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Abstract 

Flexoelectric effect impact on the generalized susceptibility and soft phonons dispersion was not 

studied in the long-range ordered phases of ferroics. Within Landau-Ginzburg-Devonshire 

approach we obtained analytical expressions for the generalized susceptibility and phonon 

dispersion relations in the ferroelectric phase. The joint action of static and dynamic flexoelectric 

effect induces non-diagonal components of generalized susceptibility, which amplitude is 

proportional to the convolution of the spontaneous polarization with flexocoupling constants. 

The flexocoupling essentially broadens the k-spectrum of generalized susceptibility and leads to 

the additional "pushing away" of the optical and acoustic soft mode phonon branches. The 

degeneration of the transverse optic and acoustic modes disappears in the ferroelectric phase in 

comparison with the paraelectric phase due to the joint action of flexoelectric coupling and 

ferroelectric nonlinearity. Obtained results can be principally important for the theoretical 

analyses of the experimental data broad spectrum including neutron and Brillouin scattering. 
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I. Introduction 

It is difficult to overestimate the significance of the flexoelectric phenomena contribution to the 

electromechanics of meso- and especially nanoscale objects, for which the strong strain gradients 

are inevitable present at the surfaces, interfaces, around point and topological defects [1, 2, 3]. 

According to experiments and Ginzburg-Landau-type theories, flexoelectricity should strongly 

influence on the broad spectrum of local electromechanical response of the spatially-

inhomogeneous systems with inherent strain and/or polarization gradients. There are 

flexoelectricity-driven imprint [ 4 , 5 , 6 ] and internal bias in thin films [ 7 , 8 ], spontaneous 

flexoelectric effect in nanoferroics [9], dead layer effect on ferroelectric thin films conditioned by 

flexoelectricity [10, 11]. Flexoelectric coupling strongly changes the structural, energetic and 

electro-transport properties of the domain walls and interfaces in ferroelectrics [12, 13, 14, 15, 16] 

and ferroelastics [17, 18, 19], leads to the noticeable hardening of ferroelectrics at nano-indentation 

[20, 21, 22], significantly affects on the local electrochemical strains appeared in response to the 

excitation of materials with mobile charges by strongly inhomogeneous electric field of the 

atomic force microscope tip [ 23 , 24 ] as well as on the mechanical writing of ferroelectric 

polarization by the tip [25]. Notably, flexoelectricity is allowed by symmetry in any material, 

making the effect widespread and attractive for advanced applications. 

Following a classical definition, the static flexoelectric effect is the response of electric 

polarization to an elastic strain gradient (direct effect), and, vice versa, the polarization appeared 

as a response to the strain gradient (inverse effect) [7, 26, 27, 28]. The induced strain is linearly 

proportional to the polarization gradient 
l

k
ijkl

sf
ij x

P
fu

∂
∂

−= , here ijklf  are the components of 

flexocoupling tensor [1-3], kP  are polarization components. While the static bulk flexoelectric 

effect can be viewed as an analogue of the piezoelectric effect, the dynamic flexoelectric effect, 

firstly introduced by Tagantsev as 2

2

t
U

MP j
ij

df
i ∂

∂
−= , where jU  is an elastic displacement and 

ijM  is a flexodynamic tensor, has no such analogue, because it corresponds to the polarization 

response to accelerated motion of the medium in the time domain [1].  

Despite the great importance there are only a few ferroics for which the static 

flexocoupling tensorial coefficients was measured experimentally [29, 30, 31, 32], obtained from 

early microscopic estimates [27] or recent ab initio calculations [33, 34]. The experimental and 

theoretical results are rather contradictory, indicating on a limited understanding of the effect 

nature. The situation with dynamic flexocoupling coefficients is even more unclear. Recently, 

Kvasov and Tagantsev evaluated the strength of the dynamic flexoelectric effect from ab initio 
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calculations and it appeared comparable to that of the static bulk flexoelectric effect [35]. In 

accordance with this [35] and earlier studies [36, 37] an accurate analysis of the soft phonon spectra 

extracted from the neutron and Brillouin scattering data can provide information on the 

components of the total flexocoupling coefficient.  

