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Two ubiquitous features of frustrated spin systems stand out: massive degeneracy of their ground
states and flat, or dispersionless, excitation branches. In real materials, the former is frequently
lifted by secondary interactions or quantum fluctuations, in favor of an ordered or spin-liquid state,
but the latter often survive. We demonstrate that flat modes may precipitate remarkably strong
quantum effects even in the systems that are otherwise written off as almost entirely classical. The
resultant spectral features should be reminiscent of the quasiparticle breakdown in quantum systems,
only here the effect is strongly amplified by the flatness of spin-excitation branches, leading to the
damping that is not vanishingly small even at S>>>1. We provide a theoretical analysis of excitation
spectrum of the S = 5/2 iron-jarosite to illustrate our findings and to suggest further studies of this

and other frustrated spin systems.

PACS numbers: 75.10.Jm, 75.30.Ds, 75.50.Ee, 75.40.Gb, 78.70.Nx

I. INTRODUCTION

Ever since their inception in the 1950s,':2 frustrated
spin systems have been a source of new ideas for a wide
variety of problems; unconventional superconductivity,?
order-by-disorder phenomena,* and correlated spin-
liquid states,® are among them. In the core of this fer-
tility is the near degeneracy between a vast number of
spin configurations, originating from competing interac-
tions that are favoring mutually exclusive ground states.
In frustrated magnetic materials and their models this
massive degeneracy is responsible for an extreme sen-
sitivity to subtle symmetry breaking effects,7 strongly
amplified role of subleading coupling terms,® hierarchy of
emergent energy scales,” and order-by-disorder effects by
thermal,'® and quantum fluctuations.!'~13

Concomitant of the ground-state degeneracy is an-
other hallmark feature of the frustrated spin systems:
flat excitation branches at low energies.®311:14-17 They
owe their origin to both the topological structure of
the underlying lattices that facilitate frustration and
the insufficient constraint on the manifold of spin con-
figurations. A subclass of frustrated magnets that
exhibits flat modes prominently is the kagome-lattice
antiferromagnets.®'41824 Under the influence of sub-
leading interactions, majority of the known kagome-
lattice antiferromagnets order magnetically with spins
forming non-collinear structures!®16:25-27 that are often
reminiscent of the classical 120° motif on each triangle,
Fig. 1(a). Such a pattern is also emblematic of the geo-
metric frustration, manifesting a compromise reached by
spins locally to partially satisfy their antiferromagnetic
trends.

The following aspect of this picture is crucial. The non-
collinearity of the ordered spin pattern implies strong
nonlinear, anharmonic effects.?® The role of such effects
in the ground-state selection of frustrated systems has
been recognized since the early days of the field® 129 and,
recently, an accurate, systematic treatments of the quan-
tum order-by-disorder effect due to them has received

significant attention.'?:39

On the other hand, their role in the excitation spectra
of the kagome-lattice antiferromagnets has been hardly
touched upon. In this work, we demonstrate that the
nonlinear terms can be particularly important in the
spectral properties of the flat-band frustrated magnets,
leading to spectacularly strong quantum effects even in
the systems that are assumed almost classical. The resul-
tant spectral features bear a remarkable similarity to the
quasiparticle breakdown signatures in quantum spin- and
Bose-liquids, such as superfluid “He,3!:3? which exhibit
characteristic termination points and ranges of energies
where single-particle excitations are not well-defined and
are dominated instead by broad continua.

