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Abstract

Dzyaloshinskii-Moriya interaction (DMI) plays a central role in breaking chiral symmetry of

magnetic domain wall structure. The recently observed chiral dependence of domain wall structures

in ultrathin magnetic films with perpendicular anisotropy indicates the presence of a strong DMI.

We calculate the indirect exchange interaction between magnetic ions mediated by spin-polarized

conduction electrons with a Rashba spin-orbit coupling. We find the resulting DMI increases

with the spin-orbit coupling strength, but decreases with the spin-polarization of the conduction

electrons. The estimated DMI magnitude is comparable to the experimental results.

PACS numbers: 71.70.Gm,75.30.Et,75.30.Hx,75.70.-i
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I. INTRODUCTION

Chiral orders of magnetic structure have been observed in bulk materials as well as in

ultrathin magnetic films. Various chriral magnetic patterns, such as skyrmion lattice1–4,

helix spins5,6, handedness of Bloch or Neel walls7 become interesting topics in topology

and magnetism. Interesting dynamics properties of these structure, e.g., dynamics of chiral

domain wall8 and of magnetic skyrmions9, as well as domain wall motion driven by spin

waves10, have been recently investigated. Microscopic origins of these chiral structures and

their dynamic properties have been attributed to Dzyaloshinki-Moriya interaction (DMI)11,12

whose spin Hamiltonian takes an anisotropic form HDMI =
∑

ij Dij ·(Si ×Sj) where Si is the

localized spin at the site i. The DMI requires a broken space inversion symmetry and spin-

orbit coupling. Magnetic ultrathin films provide an excellent system for studying magnetic

chiral orders since the inversion symmetry is naturally broken as long as substrates and

overlayers are made of different materials, and the Rashba spin-orbit coupling13 at interfaces

always exists due to the electrostatic potential differences of contacting materials.

DMI in thin films had been studied previously. Fert and Levy considered the DMI from

spin-orbit coupling of impurities14. In this model, a conduction electron which is polarized

by a magnetic ion Si at a position Ri propagates to an impurity site R0 whose spin-orbit

interaction leads to a spin rotation of the conduction electron such that the conduction

electron spin is not parallel (or anti-parallel) to Si. When the conduction electron continues

to propagate to another site Rj and interacts with the magnetic ion Sj , the effective inter-

action between Si and Sj is no longer symmetric with respect to the interchange of S1 and

S2. The above magnetic interaction mediated by conduction electrons relies on the existence

of heavy element impurities in the film and third-order perturbation on the electron-local
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spin is needed. Based on tight-binding model, Crépieux and Lacroix had expressed the DMI

in terms of spin-orbit parameters at the surface15. By symmetry consideration, they were

able to construct various forms of DMI with different underlying crystal structure. Another

model for the DMI is based on a Rashba band16. In this model, the interaction between

two magnetic ions are mediated by free electrons, known as the RKKY interaction, except

that the free electron band contains the Rashba spin-orbit coupling (RSOC). However, the

model is only valid for the interaction between two magnetic impurities in a non-magnetic

thin film where the electron bands are not spin-polarized. For ferromagnetic films, such as

Ni, the bands are spin polarized and the Rashba interaction is usually much weaker than

the exchange interaction. It is thus interesting to extend the conduction-electron mediated

DMI to ferromagnetic films where both spin-polarization and RSOC must be included. We

noted that the inclusion of both exchange and RSOC has been studied in Ref.17 in which the

effective DM-like coupling is obtained by a different approach (canonical transformation) in

some limiting cases.

The present study is also motivated by recent experiments on DMI of ultrathin magnetic

films. Gong Chen et al.7 observed the formation of Neel-type of domain wall patterns with a

definitive handed helix in perpendicularly magnetized Ni/Co ultrathin films. Since the Bloch

wall usually has a lower energy than the Neel wall, the observed Neel wall has been attributed

to a large DMI in the film. Another recent experiment18 directly measured the strength of

DMI in Pt/Co and Ni/Co, and found that the DMI are as large as 0.44 mJ/m2. It would be

interesting to see whether the observed strong DMI could be explained by the existence of

the well-known interactions: RSOC and the exchange. The paper is organized as follows. In

Sec. 2, we provide a model Hamiltonian and solve for the conduction electron band structure.