Remarkably that there is an important class of physical problems, for which the impact of 

flexocoupling can be critically important, but not enough studied, and some aspects are studied 

rather poorly per se. This is the influence of the static and dynamic flexocouplings on the long-

range order parameter fluctuations in the ordered phase of ferroics. Let us underline that the 

basic experimental methods collecting information about the fluctuations are dynamic dielectric 

measurements, neutron and Brillouin scattering [38, 39, 40]. Available experimental and theoretical 

results (see e.g. [41, 42, 43]), mostly demonstrate the significant material-specific impact of the 

flexocoupling on the scattering spectra. For instance the theory [36-37] predicts a sharp 

maximum for SrTiO3 in the field dependence of the dielectric loss due to the significant 

flexoelectric coupling between the soft-mode and acoustic phonon branches, while the analogous 

field dependence of the loss for Ba0.6Sr0.4TiO3 appeared monotonic because of small 

flexoelectric coupling.  

Flexoelectric effect impact on the generalized susceptibility and soft phonons dispersion 

was not studied theoretically in the long-range ordered phases of ferroics. The gap in the 

knowledge motivated us to solve the problem for ferroics with local disordering sources (e.g. 

chemical strains originated from impurity ions or vacancies).  

 

II. General theory: analytical results near the centre of the Brillouin zone 

Generalized expression for the free energy functional has the following form [24]: 
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Hereinafter summation is performed over all repeating indexes; iP  is electric polarization. The 

expansion coefficient α is temperature dependent, ( )CT TT −α=α , where T is the absolute 

temperature, TC is the Curie temperature. Elastic strain tensor is mnu , mnijq  is electrostriction 

tensor, mnlif  is the flexoelectric effect tensor. The higher order coefficients ijklα  and ijklmnα  are 

regarded temperature independent; ijklg  are gradient coefficients tensor, ijklc  are elastic 
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compliances. Also we introduce the fluctuations of the electron density, ( ) ( ) ennn −=δ rr , and 

donor concentration, ( ) ( ) ++ −=δ dedd NNN rr , from the space charge equilibrium values en  and 

+
deN . The electron density in the conduction band is n  and +

dN  is the concentration of ionized 

donors, e.g. impurity ions or oxygen vacancies. Deformation potential tensor is denoted by ijΞ  

and Vegard expansion tensor is ijβ . 

Dynamic equations of state can be derived from the minimization of Lagrange function, 

TFL −= , where the kinetic energy T is given by expression 
22
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i , which includes the dynamic flexoelectric coupling 

with the tensorial strength ijM  [2]. iU  is elastic displacement and ρ is the density of a 

ferroelectric. Corresponding time-dependent Landau-Ginzburg-Devonshire-type equation of 

state for ferroelectric polarization reads: 
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The total field is the sum of depolarization (d) and small probing external (ext) fields, 
ext
i

d
ii EEE δ+= . The field should be found self-consistently from the electric potential ϕ  as 

kk xE ∂ϕ∂−= , since the potential satisfy Poisson equation,  

( )nNe
x
P

x d
i

i

i
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∂
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∂
ϕ∂εε +
2

2

0 ,                                           (3) 

where εb is background permittivity [44] and ε0=8.85×10−12 F/m is the dielectric permittivity of 

vacuum, ( )nNe d −+  the space charge density, e=1.6×10−19 C the electron charge. 

 Elastic strains iju  and stresses ijσ  are related via Generalized Hook law, which include 

conventional Hook relation, deformation and chemical stresses, flexoelectric and electrostriction 

terms [23-24]. Since the time-dependent equation of mechanical equilibrium, 
22 tUx ijij ∂∂ρ=∂σ∂ , should be valid, the equation transforms into dynamic Lame-type 

equation for elastic strain 
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 In order to derive expression for the linear generalized susceptibility and correlation 

function, let us linearize Eqs.(2) for polarization and Eq. (4) for the displacement in the vicinity 
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of spontaneous values kl
s

klkl uuu δ+= )(  and i
s

ii PPP δ+= )( , where )()()( s
l

s
kijklmnij

s
mn PPqsu =  is the 

spontaneous strain related to spontaneous polarization )(s
lP . Both spontaneous strain and 

polarization are supposed to be coordinate and time independent in the considered bulk system. 

Electric field ext
i

d
i

s
ii EEEE δ+δ+= )( , where depolarization field fluctuations d

iEδ  will be 

estimated in Debye approximation as described in Appendix A of Suppl. Mat [45].  

 The Fourier representations in the spatial k and frequency ω domain of the linearized 

solution for polarization and strain fluctuation have the form: 
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Where ( )dijijij NnC ~~~ δβ+δΞ=δ . Since the harmonic approach (5) is applicable for small wave 

vector k, we would like to underline that we did not aim to reach the quantitative agreement 

between the calculated and experimentally observed soft phonon spectra entire the first Brillouin 

zone. Consideration of the problem for higher k values requires including of the anharmonicity 

and higher gradient terms [46]. 