It is usually assumed that such drastic effects can only
occur in the systems that are inherently quantum in
nature.2®31:32 In our case, their origin is in the near reso-
nance decay of the “normal”, i.e. dispersive, modes into
pairs of the flat-mode excitations facilitated by the non-
linear couplings. As such, the effect is strongly amplified
by the density of states of the flat modes and is very sig-
nificant even for large-spin systems that can otherwise
appear as purely classical, resulting in the damping ef-
fect I'x/ex~1. While in the following we give a detailed
account of the spectral properties of a specific kagome-
lattice antiferromagnet, S = 5/2 Fe-jarosite, encouraging
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FIG. 1: (Color online) (a) q = 0 type of spin ordering on the
kagome lattice. (b) Directions of the DM vectors. Arrows on
the bonds show the ordering of S; and S; in (4).



its further investigation by inelastic neutron scattering,
the outlined scenario should be applicable to a wide va-
riety of other flat-band frustrated spin systems.'417:33

The paper is organized as follows. In Section IT we
provide a general argument for the resonant-like decay
to exist in the frustrated flat-band systems and lay out a
qualitative expectation, which highlights an unusual phe-
nomenon: decays remain significant even in the S — oo
limit. In Section III we provide our results for the decay-
dominated spectral features in Fe-jarosite. Section IV
gives a brief summary. Technical details are delegated to
Appendix A.

II. NONLINEAR COUPLING AND
RESONANT-LIKE DECAYS

Because of the noncollinear structure of the ground-
state spin configuration, the interacting spin excitations
in the kagome-lattice antiferromagnets are described by

H=> byt >, bbb+, (1)
kup p+a=k

where the first term accounts for the spin-wave energies
while the second is an outcome of the anharmonic cou-
pling of spins that results in the mutual transitions be-
tween excitation branches, see Appendix A for details.
Specifically, it couples dispersive excitations with the flat
modes, allowing for the resonance-like decay of the former
into the pairs of the latter. We note that this general form
of bosonic Hamiltonian (1) occurs in a variety of con-
texts, including other frustrated antiferromagnets with
noncollinear order,?®34 as well as spin-liquids,®® valence-
bond solids,?® and Bose-liquids.?!

The full extend of the the 1/S-expansion also involves
quartic and source cubic terms, see Refs. 12,28. Then,
the magnon Green’s function for the branch p is

Ga(w)=w—eu — Zux(w), (2)

nk
in which the self-energy ¥,k (w) includes all such terms.
However, it is only decay terms in (1) that are responsi-
ble for the resonance-like decay phenomenon discussed in
this work. Given the off-resonance character of the source
term, the Hartree-Fock nature of the quartic terms, and
the large-S limit of the problem, one can safely approx-
imate the self-energy by its on-shell imaginary part, i.e.
by E“k(w)L,J:EMk ~ —il'yx. The decay rate I',x in the
lowest-order approximation is given by

™
= S I 8 k=

q,vn

q 5nk—q) ) (3)

where sum is over the branches of the decay products
and an explicit form of the vertex ® %" ., is given in
Appendix A. With that, evaluation of the spectral func-
tion A,k (w)= (1/7r)ImGHk( ) is also straightforward.

The anharmonic cubic terms appear in the Hamiltoni-
ans of the noncollinear magnets via bosonization of the

terms that have a form ~ SfS;c(y)

frame of the ordered moments.?® Because of that, cu-
bic vertices in (3) necessarily scale with the spin value
as & " o V/S. Since the energies of the decay prod-
ucts scale as €,q o S, it follows that I' i in (3) must be
spin-independent. Contributions to the decay rate from
the higher-order terms should then follow a natural 1/5
expansion with the exception of some special contours
in k-space where a log(S) enhancement in (3) is pro-
duced due to van Hove singularities of the two-magnon
continuum.?8:3¢ Therefore, one can conclude that for
magnets with S > 1, damping of higher-energy magnetic
excitations due to decays into lower-energy ones must be
small compared to the excitation energy. In other words,
generally, I' i /e < 1/S and thus one expects that ef-
fects of decays can be significant only for low-S, quantum
magnets.?8

Here we offer a general scenario in which this seemingly
invincible logic fails dramatically. If both decay products
belong to the flat modes with constant energy e1, a re-
markably stronger effect must be taking place. Namely,
in this case the self-energy of the dispersive modes ex-
hibits an essential singularity at the energy 2¢;, and, for-
mally, the linewidth I',x in (3) is infinite at this energy,
the effect we refer to as the resonance-like decay.