In Sec. 3, we explicitly evaluate the DMI by using the obtained bands. Analytical results
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are discussed in limiting cases. In Sec. 4, we calculate DMI for ferromagnetic thin film. In

Sec. 5, we compare our results with experimental results and discuss about the possibility

of chiral domain wall and Sec. 6 is dedicated for conclusion.

II. THEORETICAL MODEL

We first consider a two-dimensional ferromagnetic film with a uniformly aligned magne-

tization m. A model Hamiltonian of the conduction electron,

H0 = − ~
2

2m
∇2 + Jσ · m + α (−i~∇ × ẑ) · σ (1)

describes the exchange coupling between the conduction electron and the magnetization (the

second term on the right side of the equation), and RSOC (the last term) where the parame-

ter α characterizes the strength of RSOC, ẑ is the unit vector along z-axis (perpendicular to

the growth direction), and σ is the Pauli vector. Equation (1) is the most simplest one-body

free electron Hamiltonian that includes two essential properties of ferromagnetic ultrathin

films: the spin-polarized bands and spin-orbit coupling.

The solution of Eq. (1) is immediate. The energy-wave vector dispersion relation is

ǫks =
~

2k2

2m
+ s|Jm + α (~k × ẑ) | (2)

where s = ±1 represents two spin-split bands. The momentum dependent direction of the

spin polarization is

n̂s = s
Jm + α (~k × ẑ)

|Jm + α (~k × ẑ) | (3)
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FIG. 1. (color online) a) The energy-momentum dispersion relation of Eq. (2) for the magnetization

m parallel to ẑ. The arrows represent the directions n̂s of electron spin at the Fermi level for the

two subbands, see Eq. (3). b) Two spins S1 and S2 make a small deviation from the otherwise

uniformly magnetized background.

The wavefunction is,

ψks(r) =
1√
A
eik·rχs(k) (4)

where, A is the area of 2D surface and χs(k) is the spin part of the wavefunction which

satisfies

(σ · n̂s)χs(k) = sχs(k) (5)

In Figure (1a), we show the dispersion of the two bands and the spin direction at the

Fermi surface (circle) for the magnetization perpendicular to the plane of the layer. The

spin directions would be more complicated if m is deviated from ẑ.

Having determined the unperturbed bands with the uniform magnetization vector, we

now consider two ions whose spin momenta S1 and S2 at the positions R1 and R2, as shown

in Fig. (1b). The momenta are deviated from the average magnetization m such that a
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perturbed Hamiltonian H ′ is,

H ′ = V0

∑

i=1,2

δ (r − Ri) σ · ∆Si (6)

where V0 = Ja2
0 is the exchange potential and the δ-function represents a zero-ranged ex-

change interaction between the magnetic moment and the conduction electron, and ∆Si =

Si − m is the deviation of the spin Si from its average value.

III. DMI MEDIATED BY CONDUCTION ELECTRONS

The first order correction of H ′ to the unperturbed Hamiltonian H0 would give rise to a

single site energy correction to the dispersion relation of Eq. (2). Since we are only interested

in the interaction between the two spins of S1 and S2, our calculation starts with the second

order perturbation

δE =
∑

ks,k′s′

|< ψks|H ′|ψk′s′ >|2 fks − fk′s′

ǫks − ǫk′s′

(7)

where fks is the Fermi distribution function which takes the value of 1 (0) if the energy of

the state ks below (above) the Fermi energy, and

A2

V 2
0

|< ψks|H ′|ψk′s′ >|2 =
∣

∣

∣

(

pss′

1 + ipss′

2

)