 Generalized susceptibility, ( )ωχ ,~ kij , that is in fact correlation function, and elastic 

function ( )ω,kirS  included in Eqs.(5) are given by expressions: 

( ) ( ) ( ) ( ) ( ) )()(1 ,,,,,~ s
l

s
kijklijipjlijij PPQ ωγ+ω+ωΘ+ωβ=ωχ− kkkkk ,           (6a) 

( ) ikjlijklik kkcS δρω−=ω− 21 ,k .                                     (6b) 

Here the linear dynamic stiffness is affected by depolarization effect as 

( ) ( ) ( )22
0
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+δμω−α=ωβ

db
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ijij Rk

kk
k , where Rd is a Debye screening radius. Nonlinear 

stiffness ( ) ( ) )()(
'''''''' 30,4212, s

n
s

mijklmnminjjkjimniljmnikljimnijijklijkl PPSkkqqsqq α+ω−−α=ωγ kk . The 

flexoelectric coupling changes the polarization gradient coefficient tensor ipjlg  to the ω and k-

dependent tensorial function, that has the following form 

( ) ( )( ) ( )ωω−ω−−=ωΘ ,, '
2

''''
2 kk mijipjpjjimilnmnlilpipjlipjl SMkkfMkkfkkg . A new complex term 

( )ω,kijQ  is proportional to the convolution of the spontaneous polarization vector with the static 

and dynamic flexocoupling constants: 

( ) ( ) ( ) ( )( ) )(2
'''''''

2
' ,2, s

kmniknjijppjjikjjijminpmnpimiij PqkMkkfqkMkkfiSQ ω−−ω−ω=ω kk .    (7) 
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Here the static and dynamic flexocoupling appeared in a universal combination 

( )2ω− minpmnpi Mkkf . The term is absent in a paraelectric phase, since there 0)( =s
kP .  

Note that the Green tensor ( )ωχ ,~ kij  is independent on any source of the fluctuations by 

definition. However polarization variation ( )ωδ ,~ kjP  and displacement variation ( )ωδ ,~ kkU , 

which are the solutions of the linearized equations Eqs.(5), are proportional to both sources, 

external electric field variation ext
iE~δ  and concentration disorder ijC~δ , but the proportionality 

coefficients are principally different. In particular the relation ( ) ( )ωχδωδ ,~~~,~ kk ij
ext
ij EP  is 

conventional and means that the polarization fluctuation is proportional to the dielectric 

susceptibility, but part proportional to another source 

( ) ( )( ) ( ) ''
2)(

''
~,~2,~,~

jiijminlmnli
s

jmnijnmijj CMkkfPqikSikP δωχω−+ωωδ kkk  looks nontrivial due to the 

presence of additional electrostrictive, static and dynamic flexocoupling contributions 

( )2)(2 ω−+ minlmnli
s

jmnijn MkkfPqik . 

 Order parameter correlation function is related with the generalized susceptibility via 

Callen-Welton fluctuation-dissipation theorem [47] and corresponding correlations radius can be 

determined from the direct matrix ( )ωχ ,~ kij .  

 Following Cochren papers [38], dynamical structural factor of neutron scattering is 

proportional to the dynamic susceptibility spectra ( )ωχ ,~ k . Integral intensity of the scattering is 

proportional to the static spectra, ( ) ( )0,~~ kχΩσ dd . In the next section we discuss the influence 

of the flexocoupling on the static spectrum of dielectric susceptibility in a ferroelectric phase. 

 

III. Flexocoupling impact on the dynamic generalized susceptibility in a ferroelectric phase 

In general case analytical expressions for ( )ωχ ,~ kij  are rather cumbersome. In order to analyze 

analytically concrete cases, below we consider a uniaxial ferroelectric with a spontaneous 

polarization directed along z-axes, ( )S
s P,0,0)( =P  and other tensorial properties (elastic, 

electrostrictive and flexoelectric) in the cubic symmetry approximation. Analytical results were 

derived for the basic orientations of the wave vector ( )zk,0,0=k  and ( )0,0,xk=k  (or 

( )0,,0 yk=k ). Calculations details are listed in Appendix B of Suppl. Mat. [45]. All numerical 

calculations in this and next sections are performed for PbZr0.4Ti0.6O3 (PZT) in its cubic 

paraelectric and tetragonal ferroelectric phases. 

