d = −vd∆

h
d [2Lh]. (81)
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The way to proceed is to realize that ∆
h/e
d → 0 but ∆h

d/∆
e
d can be arbitrary. This arbitrariness can be removed by

eliminating the ∆d’s from the last two equations. This will later give the constraint equation for ud to get a non-trivial

d−wave component. The first two equations should be used to compute the ∆
h/e
s . These yield

(

vd
vs

)2

= 1− rs
ud

vs
,

where rs ≡ ∆e
s

∆h
d

and rs satisfies
1

rs
− 2rs = 2vs ln |rs|. (82)

Note that at T = Tc, rs = − 1√
2
. At T = 0, this will obviously depend on vs. Recall that vd = zud and ud is our

tuning parameter for the phase diagram. This yields the critical ud to be

ucrit
d =

−rs −
√

r2s + 4z2

2z2
vs. (83)

And rs is to be solved as before. The result is presented in Fig. 3(a).

2. d−wave boundary

At this boundary, we have

∆h
s = −vs[2∆

e
s][2Le],

∆e
s = −vs∆

h
s [2L̃h − c0],

and

∆h
d(1 + ud[2L̃h − c2]) = −vd[2∆

e
d][2Le],

∆e
d = −vd∆

h
d [2Lh − c2], (84)

where, c0 ≡
∫

ln |f | = −0.347, and c2 ≡
∫

f2 ln |f | = 0.153, such that c2 − c0 = 1
2 . We then follow the same logic as

for the s−wave boundary and eliminate ∆
h/e
s and get

1

2(vs)2
= [2L̃h − c2 +

1

2
][2L̃h − ln |rd|],

2L̃h − c2 = − rd
zud

, (85)

rd satisfies
1

rd
− 2rd = zud (c2 − ln |rd|) , (86)

where z ≡ vd
ud

and rd ≡ ∆e
d

∆h
d

. We just find the ud for which Eq. 85 is satisfied. The result is presented in Fig. 3(a).

E. The explicit form of the 3-pocket mode equation



































Πss
11,h 0 Πss

12,h 0 Πss
13,h Πsd

11,h 0 Πsd
12,h 0 Πsd

13,h

0 Πss
11,e 0 Πss

12,e Πss
13,e 0 Πsd

11,e 0 Πsd
12,e Πsd
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0 Vs 0 0 0 0 0 0 0 0
Vs 0 0 0 0 0 0 0 0 0
0 0 0 Vs 0 0 0 0 0 0
0 0 Vs 0 0 0 0 0 0 0
0 0 0 0 2V s

~q 0 0 0 0 0
0 0 0 0 0 Ud Vd 0 0 0
0 0 0 0 0 Vd 0 0 0 0
0 0 0 0 0 0 0 Ud Vd 0
0 0 0 0 0 0 0 Vd 0 0
0 0 0 0 0 0 0 0 0 2V d
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= 0. (88)

where MLL′

33 = ΠLL′

33,h +ΠLL′

33,e