In reality, quantum fluctuations of the same origin, i.e.
coming from the anharmonic cubic terms, also generate
effective further-neighbor J, spin couplings,'’'2 which
necessarily warp the flat mode and thus provide natu-
ral means of regularizing this essential singularity. How-
ever, the resultant fluctuation-induced bandwidth of the
flat mode is now S-independent, de,q 0x O(5?), so that
the regularized resonance-like broadening in the vicinity
of 2¢; must scale together with the excitation energy:
Ik o €4 o< . This qualitative consideration implies a
spectacular quantum effect: a very strong damping, elim-
inating spectral weight from the respective energy range
even in large-S magnets. Thus, frustration provides nec-
essary and sufficient ingredients for the proliferation of
intrinsically quantum phenomenon of decays into inher-
ently classical spin systems.

Altogether, we predict that anomalous broadening and
a wipe-out of the spectral weight, associated with the
resonant-like decays, should be common in the spectra
of the flat-band frustrated systems. In practice, we ar-
gue that the quasiparticle breakdown with characteristic
termination points and ranges of energies dominated by
broad continua must be present in S =5/2 kagome-lattice
Fe-jarosite.

in the local reference

III. FE-JAROSITE

In realistic kagome-lattice antiferromagnets, the de-
generacy within the manifold of classical 120° states
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FIG. 2: (Color online) (a) Neutron-scattering data from'® along the TXYT path (inset). Lines are linear spin-wave theory fits
of the dispersive modes (dashed) using (4), and the flat mode (solid) with J> added to (4), parameters are as shown. Lower
shaded area highlights the flat band, upper is the set of energies of two flat modes. Arrows imply a decay process into two flat
modes. (b) Lower curve with the shading is the on-shell I'x from (3). Dashed line is the linear spin-wave theory energy of the
gapless dispersive mode from (a), shaded area shows the half-width boundaries of a lorentzian peak, ex + I'k.

is, most commonly, lifted by the symmetry-breaking
Dzyaloshinskii-Moriya (DM) terms,?>26:37 yielding the

Hamiltonian that closely describes Fe-jarosite!®'® and
other systems?7-38:39
A!:Z(Jsi'sj‘*‘D'Siij)v 4)

(ig)
where summation is over the nearest-neighbor bonds and
D=(0,0,FD,) on the up/down triangles with the order
of the site indices in (4) shown in Fig. 1(b). The out-of-
plane DM interaction lifts the degeneracy and selects the
q=0 ground state, i.e. a “ferro”-120° pattern, Fig. 1(a).
A small in-plane DM term!¢ is neglected for simplicity.

Given the large spin value, S=5/2, we estimate that
the ordered moment should be nearly 90% of its classi-
cal value.*® Similarly, the results of the earlier neutron
scattering in Fe-jarosite!® have been interpreted as fully
describable by the linear spin-wave theory,'® a construc-
tion whose validity we question next.

Our Fig. 2(a) shows the linear spin-wave theory fits
of the neutron-scattering data'® using model (4) where
three distinct excitations branches are easy to identify.
The DM anisotropy shifts the flat mode from zero en-
ergy to e1x ~ JSv6dy;, where dy; = \ﬁDZ/J7 see Ap-
pendix A. The flat mode is also not entirely flat. This
was interpreted'® as a sign of a phenomenological next-
nearest-neighbor superexchange Jo, ignoring its possible
quantum origin.'"!? Since in the following we do not at-
tempt a fully self-consistent calculation, the same inter-
pretation suffices, with an explicit expression for the dis-
persive flat mode given in Appendix A. Aside from this
slight dichotomy with the origin of the flat-mode dis-
persion, the linear spin-wave theory seems to provide a
spectacular account of the data without the need of any
quantum effects.

However, we point out that the spectral weight is con-
spicuously missing from experimental data in the range
of energies 15 — 19meV in Fig. 2(a), i.e. no signal has
been detected there. While this feature has not been
emphasized in Ref. 15 and one may argue that the col-
lected experimental data points were simply too sparse,
the missing band is strongly implied by our discussion,
as it is exactly in the range of twice the energy of the flat
mode, 21y, see Fig. 2(a).