A. Orientation I of the wave vector ( )zk,0,0=k . Ferroelectric phase 
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For the case, when a wave vector ( )zk,0,0=k  is parallel to the spontaneous polarization 

direction ( )SS P,0,0=P , corresponding nonzero components of the susceptibility are [45]: 

( ) ( ) 2*
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Hereinafter the Voight notations are used. The spontaneous polarization contributes to the 

spectra of ( )ωχ ,~ kij  via the renormalization of the dielectric stiffness coefficient α as 

( ) 4
11222

44

22
44*

12
2*

11 22, S
z

S P
kc

kqP α+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρω−

−β+α=ωα k  and 

( ) 4
11122

11

22
11*

11
2*

33 3042, S
z

z
S P

kc
kqP α+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρω−

−β+α=ωα k . Nonlinear stiffness ijklα  is renormalized by 

electrostriction coupling as ( )
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+−α=β . Thus the contribution of spontaneous polarization via 

ferroelectric nonlinearity (~ 2*
12 SPβ ) and electrostriction (~ 2

Skjij Pqq ) mechanisms can lead to either 

increase or decrease of the coefficients *
ijα  depending on the material constants signs. 

Flexocoupling changes the gradient coefficients as  
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The term ( ) ( )2221
0

−− +εε dzzb Rkk  in 33
~χ  originates from the depolarization electric field.  

The static k-spectra of ( )0,~ kijχ  calculated in the ferroelectric phase with and without 

flexocoupling contribution are shown in the Figure 1a. The component 33
~χ  is much smaller that 

the ones due to the depolarization effect. As one can see from the figure flexoelectric effect 

essentially broadens k-spectrum of all susceptibility components and the broadening increases 

with k increase. Both spectra coincide in the point k=0 as anticipated. The dynamic flexoeffect 

does not contribute to the spectra in the static case (ω=0). The contribution of spontaneous 

polarization via ferroelectric nonlinearity and electrostriction mechanisms can lead to both 

broadening and narrowing on the different components of susceptibility k-spectra. 

B. Orientation II of the wave vector ( )0,0,xk=k . Ferroelectric phase 
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For the case, when a fluctuation wave vector ( )0,0,xk=k  is normal to the spontaneous 

polarization direction ( )SS P,0,0=P , corresponding nonzero components of the generalized 

susceptibility are [45]: 
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The spontaneous polarization contributes to the components by the renormalization of the linear 

dielectric stiffness coefficients ( ) 4
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form of the gradient functions ( )ω,*
11 kg  and ( )ω,*

44 kg  used in Eqs.(10) are the same as in the 

Eq.(9) with the only substitution xz kk → . Note that nonzero non-diagonal element ( )ωχ ,~
13 k  is 

proportional to the product of the spontaneous polarization value and flexocoupling constants. 

Denominator ( )ωΔ ,22 k  is expressed in terms of inverse matrix elements, 

( ) ( ) ( ) ( ) ( )ωχωχ−ωχωχ=ωΔ −−−− ,~,~,~,~, 1
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1122 kkkkk . The evident expression for ( )ωΔ ,22 k  is: 
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The flexocoupling induces several principal changes in the susceptibilities, in particular 

the terms directly proportional to the product of spontaneous polarization and flexocoupling 

constants originated from ( )ωχ ,~
13 k , as well as to the changes related with the gradient functions 

( )ω,* kiig . The physical interpretation of the susceptibility non-diagonal components given by 

Eq.(10c) seems very important for us, because it can stimulate the experimental verification of 

the theoretical prediction. The appearance of ( ) ( )ωχ−=ωχ ,~,~
3113 kk  in the ferroelectric with 

noticeable flexocoupling means that the application of the spatially inhomogeneous probing 

electric field in direction 3 (or 1) should induce the polarization change in direction 1 (or 3), that 

frequency spectrum is proportional to the product of the spontaneous polarization value PS and 
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the factors proportional to the static and dynamic flexocoupling constants. We may suggest 

performing experiments aimed to study the changes of dielectric permittivity tensor non-diagonal 

components induced by the spatially modulated electromagnetic waves (like induced optical 

gyration) or electric field gradient in the ferroelectric phase of those ferroics, whose dielectric 

response to a homogeneous electric field does not contain any non-diagonal contributions. 