·
(

∆S1e
i(k−k′)·R1 + ∆S2e

i(k−k′)·R2

)
∣

∣

∣

2

=
∑

ij=1,2

{

(

pss′

i · ∆Sj

)2
+ 2

(

pss′

i · ∆S1

) (

pss′

i · ∆S2

)

cos [(k − k′) · R12]
}

+2
(

pss′

1 × pss′

2

)

· (∆S1 × ∆S2) sin [(k − k′) · R12] , (8)

where R12 = R1 − R2, and the real and imaginary parts of the spin matrix element are

defined as 〈χs(k)|σ|χs′(k′)〉 ≡ pss′

1 + ipss′

2 . Among all terms in Eq. (8), the asymmetric term

in which the exchange between S1 and S2 leads to a sign change is the last term containing
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∆S1 × ∆S2; the rest terms are symmetric with respect to the exchange of S1 and S2. Recall

that ∆Si = Si − m, we may simply write ∆S1 × ∆S2 = S1 × S2 and thus we can readily

identify the DMI from Eqs. (7) and (8),

EDM = D12 · (S1 × S2) (9)

where

D12 =
V 2

0

8π4

∑

ss′

∫

dk

∫

dk′
(

pss′

1 × pss′

2

) fks − fk′s′

ǫks − ǫk′s′

sin [(k − k′) · R12] . (10)

In general, the above analytical integration over k and k′ is very complex.

It is interesting to connect our simple second order perturbation with more abstract Berry

phases in momentum and real space shown in19–21. If we expand our total Hamiltonian in

phase space (R, K) as follows:

H(r) = H(R,K) + (k − K) · ∇KH(R,K) + (r − R) · ∇RV (R,K) (11)

where we have used the fact that spatial dependence of our Hamiltonian only enters in the

potential V (R), see Eq. (6), thus ∇RH(R) = ∇RV (R) . Treating the last two terms as

perturbation to the Hamiltonian H(R,K), the second order perturbation leads to

∆H(2) =
∑

m6=n

〈

m
∣

∣

∣

∂V
∂Ri

∣

∣

∣n
〉 〈

n
∣

∣

∣

∂H
∂Kj

∣

∣

∣m
〉

Em −En

+
∑

m6=n

∣

∣

∣

〈

m
∣

∣

∣(r − R) · ∂V
∂R

∣

∣

∣n
〉
∣

∣

∣

2

Em −En

+
∑

m6=n

∣

∣

∣

〈

m
∣

∣

∣(k − K) · ∂V
∂K

∣

∣

∣n
〉
∣

∣

∣

2

Em −En

(12)

Where m, n represents energy levels corresponding to the unperturbed Hamiltonian =

H(R,K). The first term is the Berry phase term in the mixed representation of the mo-

mentum and coordinate space introduced in19. The other two terms describe self-energy
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corrections.

Before we proceed, we should first comment on several general features of Eq. (10). The

direction of D would consist of the following vector summation,

D12 = A R̂12 +B ẑ × R̂12 + C m̂. (13)

The relative strength of these coefficients, A, B, and C, depend on the RSOC parameter

relative to the ferromagnetic exchange J in the energy dispersion, Eq. (2). The last term,

Cm̂ is unimportant because it does not contribute to the chirality of domain wall structure.

The first two terms determine the chiral structure of domain walls; we should discuss later.

Similar to the conventional RKKY interaction, the DMI coefficient D12 displays an os-

cillatory decay as the distance between two spins R12 increases. Since the denominator

in Eq. (10) contains the energy difference between the occupied and unoccupied states,

the largest contribution to the integration over k and k′ comes from the states near the

Fermi energy and thus the sine function in Eq. (9) generates an oscillation with a period of

2kFR12 = 2π. There are two limiting cases where the expression for D12 may be greatly sim-

plified. The first case is that the RSOC is much stronger than the ferromagnetic exchange J .