In Fig. 2(b) we present the results of the on-shell cal-
culation of T'y for the gapless dispersive mode using (3)
with the flat-mode dispersion induced by J; for the same
parameters as in Fig. 2(a), see Appendix A for details.
As we discuss later, the dynamical structure factor allows
to view modes selectively in different parts of the k-space
and in different polarizations.4? The results for the damp-
ing are combined with the energy ei of the mode with
the shaded area representing half-width boundaries of a
lorentzian peak, e £T'x. We have also verified*? that the
effect of renormalization on the real part of the spectrum
is minor, in agreement with approximation in (3).

Our Fig. 2(b) demonstrates that the spin-wave exci-
tation is well-defined until a sharp threshold at about
2ein. Above that energy, the broadening reaches about
one third of the bandwidth signifying an overdamped
spectrum, consistent with the missing spectral weight
in the experimental data. The sharp transition implies
a threshold singularity and other spectral features that
are characteristic to the quasiparticle breakdown phe-
nomenon in quantum Bose liquids and S = 1/2 spin-
liquids.?'32 There is a partial reconstruction of the spec-
trum at the energies above 2e}|** where decays are no
more resonant-like as indicated in the figure, i.e., occur-
ring due to other, non-resonant channels, but still pro-
viding a sizable broadening to the spectrum.
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FIG. 3: (Color online) (a) A 3D plot of the magnon dispersion for Fe-jarosite within the linear spin-wave theory with planes

of the cuts in (b) and (e). (b)-(f) Intensity maps of Aq(w) in units of (25J)~

! vs q throughout the Brillouin zone for a set of

energies. Intensity scale is as described in text. Dashed black lines are peak positions from the linear spin-wave theory.

The non-resonant decays result in a typical broad-
ening I' ~ 0.25J, in accord with similar results for
the triangular-lattice3*4! and other frustrated spin
systems.?® By contrast, the broadening in the resonant-
decay region in Fig. 2(b) reaches '~ 1.7J, an effect larger
by a factor exceeding 25 for the considered S=5/2 model
of Fe-jarosite. This is in a remarkable agreement with our
qualitative discussion on the scaling of the resonance-like
decay rate with S, provided after Eq. (3) above.

We note that the broadening on the top of the band in
the non-resonant region translates to less than 1meV, be-
low the experimental resolution of Ref. 15 in which all the
data were described as resolution-limited. The current
resolution of the neutron-scattering experiments is easily
an order of magnitude higher. We also point out that our
consideration is aimed at the strong qualitative features
of the spectrum of a representative flat-band frustrated
spin system, not on the minor quantitative details. As
such, small discrepancies with some of the data may oc-
cur due to, e.g., neglect of the in-plane DM terms, but
should be considered as secondary.

Dynamical structure factor

To demonstrate the effect of decays, we performed a
calculation of the magnon spectral functions, A,q(w),
quantities directly related to the spin-spin dynamical cor-

relation function via
/ dt et (S5 (1)S% o) Z ). (5)

Here, the kinematic formfactors Fj, allow to “filter out”
spectral contributions of some of the modes to the in-
plane and the out-of plane components of S(q,w) in the
portions of the g-space while highlighting the other ones:
a phenomenon akin to the extinction of the Bragg peaks
in the non-Bravias lattices.*? Using this feature, we con-
centrate only on one of the dispersive modes.

A dramatic view on the drastic transformations of the
spectrum can be observed in constant-energy cuts of the
dynamical structure factor in the range of energies af-
fected by the resonance-like decays. In Fig. 3, we present
intensity maps of such constant-energy cuts for A,q(w), a
close proxy of the dynamical structure factor S(q,w), for
the dispersive magnon mode for the energies ranging from
11.7meV to 20meV. The upper cut-off of the spectral
function is chosen to correspond to the maximal height
of the peaks in the non-resonant decay region in Fig. 2(b)
and translates into the broadening I'x ~0.73meV for the
Fe-jarosite values of S and J, which should be resolvable
by the modern neutron-scattering measurements.