The static k-spectra of ( )0,~ kijχ  calculated in the ferroelectric phase with and without 

flexocoupling contribution are shown in the Figure 1b. The strict inequalities 223311
~~~ χ<<χ<<χ  

and 3313
~~ χ<<χ  are valid due to the depolarization effect, because the denominator ( )0,22 kΔ  

includes the depolarization factor ( ) ( )2221
0

−− +εε db Rkk  and thus strongly decreases 11
~χ , 13

~χ  and 

33
~χ  in comparison with the component 22

~χ , which is not affected by depolarizing effect at all as 

it should be for transverse fluctuations of polarization z-component in the direction 1. Since 33
~χ  

contains the depolarization factor in the numerator, it becomes much higher than the components 

11
~χ  and 13

~χ . As one can see from the Figure 1b flexoelectric effect induces the non-diagonal 

component 13
~χ , that is odd with respect to k, and essentially broadens k-spectrum of the 

susceptibility diagonal components. The broadening increases with k increase. 

 

C. Paraelectric phase 

Finally, let us compare the susceptibility spectrum in ferroelectric and paraelectric phases. 

Corresponding expressions in the paraelectric phase can be derived from Eqs.(8)-(11) at 0=SP . 

Since the determinant ( ) ( ) ( )⎟⎟⎠
⎞

⎜⎜
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k
kgkgk  and 

the susceptibility component ( ) ( ) 0,~,~
3113 =ωχ−=ωχ kk  in the paraelectric phase, the 

mathematical form of obtained expressions coincide with Eqs.(8). Thus three diagonal 

components are nonzero in the paraelectric phase, at that only two of them are different. The 

static k-spectra of ( )0,~ kijχ  calculated in the paraelectric phase with and without flexocoupling 

contribution are shown in the Figure 1c and 1d for two different temperatures T=750 K (c) and 

T=900 K (d). Both paraelectric the spectra look similar to the ferroelectric one calculated for the 

case SPk
rr

↑↑  and shown in the Figure 1a. When the temperature approaches the phase 

transition at T=691 K the maximum height strongly increases for some of the susceptibility 

components, namely ( ) ( )zz kk ,0~,0~
2211 χ=χ  increases for the case ( )zk,0,0=k  and 



 10

( ) ( )xx kk ,0~,0~
3322 χ=χ  increases for the case ( )0,0,xk=k , as anticipated (compare the vertical 

scale in the Figure 1c and 1d). 

 The condition of homogeneous distribution instability onset follows from the analyses of 

the determinant ( )[ ] 0,~det 1 =ωχ − kij . In the static limit (ω=0) and in the paraelectric phase the 

condition reduces to the following equations: 

( ) 02 4
444444

2
44 =−+α fgckc ,      ( ) ( ) 02 4

111111
2

1122
0

2

=−+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+εε
+α − fgckc

Rk
k

db

         (12a) 

Derivation details of Eq.(12a) are listed in the Appendix C of Suppl. Mat. [45]. Since the 

coefficient α is not negative in a paraelectric phase and the factor ( )22
0

1
−+εε dxb Rk

 is positive, 

Eqs.(12a) give the sufficient conditions of the homogeneous distribution stability: 

1111
2

11 cgf < ,              4444
2

44 cgf < .                                       (12b) 

Note, that the condition 4444
2

44 cgf <  coincides the one derived in Refs. [9, 48]. If one of the 

inequalities (12b) becomes invalid, one can expect the onset and evolution of the modulated 

phases.  
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Figure 1. Spatial spectrum of the generalized susceptibility nonzero components ( )xij k,0~ =ωχ  

calculated for the different directions fluctuation of the wave vector k with respect to the 

spontaneous polarization ( )SS P,0,0=P . (a) SPk
rr

↑↑  and transverse (b) SPk
rr

⊥ , a is a lattice 

constant; temperature T=300 K corresponds to the ferroelectric phase (legend "FE"). Plots (c,d) 

are calculated in paraelectric phase (legend "PE") at temperatures T=750 K (c) and T=900 K (d). 

Dashed curves are calculated with flexoelectric effect (legend "fij≠0") and solid curves are 

without it (legend "fij=0"). The curves are calculated for PZT parameters from the Table I. 

 

Correlation radii tensor Rij is proportional to the second derivative of the generalized 

susceptibility, 
( )

0

2

2

2
2 0,~

~2
1

→

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
χ∂

χ
−=

k

ij

ij
ij k

R
k

, where k is either kz or kx. The dependences of 

correlation radii of Rij on the flexoelectric coefficients f11 and f44 are shown in the Figure 2a and 
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2b correspondingly. The correlation radii either monotonically decrease with the flexoelectric 

coupling constants fij increase or remained independent on the some fij. In particular R13 always 

decreases fij increase, because 13
~χ  is proportional to fij. The situation with other Rij depends on 