Imamura et al.16 has already explicitly obtained the DMI by using a Green’s approach. By

setting J = 0 in the energy dispersion, Eq. (2), we would arrive exactly the same expression

as derived in Ref.16. However, this case is relevant only for a non-magnetic interface with

magnetic impurities, such as Pt or Au thin films doped with dilute magnetic atoms such

as Fe and Mn. To address the DMI in ferromagnetic films, e.g., NiCo/Ir or Co/Pt, the

ferromagnetic exchange J is usually much larger than the RSOC. Our calculation below will

be concentrated in this limiting case.
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IV. DMI OF FERROMAGNETIC FILMS

Within the limit of J ≫ α, we may simplify Eq. (10) by only keeping the lowest order in

α. To the zeroth order of α, D12 is identically zero, i.e., there is no asymmetric interaction,

and thus we determine the DMI in the first order in α. We further note that Eq. (10) would

be identically zero if one takes pss′

1 × pss′

2 to the zeroth order in α and the denominator

ǫks − ǫk′s′ to the first order in α. Thus, for the lowest order in α (first order), we should

discard the RSOC in the energy dispersion of Eq (2), i.e.,

ǫks − ǫk′s′ =
~

2k2 − ~
2k′2

2m
+ (s− s′)J, (14)

and calculate pss′

1 × pss′

2 up to the first order in α. After tedious algebra, we find,

pss′

1 + ipss′

2 = −ẑ − is
α~

2J
(k − k′) for s = s′

= s
(k − k′) × ẑ

|k − k′| − i

(

m̂ +
α~

2J
(k + k′) × ẑ

)

× (k − k′) × ẑ

|k − k′| for s 6= s′ (15)

and thus we obtain

pss′

1 × pss′

2 = −sα~
2J

(k − k′) × ẑ for s = s′

= −s
(

m̂ +
α~

2J
(k + k′) × ẑ

)

for s 6= s′ (16)

By placing Eqs. (14)-(16) into Eq. (10), the angular parts of the vectors k and k′ can

be readily integrated out. To make the notations simpler, we make the following variable

change, x = kR12, x′ = k′R12, kF ± =
√

2m(ǫF ∓ J)/~, ∆ = 2mJR2
12/~

2, ξ± = kF ±R12, ǫF =

~
2k2

F/2m. By using the above definitions and by carrying out the tedious but straightforward
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algebra, we obtain the main result of the paper,

D12 =
(

ẑ × R̂12

)

(2m
~

)2 V 2
0 α~

4π2R12
[I0(ξ+, ξ−) + I1(ξ+, ξ−)] (17)

where I0 and I1 represent the intraband and the interband contributions,

I0(ξ+, ξ−) =
1
∆

∫ ξ+

ξ−

dx
∫ ∞

0
dx′G+(x, x′)

x2 − x′2
, (18)

and

I1(ξ+, ξ−) =
1
∆

∫ ξ+

ξ−

dx
∫ ∞

0
dx′ G−(x, x′)

x2 − x′2 − 2∆
− 4

∫ ξ+

0
dx
∫ ∞

ξ+

dx′ G−(x, x′)
(x2 − x′2)2 − 4∆2

(19)

where

G±(x, x′) = xx′ [xJ1(x)J0(x′) ± x′J0(x)J1(x′)] (20)

with J0(x) and J1(x) being the Bessel functions of the first kind.

One interesting limiting case is the exchange coupling J much smaller than the Fermi

energy (but remains much larger than the spin-orbit coupling α). By taking the limit that

∆ → 0 such that ξ− = ξ+ ≡ ξ = kFR12, we find that the

I0(ξ) =
∫ ∞

0
dx
G+(x, ξ)
x2 − ξ2

(21)

I1(ξ) =
∫ ∞

0
dx
G−(x, ξ)
x2 − x′2

− 4
∫ ξ

0
dx
∫ ∞

ξ
dx′ G−(x, x′)

(x2 − x′2)2 . (22)

We recall that Imamura et al.16 had also explicitly calculated the DMI in the limit of

J = 0. In their calculation, the limit is taken at J = 0 before a perturbation on the spin-
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FIG. 2. (color online) Comparison of the magnitude of D12(in the unit of (mV 2
0 k2

F )/(2π2
~

2))

obtained by the limiting expression of Eqs. (21) and (22) with those obtained from Ref.16. They

are nearly identical.

orbit is carried out, i.e., ǫF ≫ α ≫ J . In the present case, we take the limit ǫF ≫ J ≫ α.