The first of the cuts is below the threshold energy
2eMin and shows a very close accord of the sharp-intensity
peaks in Ayq(w) with the expectations from the linear,
non-interacting spin-wave theory, shown by the dashed

S*(q,w)



lines. The three subsequent cuts, Fig. 3(c)-(e), are from
within the resonant-decay band, 2eMi" < w < 2e1}2*, where
one can observe strong deviation from such expectations,
massive redistribution of the spectral weight into differ-
ent regions of the g-space, and a multitude of intriguing
“shadow” features, reflecting van Hove singularities in
the two-particle density of states of the decay products.*!
The last cut, Fig. 3(f), is, nominally, above the top of the
magnon band and should be expected to show zero inten-
sity everywhere. Instead, it is also affected by the spec-
tral weight redistribution and retains some of the features
of the other cuts. Altogether, Fig. 2(b) and Fig. 3 offer
a comprehensive theoretical insight into the non-trivial
features of the dynamical structure factor of a flat-band
kagome-lattice antiferromagnet, which originate from the
decays of magnetic excitations facilitated by the nonlin-
ear couplings.

IV. SUMMARY

To summarize, we have outlined a general scenario for
drastic transformations in the spectra of frustrated mag-
nets that feature flat modes and have substantiated it
by a consideration of the spin-spin structure factor of
the large-S kagome-lattice system Fe-jarosite. Our study
calls for further studies in these systems.

We would also like to comment that recently, the broad
features in the spectra of magnetic systems have become
a direct sign of fractionalized excitations of prospective
spin-liquid phases.*2™%5 In this work, we have provided
a case study of an excitation spectrum of a strongly
frustrated but almost classical and well-ordered kagome-
lattice antiferromagnet, for which we have demonstrated
extremely strong broadening and even a complete and
spectacular wipe-out of a part of its spectrum. Here, the
broad features are due to flat or weakly dispersive modes,
a hallmark feature of a variety of frustrated spin systems,
and due to a non-collinearity of spins in the ground state,
again an outcome of competing interactions. Thus, this is
also a cautionary tale, because the same reasons that may
lead to the spin-liquid behavior may also favor strong
coupling and decays among quasiparticles.
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Appendix A: Technical details
1. Spin-wave theory

Following the approach outlined in Refs. 8,12, one can
diagonalize the harmonic part of the Hamiltonian in (4)
to obtain the spin-wave energies

g1k = 2J5/3dy (1 +dur) /2, (A1)
for the “flat mode,” and
€2(3)k = 2JSv/1+dy (AQ)

X\/lﬁLdM*’)/kfdM(l:l: 1+8'7k)/4,

for the dispersive modes, dy; = \/gDz/J here.

Corrections due to effective J; interactions can be
taken into account perturbatively to yield*® the disper-
sion of the “flat mode”

fle = 2JS\/(3(1 +dm) /2 + jo (1 - Aﬁm)) (A3)
x \/<dM +i2 (142%%)) + 003).

where jo = Jo/J and

A = (fa(k) = f1(K)) /(1= ) (A4)

with  fi1(k) = cje1 + chea + dyes,

fa(k) = clcacs + cheres + cserea

with the shorthand notations ¢,, = cos(gy), ¢} =cos(gs+
q2), ch=cos(qz3—q1), cs=cos(q1+¢2), where ¢, =k - d,,/2,
and §,, are the primitive vectors of the kagome lattice.

The diagonalization of the harmonic part of (4) implies
a two-step procedure®!? with the unitary transformation
of the original Holstein-Primakoff bosons

Aok = Z wl/,(x(k) duk 5 (A5)

followed by the usual Bogolyubov transformation for
each of the individual species of d-boson, see Ref. 12
for details and for the explicit form of the eigenvectors

w, = (wy1(k), wy2(k), w, 3(k)).