the orientation of vector k with respect to the spontaneous polarization PS. 
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Figure 2. Correlation radii Rij dependence on the flexoelectric coefficient f11 (a) and f44 (b). 

Dashed curves are calculated for SPk
rr

↑↑  and solid curves correspond to SPk
rr

⊥ . The curves are 

calculated for PZT parameters from the Table I. Temperature T=300 K. 

 

Table I. Material parameters for bulk ferroelectric 

coefficient PbZr0.4Ti0.6O3 (from [49, 50, ]) PbTiO3 (from [51])  
εb 5   [44] 5 
αiT  (×105C-2·mJ/K) 2.12    3.765 
TC    (K) 691 752 
α(σ)

ij   (×108C-4·m5J) a11= 0.3614,  a12= 3.233 a11= − 0.725,  a12=7.50  
αijk  (×108Jm9C-6·) a111= 1.859,  a112= 8.503  

a123= −40.63  
a111= 2.606,  a112= 6.10,  
a123= −36.60  

qij  (×109V·m/C) q11=8.91, q12= −0.787, q44=3.18 q11=11, q44=7 
cij   (×1010 Pa) c11=17.0, c12= 8.2, c44=4.7 c11=18, c12=7.9, c44=11 
gij   (×10-10C-2m3J) g11=2.0, g44=1.0  

* Estimated form domain wall width 
g11=1.5, g44=0.5 

fij    (V) f11= 5, f12= − 1, f44= +1  
*estimated from [27, 30, 31, 32] 

f11= − 8, f44= − 1.9 

M11 (V s2/m2) 6×10-8     [35] − 2×10-8 
ρ (×103 kg/m3) 8.087 * 

*At normal conditions 
7.986 

μ  (×10-18 s2mJ) 1.413     [41] 1.59 
Rd (m) from 20 nm to infinity infinity 
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IV. The impact of flexocoupling on soft phonon spectra 

Starting from classical Shirane papers [41-43] soft phonon dispersion were studied experimentally 

for several incipient and proper ferroelectrics. Below we study the impact of the flexocoupling 

on the soft phonon dispersion in ferroelectric phase and compare the results with a paraelectric 

phase. 

Dispersion relations for longitudinal and transverse optical (LO and TO) and acoustical 

(LA and TA) modes can be obtained from the analyses of the determinant ( )[ ] 0,~det 1 =ωχ− kij . 

Dispersion relations for the fluctuation wave vector direction ( )zk,0,0=k  were derived for the 

cases Pδ↑↑k  and Pδ⊥k  correspondingly. They acquire the form: 

( )
( )

0

304

2

4
11122

11

22
11*

11
2

22
0

2

22
11

22
11

2
112

11
2

=
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⎟
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⎟

⎠

⎞

⎜
⎜
⎜
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⎝

⎛
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⎛
ρω−
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+εε
+

ρω−
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−+μω−α −

S
z

z
S

dzb

z

z

z
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P
kc

kqP
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k

kc
Mkf

kg
,                            (13a) 

( )
022 4

11222
44

22
44*

12
2

22
44

22
11

2
442

44
2 =α+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ρω−

−β+
ρω−

ω−
−+μω−α S

z

z
S

z

z
z P

kc
kq

P
kc

Mkf
kg     (13b) 

Dispersion relation for the fluctuation wave vector direction ( )0,0,xk=k  has the form 

( )( ) ( ) 0,,2 22
*
12

22*
44

2 =ωΔβ+ω+μω−α kk Sx Pkg .                              (13c) 

The terms originated from the static and dynamic flexocoupling appeared in the combination 

( )2
11

2
11 ω− Mkf z  and ( )2

11
2

44 ω− Mkf z  in the equations. The spontaneous polarization SP  via 

ferroelectric nonlinearity and electrostriction mechanisms generates the term proportional to 
2*

Sij Pβ , 4
Sijkl Pα  and 2

Skjij Pqq  in the equations. Due to the k-dependence of the terms ~ 2
SP  the 

analytical solution of Eqs.(13) is absent in a ferroelectric phase.  

The features of the soft phonon k-spectra were calculated with static (fij≠0 and Mij=0) and 

dynamic flexocoupling (fij≠0 and Mij≠0) and without it (fij=0 and Mij=0). Spectra calculated in 

the paraelectric and ferroelectric phase for the cases SPk
rr

↑↑  and SPk
rr

⊥  are compared in the 

Figure 3a, 3b and 3c correspondingly. Parameters corresponding to PZT are listed in the 

Table I. 

Equations (13) have relatively simple analytical solution in a paraelectric phase ( 02 =SP ), 

namely two acoustic (LA and TA) and two optical (LO and TO) modes (see Figure 3a). 

Equation (13a) has an analytical solution in a ferroelectric phase also, and it contains one 

acoustic mode LA3 and a very high longitudinal optical mode (LO) with frequency at about 

150×1012s-1, that is maximal in the dielectric limit ( 02 →−
dR ). The LO-mode is weakly 
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dependent on temperature due to the depolarization factor ( )22
0

2

−+εε dzb

z

Rk
k , that becomes giant in 

the dielectric limit. Both paraelectric and ferroelectric spectra contain rather high frequency 

longitudinal optic modes (LO) due to the strong depolarization field that is maximal in the 