While the analytical expressions are different, the numerical results for J = 0 are nearly

identical to those of Ref.16, as shown in Fig. (2).

When J increases, the spin-polarization P ≡ J/ǫF increases. We numerically integrate

Eqs. (18) and (19) as a function of the range (ξ+ + ξ−)/2 for several different J as shown in

Fig (3). The oscillation period slightly increases as the polarization increases. The amplitude

of the DMI is noticeably smaller for larger P . One may explain such J dependence as follows.

For small J , the band has a small spin polarization and thus the interband transition,

Eq. (19), contributes most to the DMI. When J becomes large and thus the band is highly

spin polarized, the interband transition decreases due to suppression of the density of states

of the minority band.

Next, we consider the general case where α and J are arbitrary (but both are smaller than

the Fermi energy). In this case, the angular integration in Eq. (10) cannot be performed

analytically because the energy dispersion of Eq (2) contains the relative direction between

k and m. Thus, one must do numerical integration over 4 variables (magnitudes and angles
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FIG. 3. (color online) The dependence of the The magnitude of D12(in the unit of

(mV 2
0 k2

F )/(2π2
~

2)) on the spin polarization P in the weak spin-orbit coupling limit.

of k and k′). To reduce the numerical complexity, we considered the direction of the magne-

tization being perpendicular to the layer, i.e., m̂ = ẑ. In this case the energy denominator is

no longer dependent on the direction of the wave vector since m · (k × ẑ) = 0. Thus, we can

similarly integrate out the angular parts first. The resulting DMI can be expressed below,

D12 = −(ẑ × R̂12)
V 2

0 2m
4π2~2R2

12

I(ξ+, ξ−, α) (23)

where

I(ξ+, ξ−, α) =
∑

s,s′

ξs
∫

0

dx
∞
∫

ξs′

dx′Fss′(x, x′)
Ess′(x, x′)

(24)

where the two functions in the numerator and denominator are as follows,

Ess′(x, x′) = (x2 − x′2) +
2mα~R12

~2

(

s
√

λ2R2
12 + x2 − s′

√

λ2R2
12 + x′2

)

Fss′(x, x′) = s
G+ +G−

2
√

λ2R2
12 + x2

+ s′ G+ −G−

2
√

λ2R2
12 + x′2

where we have defined λ = J/(α~). In Figure (4), we plot the DMI for various α and J
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FIG. 4. (color online) (a) The magnitude of D12(in the unit of (mV 2
0 k2

F )/(2π2
~

2)) for several

different values of J for a fixed spin-orbit coupling α~kF = 0.03 eV. b) The magnitude of D12 at

the second peak position as a function of α for several different J .

using Eq. (23). In general, the DMI increases significantly with α but decreases with J .

V. DOMAIN WALL STRUCTURE WITH PERPENDICULAR ANISOTROPY

The DMI has a profound effect in domain wall structure of ferromagnetic films, particu-

larly, for ultrathin films with perpendicular magnetic anisotropy (PMA). Since the origin of

PMA is the interface spin-orbit coupling, it is natural to assume that these materials, such

as Co/Pt and NiCo/x which possess a large PMA, have a large Rashba spin-orbit coupling,

and thus the DMI derived in our previous sections is likely to be applicable to these mate-

rials. Indeed, the experimental findings of particular chiral domain wall structure can be at

least semi-quantitatively explained as we show below.