2. Cubic terms

Due to noncollinear 120° spin structure, cubic anhar-
monic coupling of the spin waves occurs.'?28 It originates
from the S7S% terms in (4), written in the local reference

frame.'2 In the bosonic representation they yield

Hy = J(1+ dM/3)\/§ZSin9ij (alaja; +Dec.), (A6)
i,J



where 6;; = £120° is the angle between two neighboring
spins.

Assuming the spins in the q =0 state, Fig. 1(a), and
using the unitary and Bogolyubov transformations men-
tioned above gives the “source”, bTbTbl, and the “decay”,
bbb, terms, see Ref. 12 where the effects of the former
were discussed. The decay part of the Hamiltonian is

~ 11

Hy= i Y BT bbb+, (A7)
| ak;p “vq uk“nNpP ’
2 N e ramp
with the vertex
v 35 FU
Pocp = =7 D3 Coicp - (A8)

which is explicitly o v/S. The symmetrized dimension-
less vertex @, is given by

&);ﬁ?p = Fofe (Ung + Vuq) (Uyuactinp + Vuxtnp)
+ Fﬁg;(u“k + V) (Uwpllyg + Vuptng) (A9)

+ Fg;{:(unp + Uyp ) (UpqUuk + Vuqluk),

where u,x and v, are the Bogolyubov parameters and
the amplitudes F| are given by

FA = 3" e cos(gga) wh,a (@) w5 (k)wy,5(p),(A10)
af

where €7 is the Levi-Civita antisymmetric tensor, and
shorthand notations are ggo = qpga and pga = Pg — Pa,
here p, are the atom’s positions within the unit cell.

3. Self-energy, spectral function, and structure
factor

Using the standard diagrammatic rules for (1), we ob-
tain the second-order decay self-energy

vnp

Yk(w) = EZ |(I>q,k7q;k|2
nk Qanw—syq—enk_q+i5’

(A11)

which contributes to the 1/S-correction to the magnon
energy. The magnon Green’s function for the branch p is
given by (2). Since only the decay terms are responsible

for the resonance-like decay phenomena, one can approx-
imate the self-energy by its on-shell imaginary part, i.e.

Z#k(w) ~ iImE#k(E#k) = —iF#k, (A12)
which is given by (3). Clearly, the dispersion of the flat
mode in (A3) is crucial for the decays into two of them,
as otherwise this channel would produce essential sin-
gularity in (A11) and in I'y. With that, evaluation of
the spectral function A,k (w) = —(1/7)ImG,k(w) can be
performed numerically.

The diagonal components of the dynamical struc-
ture factor, or the spin-spin dynamical correlation func-
tion, which contribute directly to the inelastic neutron-
scattering cross section, are given by

0 dt W (e e
5_¢€ t<Sq'0(t)Sf(21>a

0o 2T

§20%0(q, w) = / (A13)

where «q refers to the laboratory frame {xo, o, 20}
Given the co-planar spin configuration, it is convenient
to separate the in-plane and out-of-plane components
of §**(q,w). Assuming equal contribution of all three
o components to the cross section, using the spin-wave
mapping of spins on bosons with the two-step transfor-
mation described above, after some algebra, one can ob-
tain the leading contributions to the structure factor as
directly related to the spectral function

Sin(out) (q7 CU) — Z Fyirél(out)AVq(w) , (A14)

where F/a® are the kinematic formfactors. It is im-

portant to note that the kinematic formfactors are mod-
ulated in the g-space and are suppressed in one of the
Brillouin zones while are maximal in the others.? This
effect is characteristic to the non-Bravias lattices and is
similar to the effect of extinction of some of the Bragg
peaks in them. Because of that, one may be able to high-
light spectral contribution of one of the magnon branches
while “filtering out” the others by selecting a particular
component of the structure factor in a particular Bril-
louin zone. Our analysis demonstrates that the out-of
plane component of S(q,w) should be totally dominated
by only one of the dispersive modes (gapless) in one of
the three distinct Brillouin zones. This feature can be
useful for the future neutron-scattering experiments.
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