dielectric limit and is almost independent on the flexocouplings and temperature. Therefore the 

LO modes are not shown in the Figure 3. The longitudinal soft mode LA3 is insensitive to the 

flexocoupling, because its dispersion is strongly affected by the depolarization effect.  

Due to the k-dependence of the terms ~ 2
SP  the analytical solution of Eqs.(13b) is absent 

in a ferroelectric phase. Corresponding numerical solution has four degenerated transverse soft 

phonon branches, namely two optical (TO1 = TO2) and two acoustic (TA1 = TA2) modes (see 

Figure 3b). All the transverse soft modes are relatively sensitive to both dynamic and static 

flexocoupling constants, especially at 03.0≥πakz , a is a lattice constant (compare solid, dotted 

and dashed curves for TO modes in Figure 3a and 3b). Since the calculated phonon spectrum in 

the paraelectric phase has two acoustic (LA and TA) and two optical (LO and TO) modes, we 

can conclude that the appearance of spontaneous polarization does not lead to the qualitative 

changes in the spectra for the case of wave vector direction SPk
rr

↑↑ .  

 Without flexocoupling the numerical solution of Eq.(13c) has six different phonon 

branches in the ferroelectric phase for the case SPk
rr

⊥ , namely three optical (LO, TO2 and TO3) 

and three acoustic (LA1, TA2, TA3) modes, at that the frequencies of the modes TA2 and TA3 are 

almost the same at 3.0<πxka (see solid curves in the Figure 3c). With the flexocoupling 

included, the solution in the ferroelectric phase has also six different soft phonon branches, three 

optical (LO, TO2 and TO3) and three acoustic (LA1, TA2 and TA3) modes, at that the frequencies 

of the modes TA2 and TA3 are noticeably different at 3.0<πxka  (see dashed and dotted curves 

in the Figure 3c). Since the phonon spectra in the paraelectric phase has two optical (LO and 

TO) and two acoustic (LA and TA) modes (see Figure 3a), we can conclude that the 

spontaneous polarization appearance leads to the removal of the degeneration of the acoustic and 

optic modes TA and TO for the case SPk
rr

⊥  and consequently to the appearance of different 

transverse acoustic and optics modes TA2 and TA3, TO2 and TO3. The transverse TO2,3 and TA2,3 

modes are relatively sensitive to both static and dynamic flexoelectric coupling strength for the 

case SPk
rr

⊥  and 1.0≥πakx  for acoustic modes and for small k for optic modes 

correspondingly, meanwhile the longitudinal LA1 mode becomes sensitive to the coupling at 

15.0≥πakx  (compare solid, dotted and dashed curves in the Figure 3c). The flexoelectric 

coupling significantly increases the splitting of the TA2 and TA3 modes. Moreover, TO3 and LA1 
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modes are "pushed away" by the static and dynamic flexocoupling in the ferroelectric phase at 

small k ( 15.0≤πakx ) and start to approach each other at 15.0≥πakx  (compare solid and 

dashed curves inside in the Figure 3d). The effects give us the opportunity to define the static 

and dynamic flexocoupling constants (e.g. f11, f44 and M11) from soft phonons spectra in the 

assumption of other known materials parameters.  
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Figure 3. Soft phonon frequency dispersion. The wave vector k is reduced in aπ  units, a is a 

lattice constant. Plot (a) corresponds to the paraelectric phase (legend "PE") of PZT at 

temperature T=700 K, plots (b) and (c) are calculated in the ferroelectric phase (legend "FE") at 

temperature T=680 K) for longitudinal SPk
rr

↑↑  (b) and transverse SPk
rr

⊥  (c,d) fluctuation of 

the wave vector directions with respect to the spontaneous polarization ( )SS P,0,0=P . Solid 

curves are calculated without flexoelectric coupling (legend "fij=0, Mij=0"); dashed curves are 
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calculated with the static, but without the dynamic coupling (legend "fij≠0, Mij=0"); dotted curves 

are calculated with the dynamic and static flexoelectric couplings included (legend "fij≠0, 

Mij≠0"). (d) Zoom of the plot (c) inside the circle. The curves are calculated for PZT parameters 

from the Table I. 

 

 Finally, let us answer on the question how important is the flexocoupling for quantitative 

description of the observed phonon spectra. In the Figure 4 we compare the paraelectric and 

ferroelectric soft phonon spectra of PbTiO3 calculated by us with the spectra experimentally 

observed by Shirane et al [41]. Parameters corresponding to the best fitting of PbTiO3 spectra are 

listed in the last column of the Table I. It is clear from the figure that only the solid curves 

calculated for both nonzero static and dynamic flexocoupling constants (f11= − 8 V, f44= − 1.9 V 