Domain walls in ultrathin films with PMA have two basic forms known as the Neel and

Bloch walls, as depicted in Fig. (5). The arrows between spin up and down domains represent
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FIG. 5. (color online) a) Left (L) and right (R) Neel walls in which the magnetization in the wall

m
N
L = cos θ(x)ez − sin θ(x)ex and m

N
R = cos θ(x)ez + sin θ(x)ex where the angle θ(x) smoothly

varies from 0 to π in the wall. b) Left and right Bloch walls where the magnetization in the wall

m
B
L = cos θ(x)ez − sin θ(x)ey and m

B
R = cos θ(x)ez + sin θ(x)ey .

the average directions of spins of particular type of wall. The energy of the walls consists of

exchange, anisotropy and magnetostatic terms. While the exchange and anisotropy energies

(for a fixed wall width) are same for these two walls, the magnetostatic energy is higher for

the Neel wall due to the presence of the bulk magnetic charge ρm = −∇ · M 6= 0. We can

estimate this energy by using the standard ellipsoid model22 for the Neel wall in which the

charge distribution has a geometric shape of an ellipsoid and thus the magnetostatic energy

is (µ0M
2tω)/(ω + t), where, M is the magnetization per unit volume, t is thickness and ω

is the width of domain wall. For the ultrathin film with PMA, t ≪ ω, the energy difference

between the Neel and Bloch walls is thus simply EN − EB ≈ µ0M
2t.

Now we include the DMI to the wall energy. Along the direction of the wall shown in

Fig. (5), R12 is parallel to x and hence the DMI vector D12 = ẑ × R̂12 is parallel to ŷ.

To estimate the domain wall energy, we only consider the DMI between two nearest spins,

denoted as D12. For a Neel wall, the magnetization vector varies continuously along x-axis

in the XZ plane (m(x) = cos θ(x)êz + sin θ(x)êx) and thus the vector product D12 · [m(x) ×
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m(x+ a0)] yields |D12|ŷ · [m(x) × ∂m(x)/∂x]. Summing over the entire domain wall width,

we obtain the Neel wall energy πa0|D12|(where a0 is the lattice constant). For a Bloch wall

where the magnetization is m(x) = cos θ(x)êz + sin θ(x)êy, and we immediately see that the

dot product ŷ · [m(x) × ∂m(x)/∂x] = 0, i.e, the DMI does not contribute the Bloch wall

energy. For the Neel wall, the DMI lowers the energy for one handed helix, but raises the

energy for other handed helix, depending on the sign of D12 in Eq. (10). If the magnitude

of the DMI is large enough, it is possible that the energy reduction in one of helix Neel

walls exceeds the energy difference between the Neel wall and Blochl wall estimated above,

resulting a lower total energy of the Neel wall. Indeed, the experiments have shown that the

Neel wall with a particular handed helix are formed in NiCo/Pt perpendicular films7. Our

estimated strength of DMI below would support the formation of the Neel wall.

The order of magnitude of D12 can be readily estimated from Eq. (17). By using plausible

values for the Fermi energy ǫF = 3.0 eV, the contact potential V0 = 0.5eV, the lattice

constant R12 = 2.5Å for Co, and the numerical values of I0 and I1 in Fig. (3), we find

that the energy reduction is larger than the extra magnetostatic energy of the Neel wall

if the spin-orbit parameter α is larger than several percentage of the ǫF . From several ab

initio calculations, the interface RSOC can be of the order of 10-100 meV23,24. Two recent

experiments on Pt/Co/Ni films18 and Ni/Pt7 have estimated the DMI to be 0.4 mJ/m2 or

0.1 eV per nearest neighbor pair, which are comparable to the estimation given above.

VI. CONCLUSIONS

We have calculated the DMI interactions of ultrathin magnetic films in the presence of

ferromagnetic exchange and the interfacial RSOC. As these two interactions are universal

to ferromagnetic films, the present calculation provides an intrinsic mechanism of the DMI.
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The DMI is directly correlated with the strength of the RSOC and the PMA materials such

as Co/Pt are known to have a large interface spin-orbit coupling. Therefore, our theory

provides a natural explanation for the large DMI values of these PMA materials observed

experimentally.
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