and M11= − 2×10-8 V s2/m2) describe quantitatively observed paraelectric and ferroelectric soft 

phonon spectra of PbTiO3 at small k (compare dotted, dashed and solid curves in the Figures 4). 

Therefore it is hardly possibly to fit the experimental results without inclusion of nonzero static 

and dynamic flexocoupling constants. Hence we conclude that both these contributions are 

critically important to describe quantitatively the available experimental data even at small k. 
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Figure 4. Soft phonon branches frequency vs. k calculated in PbTiO3. Plot (a) corresponds to the 

paraelectric (PE) phase of (T=510 C), plot (b) is calculated in the ferroelectric (FE) phase 

(T=22 C) for the case SPk
rr

↑↑ . Symbols are experimental data from ref.[41]. Dotted curves are 

calculated without flexoelectric coupling (legend "fij=0, Mij=0"); dashed curves are calculated 

with the static but without the dynamic effect (legend "fij≠0, Mij=0") and solid curves are 

calculated with the dynamic and static flexoelectric effects included (legend "fij≠0, Mij≠0"). 
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Parameters corresponding to the best fitting of PbTiO3 spectra are listed in the last row of the 

Table I. 

 

VI. Summary 

Within Landau-Ginzburg-Devonshire approach we establish the impact of the static and 

dynamic flexocoupling on the correlation function of the long-range order parameter fluctuations 

in ferroelectric phase of ferroics with local disordering sources and obtained analytical 

expressions for the generalized susceptibility and phonon dispersion relations for ferroelectrics 

with arbitrary symmetry, elastic and electrostrictive anisotropy. Relatively simple analytical 

expressions for the susceptibility components and soft phonons dispersion law were derived in 

the cubic approximation for the elastic and electrostrictive properties of ferroelectric. Using the 

expressions, we studied the physical manifestations of the flexocoupling and lead to the 

following conclusions: 

    a) The joint action of static and dynamic flexoelectric effect induces non-diagonal components 

of generalized susceptibility, which amplitude are proportional to the convolution of the 

spontaneous polarization with flexocoupling constants.  

    b) The flexocoupling essentially broadens the k-spectrum of generalized susceptibility and so 

decreases the correlation radii  

    c) The contribution of spontaneous polarization via ferroelectric nonlinearity and 

electrostriction mechanisms can lead to both broadening and narrowing on the susceptibility k-

spectrum.  

    d) The spontaneous polarization appearance leads to the removal of the modes degeneration 

and consequently to the appearance of different transverse acoustic and optics modes. The 

flexoelectric coupling significantly increases the splitting of the acoustic modes, as well as it 

leads to the additional "pushing away" of the optical and acoustic soft mode phonon branches.  

    e) It appeared hardly possible to fit adequately the experimentally observed phonon spectra of 

lead zirconate titanate for zero static and dynamic flexocoupling constants even at small k. 

Hence we conclude that both the static and dynamic contributions are critically important to 

describe quantitatively the available experimental data.  

Also we would like to underline that we did not aim to reach the quantitative agreement 

between the calculated and experimentally observed soft phonon spectra entire the first Brillouin 

zone. Consideration of the problem for higher k values requires including the anharmonicity and 

higher gradient terms to modify the harmonic approach we used. However our results prove the 

evident importance of the static and dynamic flexocouplings for the adequate description of the 

generalized susceptibilities and soft phonon spectra near the centre of the Brillouin zone. Since 



 18

modern and classic experimental methods readily capture the small-k region, further study of the 

flexocouplings impact on the susceptibility spectra for all crystallographic symmetries seems 

important. Note, that our model does not contain any damping, but the energy dissipation (e.g. 

sound attenuation or optic phonons damping [52]) also could be analyzed with account of 

flexocoupling on base of the Landau-Khalatnikov theory.  

Obtained results can be principally important for theoretical analyses of the experimental 

data broad spectrum including neutron and Brillouin scattering, which collects unique 

information from the structural factors and phonon dispersion. 
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